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Abstract: In this paper, we study the finite-time stability and applications of positive switched linear delayed systems under synchronous
impulse control, which includes two types of random switching and average dwell time switching. By constructing a type of linear time-
varying co-positive Lyapunov functional, we first propose several new finite-time stability criteria. It should be emphasized that the
linear term coefficient of the linear vector of the Lyapunov functional is adjusted to the difference between the weighting vector and the
given vector. Then, we apply the obtained stability criteria to the linear time-varying delayed systems with impulsive effects. At last,
three examples are given to demonstrate the validity of the obtained results, which includes the specific linear programming algorithm
process.

Keywords: finite-time stability; impulse control; co-positive Lyapunov functional; average dwell time switching

1. Introduction

Positive systems represent dynamical systems whose
states maintain nonnegative states on the condition that the
original states are nonnegative [1, 2]. Positive switched
systems are complex dynamical systems that consist of
several positive subsystems and a switching rule among
them. Compared with switched systems, positive switched
systems can model some complex systems, so it is of
great practical value to study the stability and control
problems of positive switched systems. It is commonly
known that positive switched systems have a large number
of applications in the areas of congestion control [3],
chemical processes [4], aerospace engineering [5], multi-
agent systems [6], etc. On the other hand, delays are
frequently encountered in complex dynamical systems.
Time delays bring a period of historical state information
to the system dynamics; the solution states of the systems
are not only affected by the current states, but also affected
by the corresponding time delays. In other words, time

delays physically represent the delays between the system’s
response and the external excitation. Time delays naturally
occur in practical engineering systems, which are usually
considered an important factor in degrading the performance
of dynamic systems. Time delays affect the performance
of the systems, which may make the systems unstable
or even oscillate. Moreover, it is well known that even
small delays may affect or even destroy the stability of
systems, which make stability analysis difficult. The
study of stability is always an important topic in control
systems. Therefore, an increasing number of experts and
scholars are taking notice of the stability of positive switched
delayed systems [7–10]. For example, by constructing
an appropriate co-positive Lyapunov-Krasovskii functional,
Xiang and Xiang [7] investigated the exponential stability,
L1-gain performance and controller design problems for a
class of positive switched systems with time-varying delay.
Liu and Xiang [8] addressed the exponential L1 output
tracking control for positive switched linear systems with
time-varying delays. Liu [9] studied the stability problem
of delayed nonlinear positive switched systems. Sun [10]
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considered the stability of positive switched linear systems
with time delay.

To our knowledge, the vast majority of existing results on
the stability of positive switched systems concern Lyapunov
stability, which indicates stability over an infinite time
interval. It is well known that asymptotic stability can ensure
that the stead-state performance of the systems is good, not
necessarily have the corresponding transient performance,
and may even make the transient performance of the systems
very poor. For example, Zhao and Sun [11] addressed the
absolute exponential stability for switching Lurie systems
with time-varying delays using the switching time-varying
Lyapunov function technique. Compared with Lyapunov
stability, some systems do not need to stabilize over finite
time interval but only need to stabilize over finite time
interval. This stability of the system is named finite time
stability (FTS), which means that given a bound on the
original conditions, the system’s solution states do not
transcend a definite threshold during a concrete time range
(see [12]). The transient performance of finite-time stability
is better. Nevertheless, in some practical circumstances,
some control systems usually do not need to be stable at
infinite time; these control systems only need to be stable
at a finite time interval. Finite-stability problems receive
plenty of applications; see [13–18]. For example, Garcia
et al. [13] studied the finite-time stabilization of linear
time-varying continuous systems by Lyapunov differential
matrix equations. Zhao et al. [14] considered the finite-
time stability of linear time-varying singular systems with
impulsive effects. Wang et al. [15] investigated the input-
output finite-time stability for a class of networked control
systems with network-induced delay. By a singular value
decomposition approach, Thanh et al. [16] studied the finite-
time stability of singular nonlinear switched time-delay
systems. Wei et al. [17] studied the finite-time stability of
linear discrete switched singular systems with finite-time
unstable subsystems. Zhang et al. [18] studied the finite-time
stability and stabilization of linear discrete time-varying
stochastic systems with multiplicative noise.

There are some meaningful FTS results for switched
systems [19–25]. Hou et al. [19] provided a sufficient FTS
condition for switched linear systems with a new multiple
Lyapunov functional. Xiang and Xiao [20] proposed a

number of sufficient finite-time boundness and stability
conditions as switched linear systems. Liu et al. [21]
regarded the FTS for positive switched linear delayed
systems (PSLDSs) with piecewise co-positive Lyapunov–
Krasovskii functional. With the help of a time-varying
co-positive Lyapunov functional, Chen and Yang [22]
investigated the FTS as positive switched linear systems.
After that, Xu et al. [23] established the FTS conditions
of positive switched linear delayed systems by Lyapunov–
Krosovskii functional. Zhang and Zhu [24] extended the
finite-time input-to-state stability to switched stochastic
time-varying nonlinear systems with time delays by the
Razumikhin theorem, comparison principle, and average
dwell-time approach. Recently, by using a type of linear
time-varying co-positive Lyapunov functional, Huang et al.
dealt with the FTS of a positive switched linear delayed
system (PSLDS) as follows [25]:ż(t) = Mδ(t)z(t) + Nδ(t)z(t − ρ), t ∈ [0, S ],

z(t) = ν(t), t ∈ [−ρ, 0],
(1.1)

where z(t) ∈ Rn represents the state vector, δ(t): [0,∞) →
{1, 2, · · · , q} expresses the switching rule, which implies a
piecewise continuous function, q > 1 expresses an integer,
Ml and Nl symbolize system matrices of the lth subsystem
for l ∈ {1, 2, · · · , q}, ρ > 0 stands for time delay, ν(t):
[−ρ, 0] → Rn shows the continuous vector valued original
function.

However, in some practical applications, impulsive
interference is inevitable. Impulsive behaviors are regarded
as a dynamical course that expresses a state that changes
abruptly at some time points [26–28]. Nowadays,
numerous researchers focus on the stability of positive
systems with impulsive interference, and several significant
results have emerged in [29–31]. Specifically, by
constructing a time-varying co-positive Lyapunov function
and utilizing the average impulsive interval approach,
Hu et al. [29] investigated the finite-time stability and
stabilization problems of positive systems with impulses.
Hu et al. [30] addressed the exponential stability and positive
stabilization problems of impulsive positive systems with
time delay. Based on the linear co-positive Lyapunov
function method, Briat [31] obtained the stability and
stabilization of linear impulsive positive systems under
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arbitrary, constant, minimum, maximum, and range dwell-
time. Therefore, it’s beneficial to study the switched systems
with impulsive effects.

Then, inspired by the method of [25], we will further
study the FTS for a PSLDS with impulsive effects as
follows:

ż(t) = Mδ(t)z(t) + Nδ(t)z(t − ρ), t ∈ [0, S ], t , tr,

z(t+) = gδ(t+)(z(t−)), t = tr, r = 1, 2, 3, · · ·,

z(t) = ν(t), t ∈ [−ρ, 0],

(1.2)

where gl(z): Rn → Rn are impulses for l ∈ {1, 2, · · · , q}, tr,
r = 1, 2, · · · , those are not just the switching instants but the
impulsive instants, and satisfying 0 < tr < tr+1 and

lim
r→∞

tr = ∞.

When t ∈ [tr, tr+1), the δ(tr)th subsystem is motivated, r =

0, 1, 2, · · · . At the switching and impulsive instants, let z(t) =
z(t+) at t = tr.

The differences between this paper and the related results
lie mainly in the following two aspects: First, we introduce
the impulsive effects of PSLDS. Next, we adjust the linear
term coefficient of the linear vector function and add the
vector constraints at every impulsive instant. The primary
contributions are highlighted as follows:

(1) Compared with the existing results [21–23, 25],
impulsive effects are introduced to the positive switched
systems. By constructing a linear time-varying co-positive
Lyapunov functional, we deduce several new finite-time
stability criteria for the models in Huang et al. [25] under
synchronous impulse control.

(2) Inspired by Chen and Yang [22] and Huang et al. [25],
a linear time-varying co-positive Lyapunov functional is
established. It should be emphasized that the linear term
coefficient of the linear vector of the Lyapunov functional is
adjusted to the difference between the weighting vector and
the given vector. Then, at every impulsive and switching
instant, we use impulsive vector constraints to replace the
vector constraints at every switching instant.

(3) We apply the obtained results to the finite-time
stability of linear time-varying systems with impulses. We
design new linear programming algorithm using Lingo
software to better demonstrate the feasibility of our results,
and our programming process is relatively easy.

The framework of this paper is organized as follows.
Indispensable definitions and preliminaries for this paper are
provided in Section 2. Section 3 is dedicated to proving
the main FTS criteria. In Section 4, we apply the obtained
FTS criteria to the linear time-varying delayed systems with
impulsive effects. Three examples are given in Section 5 to
support our main theoretical results. A conclusion and some
future directions are discussed in Section 6.

2. Preliminaries

Some necessary notations or symbols are given here. Rn

represents the group of n-dimensional real vector spaces.
Rn×n represents n × n-dimensional real matrices space. Two
vectors p, q ∈ Rn, p ≻ 0 implies its entry pl ≻ 0 for
l ∈ {1, 2, · · · , n}, p ⪰ q (or q ⪯ p) if pl ⪰ ql (or pl ⪯ ql)
for l ∈ {1, 2, · · · , n}. p ∈ Rn expresses a positive vector,
provided that p ≻ 0. A vector p ∈ Rn and a matrix
M ∈ Rn×n , p⊤ and M⊤ characterize the transpose of p and
M, respectively. Provided that all off-diagonal elements of
matrix N are nonnegative, then N is called a Metzler matrix.
If all elements of matrix C are nonnegative, then C is called
positive.

Set t0 = 0 and tq = S . The switching and impulsive
moments are 0 < t1 < · · · < tr < · · · < tq−1 < S , where
q > 1 is an integer.

The next definitions, assumptions, and lemmas are
important for the formation of the crucial FTS criteria.

Definition 2.1. ([25]) Provided that ν(t) ⪰ 0, t ∈ [−ρ, 0], for
any switching signal δ(t), the state solution trajectory z(t)
fulfills z(t) ⪰ 0, for any t ≥ 0, then PSLDS (1.2) is positive.

Definition 2.2. ([25]) Given positive scalars S , b1 < b2 and
a positive vector p ∈ Rn, PSLDS (1.2) is called finite-time
stable about (S , p, b1, b2) provided that

sup
t∈[−ρ,0]

p⊤z(t) ≤ b1 ⇒ p⊤z(t) ≤ b2,

for t ∈ [0, S ].

Definition 2.3. ([25]) Nδ(0, t) defines the number of
switching points in the time interval (0, S ). Provided that
there is a positive number Tb > 0 in order that

Nδ(0, S ) ≤
S
Tb
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holds, Tb represents the average dwell time (ADT) of δ(t) in
the time interval [0, S ].

An assumption is proposed as follows:

(H1) Impulsive function g f l(z) ⪰ 0 for z ⪰ 0, and there
exist a group of positive matrices Dl ∈ Rn×n, satisfying
g f l(z) ⪯ Dlz for z ∈ Rn, where l, f ∈ {1, 2, · · · , q},
σ(t+r ) = f , σ(t−r ) = l, l , f .

Lemma 2.1. ([25]) PSLDS (1.2) is positive if and only

if Ml represents a Metzler matrix and Nl ⪰ 0, for any

l ∈ {1, 2, · · · , q}.

3. Main results

Firstly, we propose FTS criteria for PSLDS (1.2) under
arbitrary switching.

Theorem 3.1. Suppose that (H1) holds. Given positive

scalars S , b1 < b2, a positive vector p ∈ Rn, PSLDS (1.2)
is finite-time stable about (S , p, b1, b2) under arbitrary

switching, provided that there are a positive vector ψ ∈ Rn,

a free weighting vector χ ∈ Rn, parameters δ1 > 0, δ2 > 0,

and ω ≥ 1, in order to satisfy the following inequalities:

− χ⊤ + ψ⊤ + ψ⊤M f + [ψ⊤ − ρ(χ⊤ − ψ⊤)]Nl ⪯ 0, (3.1)

− χ⊤ + ψ⊤ + [ψ⊤ − S (χ⊤ − ψ⊤)]M f

+ [ψ⊤ − (S + ρ)(χ⊤ − ψ⊤)]Nl (3.2)

⪯ 0,

p⊤ ⪯ ψ⊤, p⊤ ⪯ [ψ⊤ − S (χ⊤ − ψ⊤)], (3.3)

0 ⪯ ψ⊤Nl, 0 ⪯ (ψ⊤ − (S + ρ)(χ⊤ − ψ⊤))Nl, (3.4)

ψ⊤ ⪯ δ1 p⊤, ψ⊤Nl ⪯ δ2 p⊤, (ψ⊤ − ρ(χ⊤ − ψ⊤))Nl ⪯ δ2 p⊤,

(3.5)

ψ⊤f D⊤l − ωψ
⊤
l ⪯ 0, ω(χ⊤l − ψ

⊤
l ) − (χ⊤f − ψ

⊤
f )D⊤l ⪯ 0, l , f ,

(3.6)

(δ1 + ρδ2)b1 ≤ b2, (3.7)

hold, where l, f ∈ {1, 2, · · · , q}.

Proof. For any ν(t) ⪰ 0, t ∈ [−ρ, 0], it is obvious that
z(t) ⪰ 0, t ≥ 0. Construct the linear time-varying co-positive
Lyapunov functional as follows:

V(t, z(t)) = η⊤(t)z(t)+
∫ t

t−ρ
η⊤(ξ+ρ)Nδ(ξ+ρ)z(ξ)dξ, t ∈ [0, S ],

where

η(t) = ψ − t(χ − ψ), t ∈ [0, S + ρ], δ(t) = δ(S −)

for t ≥ S , and δ(S −) characterizes the left limitation of δ(t)
at t = S . For any t ∈ [0, S ], let

δ(t + ρ) = l, δ(t) = f , l, f ∈ {1, 2, · · · , q},

which are related to t.
Taking the derivative of V(t, z(t)) about t along the

solution trajectory of PSLDS (1.2), we obtain

V̇(t, z(t)) =η̇⊤(t)z(t) + η⊤(t)M f z(t) + η⊤(t)N f z(t − ρ)

+ η⊤(t + ρ)Nlz(t) − η⊤(t)N f z(t − ρ)

=[η̇T (t) + ηT (t)M f + η
⊤(t + ρ)Nl]z(t)

=[−χT + ψ⊤ + (ψT − t(χT − ψ⊤))M f

+ (ψT − (t + ρ)(χT − ψ⊤))Nl]z(t)

=Pl f (t)z(t),

where

Pl f (t) = − χ⊤ + ψ⊤ + (ψ⊤ − t(χ⊤ − ψ⊤))M f

+ (ψ⊤ − (t + ρ)(χ⊤ − ψ⊤))Nl.

Then, we prove Pl f (t) ⪯ 0 for l, f ∈ {1, 2, · · · , q} and t ∈

[0, S ]. Because

Ṗl f (t) = (−χ⊤ + ψ⊤)(M f + Nl),

in other words, Pl f (t) is monotone with t in the time interval
[0, S ], for l, f ∈ {1, 2, · · · , q}. Furthermore, conditions (3.1)
and (3.2) show that Pl f (0) ⪯ 0 and Pl f (S ) ⪯ 0, respectively.
After that, it concludes from the monotonicity of Pl f (t) that
Pl f (t) ⪯ 0, for l, f ∈ {1, 2, · · · , q} and t ∈ [0, S ], so V̇(t, z) ≤
0 for t ∈ [0, S ]. Condition (3.5) indicates that

η⊤(t)Nl ≤ δ2 p⊤

for t ∈ [0, ρ] and l ∈ {1, 2, · · · , q}. Furthermore,
condition (3.5) also shows that

V(t, z(t)) ≤ V(0, z(0))

= ψ⊤z(0) +
∫ 0

−ρ

η⊤(ξ + ρ)Nδ(ξ+ρ)z(ξ)dξ

≤ δ1 p⊤z(0) + δ2

∫ 0

−ρ

p⊤z(ξ)dξ, t ∈ [0, S ].

(3.8)
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At every switching and impulsive instant tr, due to the
definition of V(t, z(t)), we acquire

V(tr, z(tr)) = η⊤(tr)z(tr) +
∫ tr

tr−ρ
η⊤(ξ + ρ)Nδ(ξ+ρ)z(ξ)dξ.

By condition (3.6), we obtain

(ψ⊤f D⊤l − ωψ
⊤
l ) + tr[ω(χ⊤l − ψ

⊤
l ) − (χ⊤f − ψ

⊤
f )D⊤l ]

= [ψ⊤f − tr(χ⊤f − ψ
⊤
f )]D⊤l − ω[ψ⊤l − tr(χ⊤l − ψ

⊤
l )]

⪯ 0.

Therefore,

[ψ⊤f − tr(χ⊤f − ψ
⊤
f )]D⊤l ⪯ ω[ψ⊤l − tr(χ⊤l − ψ

⊤
l )]

⇐⇒ η(t+r ) ≤ ωη(t−r ), δ(t+r ) = f , δ(t−r ) = l.
(3.9)

From (3.9), we gain

V(t+r , z(t+r )) ≤ ωV(tr−, z(tr−)), (3.10)

where t = tr, r = 0, 1, 2, 3, · · · , q. By (3.10), we get

V(tr, z(tr)) ≤ ωN(0,S )V(0, z(0)), (3.11)

where N(0, S ) expresses the number of impulses in time
interval (0, S ).
(i) At every switching and impulsive instant tr, we obtain

V(tr, z(tr)) ≥ p⊤z(tr). (3.12)

If

sup
t∈[−ρ,0]

p⊤z(t) ≤ b1,

then

p⊤z(0) ≤ b1.

Since (3.5), (3.8) and (3.11), we have

V(tr, z(tr)) ≤ ωN(0,S )(δ1 + ρδ2)b1. (3.13)

Thus, if

p⊤z(0) ≤ b1,

we conclude from (3.12) to (3.13) that

p⊤z(tr) ≤ V(tr, z(tr)) ≤ ωN(0,S )(δ1 + ρδ2)b1 ≤ b2.

(ii) When t ∈ [0, S ], t , tr, conditions (3.3) and (3.4)
indicate that η⊤(t) ⪰ p⊤, for t ∈ [0, S ], t , tr and

η⊤(t)Nl ⪰ 0,

for t ∈ [0, S + ρ], t , tr and l ∈ {1, 2, · · · , q}. Accordingly,
provided that

sup
t∈[−ρ,0]

p⊤z(t) ≤ b1,

from (3.7) and (3.8), we get the conclusion that

p⊤z(t) ≤ V(t, z(t)) ≤ (δ1+ρδ2)b1 ≤ ω
N(0,S )(δ1+ρδ2)b1 ≤ b2.

Consequently, PSLDS (1.2) is finite-time stable about
(S , p, b1, b2). □

Remark 3.1. In the course of proving Theorem 3.1,
compared to [25], we define that the linear term coefficient
of the linear vector function η(t) is about ψ and the weighting
vector χ (not required χ ≻ 0), which makes the results more
accurate.

Remark 3.2. Condition (3.6) is a vector constraint at every
impulsive instant. If there exists a common positive vector
ψ and a free weighting vector χ, the conditions (3.1)–(3.5)
hold. If we cannot find the common vectors ψ and χ, we
further construct multiple time-varying linear co-positive
Lyapunov functionals to deduce the next FTS criteria for
PSLDS (1.2).

Second, we will further investigate the FTS of
PSLDS (1.2) under ADT switching.

Theorem 3.2. Suppose that (H1) holds. Given positive

scalars S , b1 < b2, and a positive vector p ∈ Rn,

PSLDS (1.2) is finite-time stable about (S , p, b1, b2) under

arbitrary switching, if there exist positive vectors ψl ∈ Rn,

free vectors χl ∈ Rn, parameters ω ≥ 1, ε ∈ R, δ1 > 0,

δ2 > 0 in order to satisfy the following inequalities:

− χ⊤f + ψ
⊤
f + ψ

⊤
f M f + e−ερ

(
ψ⊤f − ρ(χ⊤f − ψ

⊤
f )

)
N f

− εψ⊤f ⪯ 0, (3.14)

− χ⊤f + ψ
⊤
f +

(
ψ⊤f − S (χT

f − ψ
⊤
f )

)
M f − ε

(
ψ⊤f − S (χ⊤f − ψ

⊤
f )

)
+ e−ερ

(
ψ⊤f − (S + ρ)(χ⊤f − ψ

⊤
f )

)
N f ⪯ 0, (3.15)

ψ⊤f D⊤l − ωψ
⊤
l ⪯ 0, ω(χ⊤l − ψ

⊤
l ) − (χ⊤f − ψ

⊤
f )D⊤l ⪯ 0, l , f ,

(3.16)
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p⊤ ⪯ ψ⊤f , p⊤ ⪯ ψ⊤f − S (χ⊤f − ψ
⊤
f ), (3.17)

0 ⪯ ψ⊤f N f , 0 ⪯
(
ψ⊤f − (S + ρ)(χ⊤f − ψ

⊤
f )

)
N f , (3.18)

ψ⊤f ⪯ δ1 p⊤, ψ⊤f N f ⪯ δ2 p⊤,
(
ψ⊤f − ρ(χ⊤f − ψ

⊤
f )

)
N f ⪯ δ2 p⊤,

(3.19)

ω
S

Tb eε+S
(
δ1 + ρδ2

1 − e−ερ

ε

)
b1 ≤ b2, (3.20)

hold, where l, f ∈ {1, 2, · · · , q}, ε+ = max{ε, 0} and

1 − e−ερ

ε
= 0

when ε = 0.

Proof. For ν(t) ⪰ 0, t ∈ [−ρ, 0], we get that z(t) ⪰ 0 for
t ≥ 0. Construct a piecewise linear time-varying co-positive
Lyapunov functional as follows:

Vδ(t)(t, z(t)) = η⊤δ(tr)(t)z(t)+
∫ t

t−ρ
eε(t−ξ−ρ)η⊤δ(tr)(ξ+ρ)Nδ(tr)z(ξ)dξ,

t ∈ [tr, tr+1), where

ηδ(t)(t) = ψδ(t) − t(χδ(t) − ψδ(t)),

t ∈ [0, S + ρ], and

δ(t) = δ(tp−1)

for t ∈ [S , S + ρ]. The proof will be separated into the next
three steps.

(I). For any t ∈ [tr, tr+1), r = 0, 1, · · · , q − 1, we prove that

Vδ(t)(t, z(t)) ≤ eε(t−tr)Vδ(tr)(tr, z(tr)). (3.21)

Denote δ(t) = f , when t ∈ [tr, tr+1), r = 0, 1, · · · , q − 1.
Then, the derivative of V f (t, z(t)) about t ∈ [tr, tr+1) along
the solution trajectory of PSLDS (1.2) shows

V̇ f (t, z(t)) =η̇⊤f (t)z(t) + η⊤f (t)ż(t)

+ ε

∫ t

t−ρ
eε(t−ξ−ρ)g⊤δ(tr)(ξ + ρ)Nδ(tr)z(ξ)dξ

+ e−ερη⊤f (t + ρ)N f z(t) − η⊤f (t)N f z(t − ρ)

=(−χ⊤f + ψ
⊤
f )z(t) + η⊤f (t)M f z(t)

+ e−ερη⊤f (t + ρ)N f z(t)

+ ε

∫ t

t−ρ
eε(t−ξ−ρ)η⊤δ(tr)(ξ + ρ)Nδ(tr)z(ξ)dξ.

Therefore, we get:

V̇ f (t, z(t)) − εV f (t, z(t))

= (−χ⊤f + ψ
⊤
f )z(t) +

(
ψ⊤f − t(χ⊤f − ψ

⊤
f )

)
M f z(t)

− ε
(
ψ⊤f − t(χ⊤f − ψ

⊤
f )

)
z(t)

+ e−ερ
(
ψ⊤f − (t + ρ)(χ⊤f − ψ

⊤
f )

)
N f z(t)

= Q f (t)z(t),

where

Q f (t) = − χ⊤f + ψ
⊤
f +

(
ψ⊤f − t(χ⊤f − ψ

⊤
f )

)
M f

− ε
(
ψ⊤f − t(χ⊤f − ψ

⊤
f )

)
+ e−ερ

(
ψ⊤f − (t + ρ)(χ⊤f − ψ

⊤
f )

)
N f .

Since

Q̇ f (t) = (χ⊤f − ψ
⊤
f )(−M f + ε − e−ερN f ),

then Q f (t) is monotone over an interval [0, S ], it concludes
that Q f (t) ≤ 0 for t ∈ [0, S ] if and only if Q f (0) ≤ 0 and
Q f (S ) ≤ 0. After that, conditions (3.14) and (3.15) indicate
that Q f (t) ≤ 0, for t ∈ [tr, tr+1), and hence

V̇ f (t, z(t)) ≤ εV f (t, z(t)), t ∈ [tr, tr+1).

Thus, inequality (3.21) is held.
(II). We indicate that for any switching signal δ(t),

Vδ(tr)(tr, z(tr)) ≤ ωVδ(t−r )(tr, z(tr)), (3.22)

holds, where r = 1, 2, · · · , q − 1. At every switching and
impulsive instant tr, on the basis of the definition of V(t, z(t)),
we obtain that

Vδ(tr)(tr, z(tr)) = η⊤δ(tr)(tr)z(tr)

+

∫ tr

tr−ρ
eε(tr−ξ−ρ)η⊤δ(tr)(ξ + ρ)Nδ(tr)z(ξ)dξ.

From condition (3.16), we obtain

(ψ⊤f D⊤l − ωψ
⊤
l ) + tr[ω(χ⊤l − ψ

⊤
l ) − (χ⊤f − ψ

⊤
f )D⊤l ]

= [ψ⊤f − tr(χ⊤f − ψ
⊤
f )]D⊤l − ω[ψ⊤l − tr(χ⊤l − ψ

⊤
l )]

⪯ 0,

where δ(t+l−1) = l, δ(t−l−1) = l − 1.
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Accordingly,

[ψ⊤f − tr(χ⊤f − ψ
⊤
f )]D⊤l ⪯ ω[ψ⊤l − tr(χ⊤l − ψ

⊤
l )]

⇐⇒ gδ(t+r )(t+r ) ⪯ ωgδ(t−r )(t−r ). (3.23)

From (3.23), we get

Vδ(t+r )(t+r , z(t+r )) ≤ ωVδ(t−r )(t−r , z(t−r )).

(III). According to (3.21) and (3.22), the following
relations are established:
(1) When t ∈ [t0, t1),

Vδ(t)(t, z(t)) ≤ eε(t−t0)Vδ(t0)(t0, z(t0)) = eεtVδ(0)(0, z(0)).

(2) When t = t1,

Vδ(t1)(t1, z(t1)) ≤ ωVδ(t−1 )(t1, z(t1)) = ωeεt1 Vδ(0)(0, z(0)).

(3) When t ∈ [t1, t2),

Vδ(t)(t, z(t)) ≤ eε(t−t1)Vδ(t1)(t1, z(t1)) ≤ ωeεtVδ(0)(0, z(0)).

(4) When t = t2,

Vδ(t2)(t2, z(t2)) ≤ ωVδ(t−2 )(t2, z(t2)) = ω2eεt2 Vδ(0)(0, z(0)), · · · .

By repeating the above process, we obtain

Vδ(t)(t, z(t)) ≤ ωNδ(0,t)eεtVδ(0)(0, z(0)), t ∈ [0, S ].

Owing to

Nδ(0, t) ≤ Nδ(0, S ) ≤
S
Tb

and ω ≥ 1, it shows that

Vδ(t)(t, z(t)) ≤ ω
S

Tb eε+S Vδ(0)(0, z(0)), t ∈ [0, S ]. (3.24)

Conditions (3.17) and (3.18) indicate that

Vδ(t)(t, z(t)) ≥ p⊤z(t), t ∈ [0, S ], (3.25)

condition (3.19) demonstrates that

Vδ(0)(0, z(0)) ≤ δ1 p⊤z(0) + δ2

∫ 0

−ρ

eε(−ξ−ρ) p⊤z(ξ)dξ

≤

(
δ1 + ρδ2

1 − e−ερ

ε

)
b1.

Combining the above inequality, (3.20), (3.24) and (3.25),
we get that

p⊤z(t) ≤ b2,

for t ∈ [0, S ]. Accordingly, PSLDS (1.2) is finite-time stable
about (S , p, b1, b2). □

Remark 3.3. Condition (3.16) is a vector constraint at every
impulsive instant. Compared to [25], we use impulsive
constraints to replace the vector constraints at switching
instants in proofing the process (II).

Remark 3.4. In this section, the delays represent constant
delays, and when the delays become time-varying delays,
we will next consider establishing an appropriate Lyapunov
function to obtain the FTS criteria.

4. Applications in FTS of linear time-varying delayed
systems

By the same approach, we investigate the linear time-
varying delayed system with impulsive effects as follows:

ż(t) = M(t)z(t) + N(t)z(t − ρ), t ∈ [0, S ], t , tr,

z(t+) = gδ(t+)(z(t−)), t = tr, r = 1, 2, 3 · · ·,

z(t) = ν(t), t ∈ [−ρ, 0],

(4.1)

where the definitions of z, ρ and ν are similar to
PSLDS (1.2),

M(t) = [ml f (t)] ∈ Rn×n

and
N(t) = [nl f (t)] ∈ Rn×n

represent piecewise continuous matrix functions. Separate
the time interval [0, S ] into Q subintervals [tr−1, tr] for r =

1, 2, · · · ,Q, where
tr =

r
Q

S

for r = 0, 1, · · · ,Q. We present the next two hypotheses:

(H2) There exist matrices

M̄r = [m̄(r)
l f ]

in order that

mll(t) ≤ m̄(r)
ll and ml f (t) ≤ m̄(r)

l f

for t ∈ [tr−1, tr], r = {1, 2, · · · ,Q}, l, f ∈ {1, 2, · · · , q},
l , f .

(H3) There exist matrices

N̄r = [n̄(r)
l f ]
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in order that
nll(t) ≤ n̄(r)

ll

and
nl f (t) ≤ n̄(r)

l f

for t ∈ [tr−1, tr], r = {1, 2, · · · ,Q}, l, f ∈ {1, 2, · · · , q},
l , f .

Note that system (4.1) is not confined to being positive.
For t ∈ [tl−1, tl), l ∈ {1, 2, · · · , q}, construct the following
time-varying Lyapunov functional:

Vl(t, z(t)) = η⊤l (t) | z(t) | +
∫ t

t−ρ
eε(t−ξ−ρ)η⊤l (ξ+ρ)N̄l | z(ξ) | dξ,

where

| z(t) | = (| z1(t) |, · · · , | zn(t) |)⊤,

η1(t) = ψ1 − t(χ1 − ψ1), t ∈ [0,
S
Q

),

η2(t) = ψ2 − (t −
S
Q

)(χ2 − ψ2), t ∈ [
S
Q
,

2S
Q

),

...

ηQ(t) = ψQ − (t −
(Q − 1)S

Q
)(χQ − ψQ), t ∈ [

(Q − 1)S
Q

, S ).

Then, we get the next FTS conditions for system (4.1).

Theorem 4.1. Suppose that (H1)–(H3) hold. Given positive

scalars S , b1 < b2 and a positive vector p ∈ Rn, system (4.1)
is finite-time stable about (S , p, b1, b2). If there exist positive

vectors ψl ∈ Rn, free vectors χl ∈ Rn, parameters ω ≥ 1, ε ∈

R, δ1 > 0, δ2 > 0, in order that the following inequalities:

− χ⊤l + ψ
⊤
l + ψ

⊤
l M̄l + e−ερ

(
ψ⊤l − ρ(χ⊤l − ψ

⊤
l )

)
N̄l

− ε
(
ψ⊤l − (χ⊤l − ψ

⊤
l )t

)
⪯ 0, (4.2)

− χ⊤l + ψ
⊤
l +

(
ψ⊤l − S (χ⊤l − ψ

⊤
l )

)
M̄l

+ e−ερ
(
ψ⊤l − (S + ρ)(χ⊤l − ψ

⊤
l )

)
N̄l

− ε
(
ψ⊤l − (S + ρ)(χ⊤l − ψ

⊤
l )

)
⪯ 0, (4.3)

ψ⊤l−1D⊤l − ωψ
⊤
l ⪯ 0, ω(χ⊤l − ψ

⊤
l ) − (χ⊤l−1 − ψ

⊤
l−1)D⊤l ⪯ 0,

(4.4)

p⊤ ⪯ ψ⊤l , p⊤ ⪯ ψ⊤l −
S
Q

(χ⊤l − ψ
⊤
l ), (4.5)

0 ⪯ ψ⊤l N̄l, 0 ⪯
(
ψ⊤l − (

S
Q
+ ρ)(χ⊤l − ψ

⊤
l )

)
N̄l, (4.6)

ψ⊤1 ⪯ δ1 p⊤, ψ⊤1 N̄1 ⪯ δ2 p⊤, (4.7)

(
ψ⊤1 − (

S
Q
+ ρ)(χ⊤1 − ψ

⊤
1 )

)
N̄1 ⪯ δ2 p⊤, (4.8)

eε+SωQ−1
(
δ1 +

1 − e−ερ

ε
δ2ρ

)
b1 ≤ b2, (4.9)

hold, where l ∈ {1, 2, · · · , q}, ε+ = max{ε, 0}, and

1 − e−ερ

ε
= 0

when ε = 0.

Proof. The proof is separated into three steps:
(I). For t ∈ [tl−1, tl), l ∈ {1, 2, · · · , q}, we first demonstrate

that
Vl(t, z(t)) ≤ eε(t−tl−1)Vl(tl−1, z(tl−1)). (4.10)

Vl(t, z(t)) represents the right derivative of D+Vl(t, z(t)). By
the l-th entry of the state z(t), it concludes that

D+ | zl(t) | ≤ mll(t) | zl(t) | +
n∑

f=1, f,l

| ml f (t) || z f (t) |

+

n∑
f=1, f,l

| nl f (t) || z f (t) |, t ∈ [tl−1, tl).

Because
D+ | zl(t) |= sign zl(t)żl(t)

if zl(t) , 0 and
D+ | zl(t) |=| żl(t) |

if zl(t) = 0, it shows

D+Vl(t, z(t)) ≤η̇⊤l (t) | z(t) | +η⊤l (t)M̄l | z(t) |

+ η⊤l (t)N̄l | z(t − ρ) | +e−ερη⊤l (t + ρ)N̄l | z(t) |

− η⊤l (t)N̄l | z(t − ρ) |

+ ε

∫ t

t−ρ
eε(t−ξ−ρ)η⊤l (ξ + ρ)N̄l | z(ξ) | dξ.

Therefore, we acquire

D+Vl(t, z(t)) − εVl(t, z(t))

≤
(
−χ⊤l + ψ

⊤
l + η

⊤
l (t)M̄l − εη

⊤
l (t) + e−ερη⊤l (t + ρ)N̄l

)
| z(t) | .

Conditions (4.2) and (4.3) indicate that

V̇ f (t, z(t)) − εV f (t, z(t)) ≤ 0,

so inequality (4.10) holds for ∀ t ∈ [tl−1, tl).
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(II). At every impulsive instant tl−1, from the definition of
Vl(t, z(t)), we acquire

Vl((tl−1, z(tl−1))

= g⊤l (tl−1) | z(tl−1) | +
∫ tl−1

tl−1−ρ

eε(tl−1−ξ−ρ)η⊤l (ξ + ρ)N̄l | z(ξ) | dξ.

From condition (4.4), we get

(ψ⊤l−1D⊤l − ωψ
⊤
l ) + tl−1[ω(χ⊤l − ψ

⊤
l ) − (χ⊤l−1 − ψ

⊤
l−1)D⊤l ]

= [ψ⊤l−1 − tl−1(χ⊤l−1 − ψ
⊤
l−1)]D⊤l − ω[ψ⊤l − tl−1(χ⊤l − ψ

⊤
l )]

⪯ 0,

where δ(t+l−1) = l, δ(t−l−1) = l − 1. Hence,

[ψ⊤l−1 − tl−1(χ⊤l−1 − ψ
⊤
l−1)]D⊤l ⪯ ω[ψ⊤l − tl−1(χ⊤l − ψ

⊤
l )]

⇐⇒ ηl(t+l−1) (4.11)

⪯ ωηl−1(t−l−1).

According to (4.11), we obtain

Vl(tl−1, z(tl−1)) ≤ ωVl−1(tl−1, z(tl−1)). (4.12)

(III). Combining (4.10) and (4.12), by mathematical
induction, we obtain

Vl(t, z(t)) ≤ eεSωQ−1V1(0, z(0)),

where t ∈ [tl−1, tl), l ∈ {1, 2, · · · , q}. Since ω ≥ 1, by
conditions (4.5)–(4.9), we gain

p⊤z(t) ≤ Vl(t, z(t))

≤ eε+SωQ−1
(
δ1 +

1 − e−ερ

ε
ρδ2

)
b1

≤ b2,

for t ∈ [0, S ]. Accordingly, system (4.1) is finite-time stable
about (S , p, b1, b2). □

Remark 4.1. Condition (4.4) is a vector constraint at every
impulsive instant. Compared to [25], we add the impulsive
vector constraints at the segmented time points in proofing
the process (II).

Remark 4.2. We regard the effect of the synchronous
impulses on the stability of the systems in this paper,
and change the conditions at the switching point of the

synchronous impulses. In other words, we limit the impulses
jump so that the impulses jump is not so large that the system
is unstable. In fact, there may be an asynchronous impulses
jump at the switching moment. For the case of asynchronous
impulses jumping, the difficulty is how to limit the condition
constraints under the influence of asynchronous impulses,
which will be the next consideration.

Remark 4.3. Chen et al. [32] studied the mean square
exponential stability analysis for itô stochastic systems
with aperiodic sampling and multiple time delays by the
Razumikhin-type theorems method and looped-functionals
method. Chen et al. [33] considered the sampled-
data synchronization of stochastic Markovian jump neural
networks with time-varying delay by constructing a
mode-dependent one-sided loop-based Lyapunov functional
method. And Chen et al. [34] investigated the stability
analysis and controller design issues for aperiodic sampled-
data networked control systems with time-varying delays.
The method in this paper cannot directly deduce the
sampled-data control of the systems. The main difficulty
is how to choose an appropriate Lyapunov functional
to stabilize sampled-data control systems. We will
next use another effective method to study the sampled-
data synchronization of PSLDS with impulsive effects.
Furthermore, we will study the controller synthesis of
aperiodic sampled data of PSLDS with impulsive effects in
the future.

5. Simulation examples

The theoretical results are verified by three simulation
examples.

Example 5.1. Consider PSLDS (1.2), where ρ = 1,

M1 =


0 0.018 0.015

0.016 0 0.045
0.017 0.02 0

 ,

M2 =


0 0.02 0.018

0.019 0 0.035
0.02 0.028 0

 ,
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N1 =


0.038 0.02 0.045
0.02 0.018 0.02
0.02 0.047 0.02

 ,
N2 =


0.018 0.02 0.028
0.02 0.016 0.02
0.02 0.045 0.015

 .
Impulsive matrices take the following form:

D1 =


1.12 0 0

0 1.08 0
0 0 1.07

 ,
D2 =


1.04 0 0

0 1.125 0
0 0 1.038

 .
For given p = (0.7, 0.3, 0.4)⊤, S = 50s, ε = 0, ω = 1.01,
b1 = 0.92, and b2 = 651, by solving inequalities from (3.14)
to (3.20), we can gain δ1 = 15, δ2 = 16, Tb = 4.13 s, and

ψ1 = (0.6479487, 0.2388812, 0.4810801)⊤,

χ1 = (0.6481300, 0.2387812, 0.4839241)⊤,

ψ2 = (0.6388812, 0.2389793, 0.4339033)⊤,

χ2 = (0.6331107, 0.2389812, 0.4358038)⊤.

Therefore, by applying Theorem 3.2, for any switching
signal with ADT Tb = 4.13 s, PSLDS (1.2) is finite-time
stable about (S , p, b1, b2).

Figure 1 depicts the switching signal δ(t) for PSLDS (1.2)
designed as

δ(t) =

1, t ∈ [0, 2) ∪ [9, 14) ∪ [19, 23) ∪ [25, 29) ∪ [34, 39) ∪ [43, 47),

2, t ∈ [2, 9) ∪ [14, 19) ∪ [23, 25) ∪ [29, 34) ∪ [39, 43) ∪ [47, 50),
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Figure 1. The switching signal of PSLDS (1.2).

Figure 2 implies that the impulsive signal p(t) is designed
as p(t) = 1, when t = [2, 9, 14, 19, 23, 25, 29, 34, 39, 43, 47],
where p(t) = 1 indicates that the impulse jumps occur at
these moments.
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Figure 2. The impulsive signal of PSLDS (1.2).

Choosing the initial value z(0) = (0.6, 1.1, 0.4)⊤, Figure 3
signifies that each solution of PSLDS (1.2) is finite-time
stable. What’s more, Figure 4 fulfills the response of
PSLDS (1.2) from 0 to 50 s. Furthermore, PSLDS (1.2)
contains the impulses, so the results in [25] can-not be
applied to the example. The solution and response states
of PSLDS (1.2) are all discontinuous due to the impulse
jumping effects.
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Figure 3. The state solution trajectory of PSLDS
(1.2) under signals in Figures 1 and 2.
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Figure 4. The response of PSLDS (1.2) from 0 to
50 s.

Example 5.2. Let z1, z2, z3 represent the positions of three
vehicles, respectively, whose dynamics satisfy PSLDS (1.2),
where ρ = 2,

M1 =


0 0.03 0.01

0.01 0 0.05
0.02 0.01 0

 ,

M2 =


0 0.01 0.02

0.02 0 0.04
0.01 0.03 0

 ,

N1 =


0.04 0.01 0.05
0.01 0.02 0.01
0.01 0.05 0.01

 ,

N2 =


0.02 0.01 0.03
0.01 0.02 0.01
0.01 0.05 0.02

 .
Impulsive matrices take the following form:

D1 =


1.02 0 0

0 1.01 0
0 0 1.03

 ,

D2 =


1.01 0 0

0 1.02 0
0 0 1.05

 .
We now discuss the positional relationship of three

vehicles related to the hyperplane

p⊤z = 0

with
p = (0.8, 0.4, 0.5)⊤.

For given S = 90 s, ε = 0, ω = 1.2, b1 = 1.3, and b2 =

10001, by solving inequalities from (3.14) to (3.20), we can
gain δ1 = 12.4, δ2 = 13.5, Tb = 4.73 s, and

ψ1 = (0.7319823, 0.3319823, 0.5369209)⊤,

χ1 = (0.7319821, 0.3319821, 0.5380869)⊤,

ψ2 = (0.7319822, 0.3319822, 0.4319822)⊤,

χ2 = (0.7302752, 0.3319822, 0.4319821)⊤.

Therefore, by applying Theorem 3.2, for any switching
signal with ADT Tb = 4.73 s, PSLDS (1.2) is finite-time
stable about (S , p, b1, b2).

Figure 5 depicts the switching signal δ(t) for PSLDS (1.2)
designed as

δ(t) =



1, t ∈ [0, 3) ∪ [8, 13) ∪ [18, 22) ∪ [26, 30) ∪ [35, 40)

∪ [44, 48) ∪ [52, 60) ∪ [66, 70),∪[75, 80) ∪ [86, 90),

2, t ∈ [3, 8) ∪ [13, 18) ∪ [22, 26) ∪ [30, 35) ∪ [40, 44)

∪ [48, 52) ∪ [60, 66) ∪ [70, 75),∪[80, 86),
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Figure 5. The switching signal of PSLDS (1.2).

Figure 6 implies the impulsive signal p(t) is designed as
p(t) = 1, when

t = [3, 8, 13, 18, 22, 26, 30, 35, 40, 44, 48, 52, 60, 70, 75, 80, 86],

where p(t) = 1 indicates that the impulses jumps occur at
these moments.
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Figure 6. The impulsive signal of PSLDS (1.2).

Choosing the initial value

z(0) = (0.7, 1.2, 0.5)⊤,

Figure 7 signifies that each solution of PSLDS (1.2) is finite-
time stable.
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Figure 7. The state solution trajectory of PSLDS
(1.2) under signals in Figures 5 and 6.

What is more, Figure 8 fulfills the response of
PSLDS (1.2) from 0 to 90 s. Furthermore, because
PSLDS (1.2) contains impulses, the results in [25] are
invalid. The solution and response states of PSLDS (1.2)
are all discontinuous due to the impulse jumping effects.
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Figure 8. The response of PSLDS (1.2) from 0 to
90 s.

Example 5.3. Consider system (4.1), where ρ = 3. The time
interval is divided into three subintervals,

M(t) =




0 − 3

1000 sin t 1
1000

1
1000 0 1

200
1

500 sin t 1
1000 0

 , 0 ≤ t ≤ 30,


0 1

1000
1

500 cos t

− 1
500 sin t 0 1

250

− 1
1000 cos t 3

1000 0

 , 30 ≤ t ≤ 60,


0 − 1

1000 cos t 1
500

1
500 0 1

500
3

1000 sin t 1
500 0

 , 60 ≤ t ≤ 90,

N(t) =




1

25 sin t 1
100

1
20

1
100

1
50 sin t 1

100
1

100 cos t 3
50

1
100

 , 0 ≤ t ≤ 30,


1

50
1

100
3

100 sin t
1

100 cos t 3
100

1
50

1
100 cos t 1

20
1

50

 , 30 ≤ t ≤ 60,


3

100 cos t 1
100

1
25

1
50

3
100 sin t 1

50
1

50 cos t 1
20

1
100

 , 60 ≤ t ≤ 90.

Choose Q = 3. According to assumptions (H2) and (H3), we
have

M̄1 =


0 0.003 0.001

0.001 0 0.005
0.002 0.001 0

 ,
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M̄2 =


0 0.001 0.002

0.002 0 0.004
0.001 0.003 0

 ,

M̄3 =


0 0.001 0.002

0.002 0 0.002
0.003 0.002 0

 ,
and

N̄1 =


0.04 0.01 0.05
0.01 0.02 0.01
0.01 0.06 0.01

 ,

N̄2 =


0.02 0.01 0.03
0.01 0.03 0.02
0.01 0.05 0.02

 ,

N̄3 =


0.03 0.01 0.04
0.02 0.03 0.02
0.02 0.05 0.01

 .
Impulsive matrices take the following form:

D1 =


1.05 0 0

0 1.02 0
0 0 1.04

 ,
D2 =


1.02 0 0

0 1.01 0
0 0 1.06

 .
For given

p = (0.6, 0.2, 0.5)⊤,

S = 90 s, ε = 0, ω = 1.25, b1 = 1.5, b2 = 90, by solving
conditions (4.2) to (4.9), we obtain δ1 = 11.5, δ2 = 12.6, and

ψ1 = (0.5627824, 0.2660705, 0.4627824)⊤,

χ1 = (0.5627821, 0.2695134, 0.4627821)⊤,

ψ2 = (0.5627823, 0.1852107, 0.4627823)⊤,

χ2 = (0.5606936, 0.1855242, 0.4627820)⊤,

ψ3 = (0.5627822, 0.1627822, 0.4627822)⊤,

χ3 = (0.5615130, 0.1625755, 0.4627819)⊤.

Therefore, by Theorem 4.1, system (4.1) is finite-time stable
about (S , p, b1, b2).

The impulsive signal is in Figure 9, which shows the
impulsive signal p(t) = 1 when t = [30, 60], where p(t) = 1
indicates that the impulse jumps occur at these moments.
Choosing the original value

z(0) = (1.1, 0.6, 1.3)⊤,

the solution trajectory and system response from 0 to 90 s of
system (4.1) are exhibited in Figures 10 and 11, respectively.
What is more, there exist impulses for system (4.1), so the
results in [25] are invalid. The solution and response states
of system (4.1) are all discontinuous due to the impulse
jumping effects.
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Figure 9. The impulsive signal.
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Figure 10. The solution trajectory of system (4.1).
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Figure 11. The response of system (4.1) from 0 to
90 s.

We present Algorithms 1 and 2 to verify Theorem 3.2.
Then a similar algorithm can be easily obtained for
Theorem 4.1 in Section 4.

Algorithm 1. The algorithm process of Theorem 3.2.
Step 1. Suppose that

ψ1 = (z1, z2, z3)⊤, ψ2 = (z4, z5, z6)⊤

and
χ1 = (z7, z8, z9)⊤, χ2 = (z10, z11, z12)⊤.

Step 2. We substitute four vectors ψ1, ψ2, χ1, χ2 into
the conditions of Theorem 3.2, and the corresponding
parameters values satisfy the inequality condition. Then the
linear inequalities are transformed into general inequalities.
Step 3. By using the linear programming algorithm and
Lingo software, the objective function is min = d; the
constraint conditions are

12∑
e=1

aeze ≤ d,

where e = 1, 2, · · · , 12. Then, we can obtain the feasible
solution z1 − z12.

Remark 5.1. It is noticeable that the recent results in [25]
can not be used for Examples 5.1–5.3 due to the impulses.
To some extent, the proposed results in this paper are more
effective than previous ones.

Algorithm 2. The algorithm process of Theorem 4.1.
Step 1. Suppose that

ψ1 = (z1, z2, z3)⊤, ψ2 = (z4, z5, z6)⊤,

ψ3 = (z7, z8, z9)⊤, χ1 = (z10, z11, z12)⊤

and
χ2 = (z13, z14, z15)⊤, χ3 = (z16, z17, z18)⊤.

Step 2. We substitute six vectors ψ1, ψ2, ψ3, χ1, χ2, ψ3

into the conditions of Theorem 4.1, and the corresponding
parameters values satisfy the inequality condition. Then the
linear inequalities are transformed into general inequalities.
Step 3. By using the linear programming algorithm and
Lingo software, the objective function is min = d; the
constraint conditions are

18∑
e=1

aeze ≤ d,

where e = 1, 2, · · · , 18. Then, we can obtain the feasible
solution z1 − z18.

Remark 5.2. It should be emphasized that the designed
linear programming process is relatively simple, which
makes it easy to program and solve. By using Lingo
software and setting the appropriate precision, we get a more
accurate result.

Remark 5.3. For the convenience of simulations, we give
small b1 and large b2, which can satisfy the inequality
condition. In fact, the corresponding parameters of b1 and
b2 are not unique; they are related to the parameters δ1 and
δ2. Therefore, we can adjust the size of the parameters b1

and b2 to satisfy the condition, and the parameter b2 is not
sufficiently large in advance.

6. Conclusions

In this paper, we add the impulsive effects of PSLDS.
Then, we provide FTS conditions for the systems with an
appropriate Lyapunov functional. After that, we apply the
main FTS criteria to general linear time-varying delayed
systems with impulsive effects. At last, we provide three
examples to verify the results, which include the specific

Mathematical Modelling and Control Volume 4, Issue 2, 178–194.



192

algorithms progress. And our programming process is
simple and easy to verify.

There are many limitations to our work. It is worth
noting that the impulsive and switching instants may not
be synchronous. We deal with the impulsive effects
of PSLDS in this paper, which are synchronous with
switching instants. However, the impulsive signals may
not be instantaneous with switching signals. Then, we will
gradually explore the case of FTS for the systems (1.2)
and (4.1) with asynchronous switching impulsive signals
and non-instantaneous impulses in the future. The method in
this paper cannot be directly extended to the asynchronous
impulses case. The main difficulty is how to deal with the
Lyapunov functional value estimation under the coupling
effects of asynchronous switches and state jumps, which will
be left for our future study.
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