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Abstract: The infection caused by Rift Valley fever (RVF) virus is a dangerous vector-borne disease found in humans, domestic, and
wild animals. It is transferred through insect vectors to ruminant host and then spread through direct contact of infected animals with
their body fluid or organs. In this paper, a fractal-fractional model for the transmission of RVF in the Caputo’s sense was presented.
We analyzed the model and determined the basic reproduction number through the next-generation matrix technique, indicated by R0.
The global sensitivity technique is used for the sensitivity test of R0 to find out the most sensitive input-factors to the reproduction
parameter R0. The existence and uniqueness results of the proposed fractal-fractional model were established. Then, we presented the
fractal-fractional dynamics of the proposed RVF model through a novel numerical scheme under the fractal-fractional Caputo operator.
In the end, the recommended model of RVF was highlighted numerically with the variation of different input parameters of the system.
The key factors of the system were highlighted to the policymakers for the control and prevention of the infection.
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1. Introduction

Infectious diseases pose a significant threat to both the
well-being of animals and humans. These diseases result
from numerous microorganisms such as bacteria, fungi,
parasites, viruses, and other pathogens, causing considerable
harm to living organisms. To be more specific, there are
direct and indirect routes by which these infections spread to
both animals and people. Data is available for diseases such
as Hydrophobia, Plague, Measles, Dengue infection, and

several others that are transmitted through various methods.

One of the notable vector-borne viral zoonoses in Kenya

and North Africa is Rift Valley fever virus (RVFV), which

is transmitted through mosquitoes. RVFV belongs to the

Phlebovirus genus within the Bunyaviridae family. Its

presence was first recognized in Kenya during the 1930s [1].
RVFV transmission occurs through diverse routes, including

consumption of milk from infected animals, contact with the

blood of infected animals, bites from infected vectors, and

exposure to the vicinity of infected animals. It is reported
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that this viral infection can infect camels, goats, sheep,
and cows [2, 3]. The life cycle of RVFV is illustrated in
Figure 1 to conceptualize the spread of this infection in the
community.

Figure 1. Flow chart of transmission cycle of Rift
Valley fever virus in the community among hosts
and vectors.

The scientific community has introduced multiple
dynamic models for examining the transmission dynamics
of RVF and providing enhanced recommendations for
infection control strategies and medical interventions.
Several mathematical models have been explored in
previous studies [4, 5] to investigate the transmission
mechanisms involved in RVF. Sankhe et al. [6] analyzed
the seroprevalence of Crimean-Congo Hemorrhagic fever
virus and RVFV in the human population of Senegal during
October to November 2020. The study provides insights into
the prevalence of these viruses in the region, contributing
to our understanding of their potential public health impact.
Trabelsi et al. [7] presented serological evidence confirming
RVF viral infection in camels imported into Southern
Algeria. This suggests potential disease transmission risks
and highlights the importance of surveillance and control
measures in camel populations in the region.

In another research work, Saul et al. [8] extended the
RVF model to include human hosts. Their research
involved determining the threshold parameter R0 for the
system and established the local stability of the steady-
states. Gitau et al. utilize a gene co-expression network
in order to pinpoint significant genes, pathways, and
regulatory motifs involved in the development of RVF

in Bos taurus [9]. The study provides useful insights
into the molecular mechanisms underlying the disease’s
development and offers potential targets for intervention.
Xue et al. [10] introduced a dynamic framework using
ordinary differential equations (ODEs) to evaluate the spatial
and temporal propagation of RVF. In a related context,
Gao et al. [11] formulated a spatially-based three-patch
model to conceptualize the transmission of the disease.
In their work, they explained the threshold dynamics for
each patch and provided visual representations of the
dynamic processes. Catre-Sossah et al. [12] gave compelling
evidence that both Aedes albopictus and Eretmapodites
subsimplicipes play influential roles as competent vectors
in the transmission of RVFV in Mayotte, highlighting the
importance of understanding their involvement in disease
spread. Vaccination is crucial for protecting individuals
from infections and reducing the severity of infections, as
demonstrated by several studies [13–15].

Numerous vaccines have been created to combat
infectious diseases in regions where they are prevalent.
However, it is important to acknowledge that not all of
these vaccines offer complete effectiveness, and some may
be associated with side effects or substantial costs. For
instance, concerning RVF, there have been instances of
vaccine-related complications in pregnant animals, as noted
in a previous study [16]. Ronchi et al. [17] assessed the
vaccine’s ability to induce an immune response and its
safety profile. These findings are crucial for evaluating
the vaccine’s potential effectiveness in preventing RVF.
Morrill et al. [18] reported that the MP-12 vaccine for RVF
prompts a rapid and protective immune response in mouse
models. This suggests its potential effectiveness as an early
intervention against the disease.

Farida et al. [19] introduced a model involving
vaccination to examine its impact on reducing losses
in ruminant animals. Nevertheless, the full extent
of vaccination’s influence on the transmission of RVF
remains incompletely explored, hindering a comprehensive
understanding of this complex system. In this research
work, we formulate the dynamics of RVF by incorporating
vaccination compartment to more accurately conceptualize
the impact of vaccination on the system and to interrogate
the system the dynamics of the disease. Moreover, we opt to
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visualize the most significant input factors for the control
and prevention to lesson the economic burden of RVF
on the society. New and more generalized mathematical
methods [20–22] and tools are required to examine the
dynamics of infection diseases for more reliable and
accurate results. Thus, we investigated the dynamics of RVF
in the fractal-fractional framework with novel numerical
technique.

Remarkable results are obtained through the fractional
calculus in different area, such as, mathematics [23, 24],
physics [25, 26], economics [27, 28], engineering [29],
financial mathematics [30], mathematical biology [31, 32],
etc. It has been proved that the modeling of the real-
world problem [33, 34] through fractional operators provide
accurate results than the ordinary derivatives. To be more
specific, the choice of order in fractional operators make
it more preeminent than the ordinary operators. Caputo-
Fabrizio (CF) [35], Atangana-Baleanu (AB), and Caputo
operators are extensively used fractional operators and
several efficient results have been achieved in [36, 37].
The models in the framework of fractional operators are
more flexible for real data fitting, and the approximation
used in the data fitting is used in these models for a
future prediction about the problem [38]. For instance,
real data has been fitted to several mathematical models in
fractional framework with results therein [39, 40]. These
models possess the hereditary property and can handle
the crossover behavior of intricate models. Among the
fractional operators, the Caputo’s operator is nonlocal and
therefore has more potential abilities to capture complex
dynamics of natural phenomena. Furthermore, this approach
enables us to incorporate conventional initial and boundary
conditions into the problem formulation, as indicated by the
findings in [41]. In the framework of Caputo’s derivative,
it is noteworthy that the derivative of the constant is zero,
which enhances the reliability and flexibility of the system
for analytical purposes [42]. Motivated by the extra ordinary
features, our focus is directed towards the investigation and
analysis of RVF dynamics within the framework of a fractal-
fractional operator.

The remaining paper is organized as In Section 2,
the brief knowledge of fractal-fractional derivative in the
Caputo’s sense is presented. We introduced a new

compartmental model for RVF in the ruminant host in
the framework of fractal-fractional Caputo derivative in
Section 3. Furthermore, we investigate the proposed model
and compute the reproduction parameter of the system,
indicated by R0. Global sensitivity analysis and some
numerical results are carried out for R0 to investigate
the importance of parameters in the structure of R0. In
Section 4, we introduced a new numerical scheme for
the proposed fractal-fractional model, and establish the
existence and uniqueness results for the newly developed
scheme. In the end, we visualized the proposed fractal-
fractional model of RVF through the novel numerical
scheme with different values of fractals and fractional order
in Section 5. Concluding remarks of the overall research are
given in the final section of this work.

2. Concepts of fractal-fractional operators

In this section, we represent a brief summary of
fractal-fractional calculus associated with some operators
mentioned in [43], which will be helpful for the analysis of
our model in the upcoming sections.

Definition 2.1. Let us assume a continues and differentiable

function y(t) on the interval (c, e) with order ϑ; then, the

Riemann-Liouville fractal-fractional derivative of y(t) with

the power kernel of order ϱ is defined in the following way

FFPDϱ,ϑ
0,t (y(t)) =

1
Γ(l − ϱ)

d
dtϑ

∫ t

0
(t − r)l−ϱ−1y(r)dr,

where l − 1 < ϱ, ϑ, l ∈ N such that ϑ ≤ l and

dy(r)
drϑ

= lim
t→r

y(t) − y(r)
tϑ − rϑ

.

Definition 2.2. Let us assume a continues and differentiable

function y(t) on the interval (c, e) with order ϑ; then, the

Riemann-Liouville fractal-fractional derivative of y(t) with

exponentially decaying kernel of order ϱ is defined in the

following way

FFE Dϱ,ϑ
0,t (y(t)) =

M(ϱ)
(1 − ϱ)

d
dtϑ

∫ t

0
exp
[
−

ϱ

1 − ϱ
(t − r)

]
y(r)dr,

where M(0) = M(1) = 1, ϱ > 0, ϑ ≤ l ∈ N.

Definition 2.3. Let us assume a continues and differentiable

function y(t) on the interval (c, e) with order ϑ; then, the
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Riemann-Liouville fractal-fractional derivative of y(t) with

a kernel of generalized Mittag-Leffler form of order ϱ is

defined in the following way

FFMDϱ,ϑ
0,t (y(t)) =

AB(ϱ)
1 − ϱ

d
dtϑ

∫ t

0
Eϱ

[
−

ϱ

1 − ϱ
(t − r)ϱ

]
y(r)dr,

where

AB(ϱ) = 1 − ϱ +
ϱ

Γ(ϱ)
, ϱ > 0

and ϑ ≤ l ∈ N.

Definition 2.4. Let us assume a continues and differentiable

function y(t) on the interval (c, e) with order ϑ; then, the

fractal-fractional integral of y(t) with a kernel of the power

law form of order ϱ is defined in the following way

FFPJϱ0,t(y(t)) =
ϑ

Γ(ϱ)

∫ t

0
(t − r)ϱ−1rϑ−1y(r)dr.

Definition 2.5. Let us assume a continues and differentiable

function y(t) on the interval (c, e) with order ϑ; then, the

fractal-fractional integral of y(t) with a kernel of exponential

decaying form of order ϱ is introduced in the following way

FFE Jϱ0,t(y(t)) =
ϱϑ

M(ϱ)

∫ t

0
rϱ−1y(r)dr +

ϑ(1 − ϱ)tϑ−1y(t)
M(ϱ)

.

Definition 2.6. Let us assume a continues and differentiable

function y(t) on the interval (c, e) with order ϑ; then, the

fractal-fractional integral of y(t) with a kernel of generalized

Mittag-Leffler form of order ϱ is introduced in the following

way

FFM Jϱ,ϑ0,t (y(t)) =
ϱϑ

AB(ϱ)

∫ t

0
rϑ−1(t − r)ϱ−1y(r)dr +

ϑ(1 − ϱ)tϑ−1y(t)
AB(ϱ)

.

3. Model formulation

In the formulation of the model, the complete vector
population size, denoted as M representing female
mosquitoes, is divided into two groups: Those that
are susceptible, referred to as (S m), and those that are
infected, represented as (Im). Similarly, the overall
ruminant population, denoted as Nr, is classified into four
compartments: susceptible individuals, denoted as (S r);
individuals who have been vaccinated, denoted as (Vr);
infected individuals, denoted as (Ir); and individuals who
have recovered from the infection, denoted as (Rr). The

rate of recruitment for the ruminant population and female
mosquitoes is represented as Πr and Πm, respectively. We
use dr to signify the inherent mortality rate of ruminants,
and likewise, dm denotes the natural mortality rate of
mosquitoes. Additionally, δ corresponds to the mortality rate
caused by the disease, and γ signifies the rate of recovery. It
is assumed that a proportion v of the susceptible population
changes from the unvaccinated category after vaccination
to the vaccinated category. The βr and βm, respectively,
stand for the probability of transmission from the host to
the vector and from the vector to the host. The effectiveness
of vaccination is indicated by the parameter α, and the rate
at which mosquitoes bite their hosts is symbolized by b.
Moreover, we assumed that a fraction ρ of the vaccinated
class moves to the recovered class after recovery. The
dynamics of RVF transmission are described by

dS r
dt = Πr − bβrS rIm − vS r − drS r,

dVr
dt = vS r − (1 − α)bβrVrIm − ρVr − drVr,

dIr
dt = bβrS rIm + (1 − α)bβrVrIm − (dr + γ + δ)Ir,

dRr
dt = ρVr + γIr − drRr,

dS m
dt = Πm − bβmS mIr − dmS m,

dIm
dt = bβmS mIr − dmIm,

(3.1)

with positive initial state values given by
S m(0), Im(0), S r(0),Vr(0), Ir(0),Rr(0).

The applications of fractal fractional derivatives span
diverse areas, including image analysis, financial modeling,
and the study of complex biological systems. By
incorporating the concept of fractality into fractional
calculus, researchers and scientists can gain deeper insights
into the inherent complexity of natural phenomena, leading
to more accurate modeling and predictions in a wide range of
disciplines [44]. The above RVF model in fractal-fractional
Caputo derivative form can be depicted as follows

FF D℘,ϑ
0,t (S r) = Πr − bβrS rIm − vS r − drS r,

FF D℘,ϑ
0,t (Vr) = vS r − (1 − α)bβrVrIm − ρVr − drVr,

FF D℘,ϑ
0,t (Ir) = bβrS rIm + (1 − α)bβrVrIm − (dr + γ + δ)Ir,

FF D℘,ϑ
0,t (Rr) = ρVr + γIr − drRr,

FF D℘,ϑ
0,t (S m) = Πm − bβmS mIr − dmS m,

FF D℘,ϑ
0,t (Im) = bβmS mIr − dmIm,

(3.2)

where FF D℘,ϑ
0,t indicates the Caputo fractal-fractional

derivative with fractal and fractional orders ℘ and ϑ,
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respectively. In the upcoming subsection, we will examine
our recommended fractal-fractional model of RVF.

3.1. Analysis of the model

In examining the Caputo model with fractal-fractional
characteristics (3.2), our initial emphasis is on analyzing the
disease-free equilibrium state of the system. To determine
this equilibrium state, our first step involves examining the
following conditions for steady-state (3.2)

FF D℘,ϑ
0,t (S r(t)) = 0, FF D℘,ϑ

0,t (Vr(t)) = 0, FF D℘,ϑ
0,t (Ir(t)) = 0

and

FF D℘,ϑ
0,t (Rr(t)) = 0, FF D℘,ϑ

0,t (S m(t)) = 0, FF D℘,ϑ
0,t (Im(t)) = 0,

and obtain the steady-state as

0 = Πr − bβrS rIm − vS r − drS r,

0 = vS r − (1 − α)bβrVrIm − ρVr − drVr,

0 = bβrS rIm + (1 − α)bβrVrIm − (dr + γ + δ)Ir,

0 = ρVr + γIr − drRr,

0 = Πm − bβmS mIr − dmS m,

0 = bβmS mIr − dmIm.

(3.3)

Next, we take the above system (3.3) without infection and
get the following disease-free equilibrium

E0 = (
Πr

v + dr
,

vΠr

(v + dr)(ρ + dr)
, 0,

ρvΠr

dr(v + dr)(ρ + dr)
,
Πm

dm
, 0).

Furthermore, we will used the approach outlined in previous
works [45] to compute the basic reproduction number, which
is determined as follows

F =

[
bβrS rIm + (1 − α)bβrVrIm

bβmS mIr

]
and

V =

 (dr + γ + δ)Ir

dmIm

 ,
due to the presence of two infected compartments within the
system, this consequently suggests

F =

 0 bβrS 0
r + (1 − α)bβrV0

r

bβmS 0
m 0


and

V =

 (dr + γ + δ) 0
0 dm

 ,

which gives

FV−1 =

 0
(

bβrS 0
r+(1−α)bβrV0

r
dm

)
bβmS 0

m
(dr+γ+δ)

0

 .
We write R′ for the fractal-fractional RVF model’s
fundamental reproduction number. It is derived through
the utilization of the next-generation matrix, which is
represented as

ρ(FV−1) =

√
bβmS 0

m

(dr + γ + δ)

(bβrS 0
r + (1 − α)bβrV0

r

dm

)
and

R0 =

√
bβmS 0

m

dm

(bβrS 0
r + (1 − α)bβrV0

r

(dr + γ + δ)

)
.

In this work, we focussed on the dynamical behavior of
the system to investigate the solution pathways in different
scenarios. However, the stability (Ulam-Hyers stability) and
other aspects of the model will be considered in the future
work [46, 47].

3.2. Sensitivity analysis and numerical results

Sensitivity analysis is used to show the influence of
input values on the output of several dynamical systems
arising from natural phenomena. It is well known that the
local sensitivity analysis is not always suitable for intricate
systems and does not provide enough information about
the complexity of the system parameters. Therefore in
this work, we focus on the global sensitivity analysis to
investigate our proposed system and to detect the critical
values effecting the output of the system. The partial rank
correlation coefficient (PRCC) method is most reliable and
efficient method to analyze the sensitivity of a system and
provide better information about the critical factors involved
in the formulation of the dynamical system [48]. In this
analysis, an input parameter with the highest PRCC value
and the smallest p-value is considered to be the most critical
factor of the system.

We used PRCC method [48] for sensitivity analysis of the
basic reproduction number R0. In our sensitivity analysis,
we examined ten input parameters from Table 1 to assess
their impact on the output of R0. We have compiled a list
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of the corresponding PRCC values and their associated p-
values as determined by the PRCC significance test. The
parameters b and dm demonstrate the significant influence, as
seen by their PRCC values of 0.8790, -0.7919, respectively,
as shown in Figure 2 and Table 2. Subsequently, the
parameters βr and βm also exert significant effects on the
basic reproduction number, with PRCC values of 0.6727
and 0.5433, respectively. This suggests that implementing
control measures to reduce the value of b and increase the
value of dm can effectively mitigate the impact of RVF.

Table 1. Explanation detailing the input
parameters and their associated numerical values
for the RVF model.

Symbol Interpretation Values Reference

dr The natural mortality rate of ruminant 0.000481 [49]
v The susceptibility of ruminants to Vr as a vaccination factor 0.7 Assumed
γ Rate of recovery among ruminants that are infected 0.0875 [19]
ϑ Fractional order Assumed Assumed
℘ Fractal order Assumed Assumed
b Vector biting rate 0.701 [50]
βr Transfer of the virus from mosquitoes to vulnerable ruminant 0.14 [51]
α Vaccine effectiveness or vaccine potency 0.6 Assumed
ρ Recovery of ruminant hosts through vaccination 0.5 Assumed
βm Transfer of the virus from ruminants to vulnerable mosquitoes 0.35 [51]
dm The natural mortality rate of mosquitoes 0.0166 [52]
Πr Rate of recruitment of hosts from the ruminant category Variable Assumed
Πm Rate of recruitment of mosquito vectors Variable Assumed
δ Mortality rate attributed to the disease 0.0214 Assumed
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Figure 2. Conducting a sensitivity analysis on
input parameters affecting R0 and examining their
correlation with PRCC results.

Table 2. Sensitivity findings for R0 using PRCC
and the associated statistical significance levels.

Parameter Interpretation PRCC values p values

βr Transfer from mosquitoes to vulnerable ruminants +0.6727 0.0000
βm Transmission from ruminants to susceptible mosquitoes +0.5433 0.0000
dr Host ruminants natural death rate -0.4841 0.0000
γ Recovery rate of host individuals -0.2101 0.0000
δ Disease induced death rate -0.2444 0.0000
α Efficacy of vaccine or strength of vaccine -0.1119 0.0004
v Vaccinated fraction of susceptible ruminants -0.2541 0.0000
ρ Recovery rate through vaccination +0.0726 0.0223
dm Vector mosquitoes natural death rate -0.7919 0.0000
b Vector mosquitoes biting rate +0.8790 0.0000

To delve into details, adjusting these factors allows us
to notably reduce, and perhaps eradicate, the emergence of
new RVF cases. Furthermore, we illustrated the variation of
the threshold parameter R0 by varying different parameters
numerically, as depicted in Figures 3 and 4.
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Figure 4. Illustration of basic reproduction
number R0 (a) considering changes in the
transmission probability parameters βr and ρ,
(b) and examining variations in transmission
probabilities βr and βm.

4. New approach for fractal-fractional Caputo system

In this section, we will propose a novel numerical
technique for the fractal-fractional Caputo (FFC) derivative
to obtain the numerical results for our model (3.2). We first
convert FFC system to Volteera, then the system FFC in
the sense of Riemann-Liouville can be represented in the
following form

1
Γ(1 − ℘)

d
dt

∫ t

0
(t − ϑ)℘ f (ϑ)dϑ

1
ϑtϑ−1 , (4.1)

then, we have the following:
RLD℘

0,t(S r) = ϑtϑ−1(Πr − bβrS rIm − vS r − drS r
)
,

RLD℘
0,t(Vr) = ϑtϑ−1(vS r − (1 − α)bβrVrIm − ρVr − drVr

)
,

RLD℘
0,t(Ir) = ϑtϑ−1(bβrS rIm + (1 − α)bβrVrIm − (dr + γ + δ)Ir

)
,

RLD℘
0,t(Rr) = ϑtϑ−1(ρVr + γIr − drRr

)
,

RLD℘
0,t(S m) = ϑtϑ−1(Πm − bβmS mIr − dmS m

)
,

RLD℘
0,t(Im) = ϑtϑ−1(bβmS mIr − dmIm

)
,

(4.2)

we convert Riemann-Liouville derivative to Caputo
derivative in to make it flexible for the initial conditions. In
the next step, we apply the fractional integral and get the
below

S r(t) = S r(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(t − χ)℘−1g1(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Vr(t) = Vr(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(t − χ)℘−1g2(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Ir(t) = Ir(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(t − χ)℘−1g3(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Rr(t) = Rr(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(t − χ)℘−1g4(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

S m(t) = S m(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(t − χ)℘−1g5(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Im(t) = Im(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(t − χ)℘−1g6(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

(4.3)

where

g1(S r,Vr, Ir,Rr, S m, Im, χ) =Πr − bβrS rIm − vS r − drS r,

g2(S r,Vr, Ir,Rr, S m, Im, χ) =vS r − (1 − α)bβrVrIm − ρVr − drVr,

g3(S r,Vr, Ir,Rr, S m, Im, χ) =bβrS rIm + (1 − α)bβrVrIm

− (dr + γ + δ)Ir,

g4(S r,Vr, Ir,Rr, S m, Im, χ) =ρVr + γIr − drRr,

g5(S r,Vr, Ir,Rr, S m, Im, χ) =Πm − bβmS mIr − dmS m,

g6(S r,Vr, Ir,Rr, S m, Im, χ) =bβmS mIr − dmIm.

Using a novel idea at the time tm+1, the model become as

S r(t) =S r(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(tn+1 − χ)℘−1g1 (4.4)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Vr(t) =Vr(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(tn+1 − χ)℘−1g2 (4.5)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Ir(t) =Ir(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(tn+1 − χ)℘−1g3 (4.6)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Rr(t) =Rr(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(tn+1 − χ)℘−1g4 (4.7)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

S m(t) =S m(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(tn+1 − χ)℘−1g5 (4.8)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Im(t) =Im(0) +
ϑ

Γ(℘)

∫ t

0
χϑ−1(tn+1 − χ)℘−1g6 (4.9)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ.
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We get the following after approximation the above
expression (4.4), we obtain

S m+1
r =S 0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1g1 (4.10)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Vm+1
r =V0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1g2 (4.11)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Im+1
r =I0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1g3 (4.12)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Rm+1
r =R0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1g4 (4.13)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

S m+1
m =S 0

m +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1g5 (4.14)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ,

Im+1
m =I0

m +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1g6 (4.15)

(S r,Vr, Ir,Rr, S m, Im, χ)dχ.

Furthermore, the Lagrangian piece-wise
interpolation is used to approximate the function

χϑ−1g1(S r,Vr, Ir,Rr, S m, Im, χ) on the interval [t j, t j+1],

then we have

P j(χ) =
χ − t j−1

t j − t j−1
tϑ−1

j g1
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

−
χ − t j

t j − t j−1
tϑ−1

j−1 g1
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
,

Q j(χ) =
χ − t j−1

t j − t j−1
tϑ−1

j g2
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

−
χ − t j

t j − t j−1
tϑ−1

j−1 g2
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
,

R j(χ) =
χ − t j−1

t j − t j−1
tϑ−1

j g3
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

−
χ − t j

t j − t j−1
tϑ−1

j−1 g3
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
,

S j(χ) =
χ − t j−1

t j − t j−1
tϑ−1

j g4
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

−
χ − t j

t j − t j−1
tϑ−1

j−1 g4
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
,

T j(χ) =
χ − t j−1

t j − t j−1
tϑ−1

j g5
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

−
χ − t j

t j − t j−1
tϑ−1

j−1 g5
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
,

(4.16)

U j(χ) =
χ − t j−1

t j − t j−1
tϑ−1

j g6
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

−
χ − t j

t j − t j−1
tϑ−1

j−1 g6
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
.

So, the following is obtained:

S m+1
r = S 0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1P j(χ)dχ,

Vm+1
r = V0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1Q j(χ)dχ,

Im+1
r = I0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1R j(χ)dχ,

Rm+1
r = R0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1S j(χ)dχ,

S m+1
m = S 0

m +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1T j(χ)dχ,

Im+1
r = I0

r +
ϑ

Γ(℘)

m∑
j=0

∫ t j+1

t j

χϑ−1(tm+1 − χ)℘−1U j(χ)dχ.

(4.17)

The solution of the above Eq (4.17) lead finally to the below
equations:

S m+1
r =S 0

r +
ϑh℘

Γ(℘ + 2)

m∑
j=0

[
tϑ−1

j g1
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

×
[
(m + 1 − j)℘(m − j + 2 + ℘) − (m − j)℘(m − j

+ 2 + 2℘)
]
− tϑ−1

j−1 g1
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m ,

t j−1
)
×
(
(m − j + 1)℘+1 − (m − j)℘(m − j + 1 + ℘)

)]
,

Vm+1
r =V0

r +
ϑh℘

Γ(℘ + 2)

m∑
j=0

[
tϑ−1

j g2
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

×
[
(m + 1 − j)℘(m − j + 2 + ℘) − (m − j)℘(m − j

+ 2 + 2℘)
]
− tϑ−1

j−1 g2
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m ,

t j−1
)
×
(
(m − j + 1)℘+1 − (m − j)℘(m − j + 1 + ℘)

)]
,

Im+1
r =I0

r +
ϑh℘

Γ(℘ + 2)

m∑
j=0

[
tϑ−1

j g3
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

×
[
(m + 1 − j)℘(m − j + 2 + ℘) − (m − j)℘(m − j

+ 2 + 2℘)
]
− tϑ−1

j−1 g3
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m ,

t j−1
)
×
(
(m − j + 1)℘+1 − (m − j)℘(m − j + 1 + ℘)

)]
,

Rm+1
r =R0

r +
ϑh℘

Γ(℘ + 2)

m∑
j=0

[
tϑ−1

j g4
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

×
[
(m + 1 − j)℘(m − j + 2 + ℘) − (m − j)℘(m − j + 2

+ 2℘)
]
− tϑ−1

j−1 g4
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
×
(
(m − j + 1)℘+1 − (m − j)℘(m − j + 1 + ℘)

)]
,

S m+1
m =S 0

m +
ϑh℘

Γ(℘ + 2)

m∑
j=0

[
tϑ−1

j g5
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

×
[
(m + 1 − j)℘(m − j + 2 + ℘) − (m − j)℘(m − j + 2

+ 2℘)
]
− tϑ−1

j−1 g5
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m , t j−1

)
×
(
(m − j + 1)℘+1 − (m − j)℘(m − j + 1 + ℘)

)]
,

(4.18)
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S m+1
m =S 0

m +
ϑh℘

Γ(℘ + 2)

m∑
j=0

[
tϑ−1

j g6
(
S j

r ,V
j

r , I
j
r ,R

j
r , S

j
m, I

j
m, t j
)

×
[
(m + 1 − j)℘(m − j + 2 + ℘) − (m − j)℘(m − j

+ 2 + 2℘)
]
− tϑ−1

j−1 g6
(
S j−1

r ,V j−1
r , I j−1

r ,R j−1
r , S j−1

m , I j−1
m ,

t j−1
)
×
(
(m − j + 1)℘+1 − (m − j)℘(m − j + 1 + ℘)

)]
.

4.1. Existence and uniqueness analysis

In this subsection of the paper, we will focus on the
existence and uniqueness of the fractal-fractional Caputo
derivative. We utilize the result of [53] and take the Cauchy
problem with power law as

ℏ(t) = ℏ(0) +
℘ϑ

Γ(℘)

∫ t

0
χϑ−1g(χ, ℏ(χ))dχ. (4.19)

Furthermore, we define the map of the form

Φθ(t) = ℏ(0) +
℘ϑ

Γ(℘)

∫ t

0
Φθ−1g(Φ, ψ(χ))dχ, (4.20)

which implies that

||Φθ(t) − ℏ(0)|| < k =⇒ V, (4.21)

where

V = sup
Πc

e

|g|

and

V <
kΓ(℘)

℘ϑcϑ+℘−3B(ϑ, ℘)
.

In the next step, we consider θ1 and θ2 ∈ C[In(tn), Ae(tn)],
and compute the below inequality

||Φθ1 − Φθ2|| <
℘ϑL
Γ(℘)

cϑ+℘−3B(ϑ, ℘). (4.22)

In consequences, we obtained the contractive property as
follows

L <
Γ(℘)

℘ϑcϑ+℘−3B(ϑ, ℘)
. (4.23)

In the case, if the above is obtained then we have

V <
kΓ(℘)

℘ϑcϑ+℘−3B(ϑ, ℘)
, (4.24)

thus, under power law the existence and uniqueness proof
for the solution is completed.

4.2. Simulation results with discussion

Modeling approaches are utilized to conceptualize and
understand the complex phenomena of the biological
process. Several mathematical models have been presented
in the literature to visualize the transmission pathway
of RVF. In [54], a comprehensive overview of the
compartmental model for transmission dynamics of RVF
has been presented. It has been noticed that RVF
brings unimaginable damage to the economic sectors
around the world and effect public health. The authors
in [55] formulated a mathematical model with impulsive
vaccination to identify the role of pulse vaccination in the
control and prevention of the disease. Further, investigation
is needed to identify the most critical input factors and
investigate the dynamical behavior of RVF for better
understanding. In this section, the most important biological
parameters are selected to analyze behavior of infected
human population Ir of the proposed FF model for the
RVF epidemic. Biological parameters of great interest
are:the fractal order ℘, fractional order ϑ, biting rate of
vector mosquitoes b, efficacy of vaccine α, transmission rate
from mosquitoes to susceptible ruminants βr, transmission
rate from ruminants to susceptible mosquitoes βm, recovery
rate of infected ruminants γ, and the recovery through
vaccination of ruminants host ρ. All parameters have been
taken from the above listed Table 1 otherwise stated. These
important parameters have been varied in either decreasing
to increasing or vice versa way to observe dynamical
behavior of the RVF model under FF setting of the Caputo
operator. It may also be noted that the simulations in this
sections are carried out under the novel numerical scheme
developed for the FF Caputo operator as shown in (4.18)
above.

As can be observed in Figure 5, the RVF infected
population of humans will start to increase if the fractional
order ϑ (with ℘ = 1) or the fractal order ℘ (with ϑ = 1)
approach to 1 thereby shows some values of these orders
under FF Caputo operator to be between [0, 1]. Similarly,
if the biting rate of vector mosquitoes b is maintained at
relatively some lower level then the infection does not grow
as is seen in (a) plot of Figure 6 and this can be achieved
if most susceptible people start to use mosquitoes protective
nets or some liquid (medicinal or an oil) on exposed parts

Mathematical Modelling and Control Volume 4, Issue 2, 163–177.



172

of their body while in the plot (b) of the same figure that
the improved value of efficacy of vaccine plays some role to
lower the infection level.

Figure 5. Dynamical behavior of infected human
population with different values of (a) fractional
order ϑ when ℘ = 1 and (b) fractal order ℘ when
ϑ = 1 while remaining parameters have been
taken from Table 1.

Figure 6. Dynamical behavior of infected human
population with different values of (a) biting rate
of vector mosquitoes b and (b) efficacy of vaccine
α while remaining parameters have been taken
from Table 1.

Most interestingly, plot (a) of Figure 7 shows that the
decreasing transmission rate from mosquitoes to susceptible
ruminants βr is more useful than decreasing transmission
rate from ruminants to susceptible mosquitoes βm as is
observable in (b) plot of the same figure. Finally, it can
be observed from plot (a) of the Figure 8 that the recovery
rate of infected ruminants γ holds significant importance
and warrants careful consideration. A small value of γ can
have devastating consequences. Moreover, plot (b) indicates
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that while vaccination can reduce the infection level, its
effectiveness may not be optimal under the assumptions of
our model. Therefore, alternative effective measures need to
be implemented to address the RVF epidemic in the current
scenarios.

Figure 7. Dynamical behavior of infected
human population with different values of (a)
transmission rate from mosquitoes to susceptible
ruminants βr and (b) transmission rate from
ruminants to susceptible mosquitoes βm while
remaining parameters have been taken from the
Table 1.

Figure 8. Dynamical behavior of infected human
population with different values of (a) recovery
rate of infected ruminants γ and (b) recovery
through vaccination of ruminants host ρ while
remaining parameters have been taken from the
Table 1.

5. Conclusions

It is evident that the infection of the RVF virus poses
a significant threat to the economic sector. Therefore, it
is valuable to visualize the transmission pathway of this
vector-borne infection and to point out the critical factor
that greatly disturb the dynamics of the infection. In this
research article, we formulated a fractal-fractional model for
the transmission of RVF in ruminant host in the Caputo’s
framework to study the intricate system of the infection.
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First, we presented the rudimentary knowledge of fractal-
fractional derivative for analysis of the proposed system.
The model is then investigated for some basic results and
then we determined the basic reproduction number through
the next-generation matrix technique, indicated by R0.
The PRCC technique is utilized to interrogate the global
sensitivity of reproduction parameter R0 to find out the most
sensitive input-factors to the basic reproduction number
R0. In this research, we established the existence and
uniqueness results of the proposed fractal-fractional model.
Furthermore, we presented the fractal-fractional dynamics
of the proposed RVF model through a novel numerical
scheme. In the end, the proposed fractal-fractional system
of RVF is visualized numerically with different values of
fractal/fractional orders and other input parameters for the
control of RVF. Our analysis indicates that these parameters
have the potential to significantly reduce the infection level
and can play a crucial role in the control and prevention of
the disease.
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