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Abstract: The reachable set estimation for two-dimensional (2-D) switched nonlinear positive systems (SNPSs) with bounded
disturbances given by the Roesser model is investigated in this paper, in which both the time-varying delays and lagged impulsive effects
are taken into account. By applying the average dwell time (ADT) technique, we provide a sufficient condition for the presence of a ball
such that any solution of the system converges exponentially within it. An accurate estimate of the convergence rate is provided. We also
extend the result to 2-D SNPSs with multi-directional delays, general 2-D switched linear systems, and 2-D SPNSs with heterogeneous
delays. Finally, an example is worked out to demonstrate the effectiveness of the main result.
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1. Introduction

Two-dimensional (2-D) systems are systems which can
be used to model real-world engineering systems, and
examples such as multi-dimensional digital filtering and
circuit analysis [1, 2] can be described by 2-D systems. As
special types of 2-D systems, the Roesser model and and the
Fornasini-Marchesini (FM) model have been given special
attention because of their structures and applications [3–5].
In recent years, stability theory and control synthesis of 2-D
systems have been extensively studied [6–9].

Switched positive systems are comprised of a series of
positive subsystems, and for any switching signal the states
remain nonnegative if the initial conditions are nonnegative.
Switched positive systems possess some properties of both
switched systems and positive systems, so it is of great
interest to study switched positive systems applying the
methods which are used to discuss the positive systems,
such as, co-positive Lyapunov functions approach (see the
researches [10–13]). [14] considered the problem of the

existence of common linear co-positive Lyapunov functions

for one-dimensional switched positive systems, and the

authors introduced multiple linear co-positive Lyapunov
functions in [15]. Meanwhile, some practical systems in

engineering are described by 2-D switched positive systems,

for example, the thermal process with multiple models.

The theory of the 2-D switched positive systems have been
widely studied in recent years. In [16], the problems of

exponential stability for 2-D switched positive systems were
considered. The authors investigated the robust observer
design for 2-D switched positive systems in [17]. In [18],

a necessary and sufficient condition for the asymptotic
stability of switched 2-D fractional order positive systems
described by the Roesser model is established. Sufficient

conditions for the stabilization by state feedback controllers
for positive 2-D fractional order sub-systems were reported

by [19]. [20] studied the stability problem of uncertain 2-
D switched positive systems. Robust stability conditions of
2-D positive systems employing saturation conditions have

been reported in [21].

https://www.aimspress.com/journal/mmc
https://dx.doi.org/ 10.3934/mmc.2024014


153

However, the majority of existing research is focused
on 2-D switched linear positive systems (SLPSs), and
the theory for 2-D switched nonlinear positive systems
(SNPSs) is considerably less developed. The methods
for studying SLPSs, such as linear copositive functions,
are no longer applicable to SNPSs. The pioneering work
on the stability analysis of a class of 2-D SNPSs was
reported by [22]. Additionally, impulsive phenomena and
external disturbances often occur in many real systems of
which their states are subject to abrupt changes at certain
moments. The research on impulsive systems has emerged
in a variety of practical problems, such as in biology and
communication networks [23, 24]. Moreover, time-delay
phenomena widely exists in practical engineering and it
is one of the important reasons for system performance
deterioration and instability [25, 26]. Since the activated
subsystem is changed at switched and impulsive instants, it
is more complicated to makes the system analysis due to
the existence of delays for the 2-D SNPSs with impulsive
effects. To the best of our knowledge, few studies have
attempted to conduct the estimation of reachable sets for
the 2-D SNPSs subject to unknown disturbances and delayed
impulse effects.

In this paper, we consider the reachable set estimation
for 2-D SNPSs given by the Roesser model with unknown
exogenous disturbances. Both the systems delay and
delayed impulse effects are considered. The contributions
of this article are as follows:

First, by applying the multiple max-separable Lyapunov
functions approach, we present an explicit sufficient
condition for the presence of a ball such that any solution
of the system converges exponentially within it for bounded
directional delays and delayed impulse effects.

Second, if impulsive matrices and external disturbances
are set to zero, then the considered system of this study
reduces to existing one in [22]. Therefore, the existing
results can be seen as a special case of this article. An
accurate estimate of the convergence rate is also provided.

Finally, we also extend the result to 2-D SNPSs with
multiple directional delays, general 2-D switched linear
systems, and 2-D SNPSs with heterogeneous time-varying
delays.

The rest of this article is organized as follows. Some

necessary notations, definitions, and problem formulation
are presented in Section 2. Our main results and the proofs
are provided in Section 3. Section 4 gives an example
to justify the efficiency of the obtained results, and the
conclusions are stated in Section 5.

2. Preliminaries

R and N represent the sets of real and natural numbers,
respectively, N0 = N ∪ {0}. Rn is the set of n-dimensional
real vectors, and

Rn
+ := {x ∈ Rn, x j ≥ 0, 1 ≤ j ≤ n}.

For x,y ∈ Rn, denoted by x ≥ y (x ≫ y, x ≪ y), if
x j ≥ y j (x j > y j, x j < y j) for 1 ≤ j ≤ n. Given a positive
vector ξ ≫ 0,

||x||ξ∞ = max
1≤ j≤n

|x j|

ξ j
.

Denote the weighted l∞ norm of x ∈ Rn. Set

||x||∞ = max
1≤ j≤n

|x j|.

Rn×n represents n × n-dimensional real matrices. En and On

denote the identity matrix and zero matrix, respectively.
In this paper, we consider 2-D SPNSs with lagged

impulsive effects:

xh(k + 1, l)

xv(k, l + 1)

 = fσ(k,l)

xh(k, l)

xv(k, l)

 + gσ(k,l)

xh(k − τh(k), l)

xv(k, l − τv(l))


+ω(k, l), k + l , εr,xh(k, l)

xv(k, l)

 = Fσ(k,l)

xh(k − dh(k), l)

xv(k, l − dv(l))

 , k + l = εr,

(2.1)
where xh(k, l) ∈ Rn1 and xv(k, l) ∈ Rn2 stand for horizontal
and vertical state vectors, respectively. x(k, l) ∈ Rn

represents the whole state with n = n1 + n2. σ(k, l):
N0 × N0 → M = {1, 2, 3, . . . ,m} is the switching rule. For
any P ∈ M, the vector fields fp, gp: Rn → Rn are continuous
on Rn. The diagonal matrix

FP = diag
{
FP11 , FP11 , . . . , FPnn

}
is called the impulsive matrix, and we assume FPii > 0 for
all 1 ≤ i ≤ n. The exogenous disturbances are denoted by
ω(k, l): N0 × N0 → R

n.
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It is assumed in this study that the switching rule σ(k, l)
relies on ε, that is, if

k + l = k̃ + l̃ = ε,

then σ(k, l) = σ(̃k, l̃). The switching sequence is stated as
follows:

(ε0, σ(ε0)), (ε1, σ(ε1)), . . . , (εr, σ(εr)), . . . ,

where εr = kr + lr. The σ(εr)-th subsystem is activated
when k+l ∈ [εr, εr+1). We suppose system delays τh(k), τv(l)
and impulsive delays dh(k), dv(l) are all bounded. Therefore,
there exist nonnegative real numbers τ̂h, τ̂v, d̂h, d̂v such that

0 ≤ τh(k) ≤ τ̂h, 0 ≤ τv(l) ≤ τ̂v,

0 ≤ dh(k) ≤ d̂h, 0 ≤ dv(l) ≤ d̂v,

k − dh(k) ≥ −τ̂h, l − dv(l) ≥ −τ̂v.

Denote

τmax = max(τ̂h, τ̂v), dmax = max(d̂h, d̂v).

The initial conditions are presented as follows:
xh(k, l) = h(k, l), −τ̂h ≤ k ≤ 0, 0 ≤ l ≤ h,

xh(k, l) = 0, −τ̂h ≤ k ≤ 0, l > h,

xv(k, l) = v(k, l), −τ̂v ≤ l ≤ 0, 0 ≤ k ≤ v,

xv(k, l) = 0, −τ̂v ≤ l ≤ 0, k > v.

(2.2)

where h and v are positive real numbers, and h(k, l), v(k, l)
are given positive vectors. Let

ĥ(r) = max
p∈M

sup
−τh≤k≤0

∥h(k, r)∥
ξpn1
∞

and

v̂(s) = max
p∈M

sup
−τv≤l≤0

∥v(s, l)∥
ξpn2
∞ ,

where

ξpn1 =
[
En1 On1×n2

]
ξp, ξpn2 =

[
On2×n1 En2

]
ξp.

Definition 2.1. The impulsive switched system (2.1) is said

to be positive if xh(k, l) ≥ 0 and xv(k, l) ≥ 0 hold for any

nonnegative boundary condition h(k, l) ∈ Rn1 ,v(k, l) ∈ Rn2

and any nonnegative disturbance ω(k, l).

Definition 2.2. A vector field f : Rn → Rn is called

homogeneous of degree one if for any x ∈ Rn and λ > 0,

f (λx) = λf (x).

g is defined to be order-preserving on Rn
+ if g(x) ≥ g(y) for

any x,y ∈ Rn
+ satisfying x ≥ y.

Definition 2.3. For any nonnegative integers i, j and i0, j0
with

i + j = ε ≥ ε0 = i0 + j0

and any switching signal σ, let Nσ(ε0,ε) denote the number of

switching times during the period [ε0, ε). If there exist two

constants N0 > 0 and τε > 0 such that

Nσ(ε0,ε) ≤ N0 +
ε − ε0

τε
,

then τε is referred to as the average dwell time (ADT) of

the switching signal σ and N0 is the chatter bound. In this

paper, we choose N0 = 0.

Definition 2.4. Consider a certain type of ADT switching

signals. System (2.1) is said to converge exponentially within

a ball if there exist constants a ≥ 0, b > 0, 0 < c < 1, and

0 < γ < 1 such that

∥x(k, l)∥ξ∞ ≤ a + b(
l∑

r=0

ĥ(r)
γr+1 +

k∑
s=0

v̂(s)
γs+1 )ck+l,

where ξ ≫ 0 is given vector.

Remark 2.1. It follows from the boundary condition (2.2)
that

l∑
r=0

ĥ(r)
γr+1 +

k∑
s=0

v̂(s)
γs+1

is bounded by
h̄∑

r=0

ĥ(r)
γr+1 +

v̄∑
s=0

v̂(s)
γs+1 .

3. Main results

3.1. 2-D SNPSs with delays and lagged impulse

First, two necessary assumptions are proposed on the
system (2.1).

Assumption 3.1. fp and gp are order-preserving on Rn
+ and

homogeneous of degree one for any p ∈ M.
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Assumption 3.2. ω(k, l) ≥ 0 are external disturbances and

satisfy

∥ω(k, l)∥∞ ≤ γ
k+lω̄,

where γ and ω̄ are positive constants.

Remark 3.1. It follows from Assumptions 3.1 and 3.2 that

system (2.1) is positive for any nonnegative initial condition

under arbitrary switching.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. If for any

p ∈ M, there exists a vector ξP ≫ 0 such that

fp(ξp) + gp(ξp) ≪ ξp,

then any solution of system (2.1) converges exponentially

within a ball under suitable ADT switching. The ADT

switching signals satisfy

τε > −
lnαβ
lnγ
,

where

β = max
1≤i≤n

ξ̄i
ξi

with

ξ̄i = max
p∈M
ξpi, ξi = min

p∈M
ξpi

and

F = max
p∈M,1≤i≤n

Fpii, γ = max
p∈M,1≤i≤n

γpi

with γpi satisfying

fpi(ξp) + γ−τmax
pi gpi(ξp) − γpiξpi = 0, (3.1)

and

α =

γ−dmax F, i f γ−dmax F ≥ 1,
1, i f γ−dmax F < 1.

Proof. Let ∥x(k, l)∥ξσ(k,l)
∞ be the multiple max-separable

Lyapunov function. First, the variable transformation is
introduced . Setxh(k, l)

xv(k, l)

 = γk+l 0
0 γk+l

 yh(k, l)
yv(k, l)

 , (3.2)

then system (2.1) is reduced to

yh(k + 1, l)

yv(k, l + 1)

 = γ−1fσ(k,l)

yh(k, l)

yv(k, l)

 + gσ(k,l)


γ−τh(k)−10

0γ−τv(l)−1


yh(k − τh(k), l)

yv(k, l − τv(l))




+γ−k−l−1ω(k, l), k + l , εr,

yh(k, l)

yv(k, l)

 = Fσ(k,l)


γ−dh(k)0

0γ−dv(l)


yh(k − dh(k), l)

yv(k, l − dv(l))


 , k + l = εr.

A set of functions with respect to γ are defined by

upi(γ) = fpi(ξp) + γ−τmax gpi(ξp) − γξpi, (3.3)

where ∀p ∈ M, i = 1, 2, 3, . . . , n, then upi decreases precisely
monotonically for γ and upi tends to infinity as γ approaches
zero. Following from

fp

(
ξp

)
+ gp

(
ξp

)
≪ ξp,

we can get upi(1) < 0. This implies (3.3) has a solution
γpi ∈ (0, 1). Let

γ = max
p∈M

max
1≤i≤n
γpi,

then 0 < γ < 1 and upi(γ) ≤ 0. Therefore,

fp

(
ξp

)
+ γ−τmaxgp

(
ξp

)
≤ γξp, ∀p ∈ M. (3.4)

When k + l ∈ [ε0, ε1), we have σ(k, l) = σ (ε0).

In the following, we demonstrate for any k + l ∈ [ε0, ε1)

∥y(k, l)∥ξσ(0,0)
∞ ⩽ Φ0 + [(k + l) − (k0 + l0)] (γ−1 ω̄

ξmin
), (3.5)

where

ξmin = min
p∈M,1≤i≤n

ξpi

and

Φ0 =

l∑
r=0

ĥ(r)
γr+1 +

k∑
s=0

v̂(s)
γs+1 .

From (3.2), we have x(0, 0) = y(0, 0), which implies

∥y(0, 0)∥ξσ(0,0)
∞ ⩽ max{ĥ(0), v̂(0)}.

Furthermore, we can get

∥y(0, 0)∥ξσ(0,0)
∞ ≤

ĥ(0)
γ
+

v̂(0)
γ
+[(k0 + l0) − (k0 + l0)]

(
γ−1 ω̄

ξmin

)
.

Therefore, (3.5) is true when k + l = 0. Assume (3.5) holds
for all (k, l) satisfying k + l ≤ u, where u ∈ [ε0, ε1 − 1),
u ∈ N. In the following, we demonstrate that (3.5) is also
true for u + 1. From the definition of l∞, we have

∥y(k, l)∥ξσ(0,0)
∞ ≤ Φ0 + [(k + l) − (k0 + l0)] (γ−1 ω̄

ξmin
), (3.6)
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where k + l ≤ u. Since fσ(0,0) and gσ(0,0) satisfy the
Assumption 3.1, from (3.4) and (3.6), we can get yh(k + 1, l)

yv(k, l + 1)


≤ γ−1fσ(0,0)

([
Φ0 + [(k + l) − (k0 + l0)] γ

−1ω̄
ξmin

]
ξσ(0,0)

)
+
γ−k−l−1γk+lω̄
ξmin

ξσ(0,0) + gσ(0,0)

([
Φ0 + [(k + l) − (k0 + l0)] γ

−1ω̄
ξmin

]
∗

 γ−τh(k)−1, 0
0, γ−τv(l)−1

 ξh
σ(0,0)

ξv
σ(0,0)


≤ γ−1

(
Φ0 + [(k + l) − (k0 + l0)] γ

−1ω̄
ξmin

)
fσ(0,0)

(
ξσ(0,0)

)
+γ−1 ω̄

ξmin
ξσ(0,0) +

[
Φ0 + [(k + l) − (k0 + l0)] γ

−1ω̄
ξmin

]
∗

 γ−τmax−1, 0
0, γ−τmax−1

 gσ(0,0)
(
ξσ(0,0)

)
≤ γ−1

[
Φ0 + [(k + l) − (k0 + l0)] γ

−1ω̄
ξmin

]
∗
[
fσ(0,0)

(
ξσ(0,0)

)
+ γ−τmaxgσ(0,0)

(
ξσ(0,0)

)]
+ γ−1 ω̄

ξmin
ξσ(0,0)

≤

(
Φ0 + [(k + l) − (k0 + l0)] γ

−1ω̄
ξmin
+ γ−1 ω̄

ξmin

)
ξσ(0,0)

=

(
Φ0 + [(k + l + 1) − (k0 + l0)] γ

−1ω̄
ξmin

)
ξσ(0,0),

(3.7)
where k0 + l0 = 0. Note that (3.7) is true whether or not
k + l − τh(k) and k + l − τv(l) are non-negative. It follows
from system (2.1) that

yh(k, l + 1) =
[

En1 0n1×n2

]  yh(k, l + 1)
yv(k − 1, l + 2)


and

yv(k + 1, l) =
[

0n2×n1 En2

]  yh(k + 2, l − 1)
yv(k + 1, l)

 .
Then, based on the preceding analysis, it is not difficult to
prove

yh(k, l + 1)

≤

(
Φ0 + [(k + l + 1) − (k0 + l0)] γ

−1ω̄
ξmin

) [
En1 0n1×n2

]
ξσ(0,0),

yv(k + 1, l)

≤

(
Φ0 + [(k + l + 1) − (k0 + l0)] γ

−1ω̄
ξmin

) [
0n2×n1 En2

]
ξσ(0,0).

(3.8)
As γ

−1ω̄
ξmin

is non-negative and Φ is nondecreasing in k, l, Φ0 +

[(k + l) − (k0 + l0)] γ
−1ω̄
ξmin

is nondecreasing in k, l. Combining

the Eqs (3.7) and (3.8) yields

y(k, l) ≤
(
Φ0 + [(k + l + 1) − (k0 + l0)] γ

−1ω̄
ξmin

)
ξσ(0,0),

where k + l = u + 1. This implies that

∥y(k, l)∥ξσ(0,0)
∞ ≤ Φ0 + [(k + l) − (k0 + l0)]

γ−1ω̄

ξmin
, (3.9)

where k + l = u + 1. Then, when k + l = ε1, we have yh(k, l)
yv(k, l)

 = Fσ(k,l)

 γ−dh(k), 0
0, γ−dv(l)

  yh (k − dh(k), l)

yv (k, l − dv(l))


≤ γ−dmaxFσ(k,l)

 yh (k − dh(k), l)

yv (k, l − dv(l))


≤ γ−dmax F

(
Φ0 + [(k + l) − (k0 + l0)] γ−1 ω̄

ξmin

)
ξσ(0,0).

Note that

α =

γ−dmax F, i f γ−dmax F ≥ 1,
1, i f γ−dmax F < 1,

y(k, l) ≤
(
Φ0 + [(k + l) − (k0 + l0)]

γ−1ω̄

ξmin

)
ξσ(0,0),

where k + l ∈ [ε0, ε1), which leads to yh(k, l)
yv(k, l)

 ≤ α [
Φ0 + [(k + l) − (k0 + l0)] γ−1 ω̄

ξmin

]
ξσ(0,0),

where k + l ∈ [ε0, ε1). Therefore, we can get

∥y(k, l)∥ξσ(0,0)
∞ ≤ α

[
Φ0 + [(k + l) − (k0 + l0)] γ−1 ω̄

ξmin

]
, (3.10)

where k + l ∈ [ε0, ε1). Denote σ(k1, l1) = σ(ε1) as the
switching instant, that is, k + l = ε1. From the definition
of l∞, we can get

∥y (k1, l1)∥
ξσ(k1 ,l1)
∞ = max

1≤ j≤n

y j (k1, l1)
ξσ(k1,l1) j

= max
1≤ j≤n

ξσ(0,0) j

ξσ(k1,l1) j

y j (k1, l1)
ξσ(0,0) j

≤ max
1≤ j≤n

ξ̄ j

ξ
j

y j (k1, l1)
ξσ(0,0) j

≤ β ∥y (k1, l1)∥ξσ(0,0)
∞ .

As a result of (3.10), it is clear that

∥y(k1, l1)∥
ξσ(k1 ,l1)
∞ ≤ βα

[
Φ0 + [(k1 + l1) − (k0 + l0)] γ−1 ω̄

ξmin

]
.

Mathematical Modelling and Control Volume 4, Issue 2, 152–162.



157

Let

Φ1 = βα

[
Φ0 + [(k1 + l1) − (k0 + l0)] γ−1 ω̄

ξmin

]
.

Thus,

y(k1, l1) ≤
(
Φ1 + [(k1 + l1) − (k1 + l1)] γ−1 ω̄

ξmin

)
ξσ(k1,l1).

(3.11)
Similar to the preceding analysis, the following inequality
holds

∥y(k, l)∥
ξσ(k1 ,l1)
∞ ≤ α

[
Φ1 + [(k + l) − (k1 + l1)] γ−1 ω̄

ξmin

]
,

where k + l ∈ [ε1, ε2) . Furthermore, we have

∥y(k, l)∥
ξσ(km−1 ,lm−1)
∞

≤ α

[
Φm−1 + [(k + l) − (km−1 + lm−1)] γ−1 ω̄

ξmin

]
,

(3.12)

where k + l ∈ [εm−1, εm). Let

Φm = βα

[
Φm−1 + [(km + lm) − (km−1 + lm−1)] γ−1 ω̄

ξmin

]
.

Then, we have

∥y(k, l)∥ξσ(km ,lm )
∞ ≤ α

[
Φm + [(k + l) − (km + lm)] γ−1 ω̄

ξmin

]
,

where k + l ∈ [εm, εm+1) . According to the definition of Φi,
combining (3.11) and (3.12) leads to

∥y(k, l)∥ξσ(km ,lm )
∞

≤ α
(
βα

[
Φm−1 + [(km + lm) − (km−1 + lm−1)] γ−1 ω̄

ξmin

])
+α

(
[(k + l) − (km + lm)] γ−1 ω̄

ξmin

)
= βα2

[
Φm−1 + (εm − εm−1) γ−1 ω̄

ξmin

]
+ [(k + l) − εm] γ−1 αω̄

ξmin

= βα2
[
βα

(
Φm−2 + (εm−1 − εm−2) γ−1 ω̄

ξmin

)
+ (εm − εm−1) γ−1 ω̄

εmin

]
+ (k + l − εm) γ−1 αω̄

ξmin

= β2α3Φm−2 + β
2α3 (εm−1 − εm−2) γ−1 ω̄

εmin

+βα2 (εm − εm−1) γ−1 ω̄
εmin
+ (k + l − εm) γ−1 αω̄

ξmin

= βmαm+1Φ0 + β
mαm+1 (ε1 − ε0) γ−1 ω̄

ξmin

+ · · · + (k + l − εm) γ−1 αω̄
ξmin

≤ βmαm+1Φ0 + α(k + l)
(
βmαm + βm−1αm−1 + · · · + 1

)
γ−1 ω̄

ξmin

= βmαmαΦ0 + (k + l)α 1−βm+1αm+1

1−αβ
γ−1ω̄
ξmin
,

where k + l ∈ [εm, εm+1) .

Obviously,

m ≤
k + l
τε
,

where

τε > −
lnαβ
ln γ
.

Hence, we get

∥y(k, l)∥ξσ(km ,lm)
∞ ≤ (βα)

k+l
τε αΦ0 + α(k + l)

(βα)
k+l
τε

βα − 1
βα
γ−1ω̄

ξmin
.

We can deduce from (3.2) that

∥x(k, l)∥ξσ(km ,lm)
∞

≤ γk+l(αβ)
k+l
τε αΦ0 + βα

2(k + l)
γk+l(αβ)

k+l
τε

βα − 1
γ−1ω̄

ξmin

=
(
(αβ)

1
τε γ

)k+l
αΦ0 + βα

2(k + l)

(
γ(αβ)

1
τε

)k+l

βα − 1
γ−1ω̄

ξmin

=

(
e

1nαβ
τε
+ln γ

)k+l
αΦ0 +

βα2

βα − 1
γ−1ω̄

ξmin
(k + l)

(
e

lnαβ
τε
+ln γ

)k+l
.

Denote

b = α and c = e
lnαβ
τε
+ln γ.

Furthermore, if we let

f (x) = xcx(0 < c < 1),

then

fmax = f
(
−

1
ln c

)
= −

1

c
1

ln c ln c
.

Hence,

(k + l) ck+l ≤ fmax, k, l ∈ N0.

Let

a = −
r−1ω̄βα2

(βα − 1)ξmin

1

c
1

ln c ln c

and

ξ̄ =
[
ξ̄1, ξ̄2, . . . , ξ̄n

]
.

Then we have

∥x(k, l)∥ξ̄∞ ≤ ∥x(k, l)∥ξσ(km ,lm)
∞ ⩽ a + b Φ0ck+l.

That is, system (2.1) converges exponentially within a ball.
□
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Remark 3.2. Comparing with the main result given

in [22], the external disturbances and impulsive effects are

considered. If we let ω(k, l) ≡ 0 and impulsive matrix

FP ≡ 0 in Theorem 1, then any solution of system (2.1) under

the switching signal with ADT

τε > −
lnαβ
lnγ

satisfying

∥x(k, l)∥ξ̄∞ ≤ ∥x(k, l)∥ξσ(km ,lm)
∞ ⩽ b Φ0ck+l.

That is, Theorem 3.1 in this paper reduces to [22,

Theorem 2].

Remark 3.3. It follows from the proof of Theorem 3.1 that

the convergence rate is related to the parameter γ. On

the other hand, γpi is the unique solution of the Eq (3.1).
Obviously, γpi is monotonically increasing in τ̂h and τ̂v,

and γpi approaches to one as max(τ̂h, τ̂v) tends to infinity.

This implies that system delays have an impact on the

convergence rate.

In the following, we extend the impulse matrix to the
nonlinear case.

Corollary 3.1. If the impulse matrix

FP = diag
{
FP11 (x), FP22 (x), . . . , FPnn(x)

}
is bounded for any FPii (x), i = 1, 2, . . . , n, then system (2.1)
converges exponentially within a ball under a class of ADT

switching signals.

Proof. Let
F = sup

p∈M,1≤i≤n
sup

x
|FPii (x)|.

Then, Corollary 3.1 can be derived from Theorem 3.1. □

3.2. 2-D SNPSs with multi-directional delays

Consider 2-D SNPSs with multiple time-varying delays

xh(k + 1, l)

xv(k, l + 1)

 = fσ(k,l)

xh(k, l)

xv(k, l)

 +∑N
s=1 gsσ(k,l)

xh(k − τhs(k), l)

xv(k, l − τvs(l))


+ω(k, l), k + l , εr,xh(k, l)

xv(k, l)

 = ∑Q
z=1 F

z
σ(k,l)

xh(k − dhz(k), l)

xv(k, l − dvz(l))

 , k + l = εr,

(3.13)

where the delay functions τhs(k), τvs(l), dhz(k), and dvz(l)
satisfy 0 ≤ τhs(k) ≤ τ̄hs, 0 ≤ τvs(l) ≤ τ̄vs, 0 ≤ dhz(k) ≤ d̄hz,
0 ≤ dvz(l) ≤ d̄vz,s ∈ {1, 2, . . . ,N}, z ∈ {1, 2, . . . ,Q}.

Now, we give the reachable set estimation for the
system (3.13).

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold and the

impulse matrix F z
P be bounded for any F z

Pii
(x), i = 1, 2 . . . , n.

For any p ∈ M, if there exists a vector ξP ≫ 0 satisfying

fp(ξp) +
N∑

s=1

gsp(ξp) ≪ ξp,

then each solution of system (3.13) converges exponentially

within a ball with ADT switching satisfying

τε > −
lnαβ
lnγ
,

where

α =


∑Q

z=1 γ
−dz max Fz, i f

∑Q
z=1 γ

−dz max Fz ≥ 1,
1, i f

∑Q
z=1 γ

−dz max Fz < 1,

τs max = max (τ̄hs, τ̄vs) , dz max = max
(
d̄hz, d̄vz

)
,

Fz = sup
p∈M,1≤i≤n

sup
x
|F z

pii(x)|

and

γ = max
p∈M,0≤i≤n

γpi

with γpi satisfying

fpi(ξp) +
N∑

s=1

γ−τs max
pi gspi(ξp) − γpiξpi = 0.

Proof. The same variable transformation as stated in
Theorem 3.1 is also used. Then, according to similar
analysis to (3.9), one can verify that

∥y(k, l)∥ξσ(0,0)
∞ ≤ Φ0+[(k + l) − (k0 + l0)]

γ−1ω̄

ξmin
, k+l = u+1.

As k + l = ε1 , we have yh(k, l)
yv(k, l)


=

Q∑
z=1

F z
σ(k,l)

 γ−dhz(k), 0
0, γ−dvz(l)

  yh (k − dhz(k), l)

yv (k, l − dvz(l))


≤

Q∑
z=1

γ−dz maxF z
σ(k,l)

 yh (k − dhz(k), l)

yv (k, l − dvz(l))


≤

Q∑
z=1

γ−dz max Fz

(
Φ0 + [(k + l) − (k0 + l0)] γ−1 ω̄

ξmin

)
ξσ(0,0).

Mathematical Modelling and Control Volume 4, Issue 2, 152–162.



159

Then, it follows from the definition of α that

∥y(k, l)∥ξσ(0,0)
∞ ≤ α

[
Φ0 + [(k + l) − (k0 + l0)] γ−1 ω̄

ξmin

]
,

where k + l ∈ [ε0, ε1) . The rest of the proof can be analyzed
applying the same arguments as in the proof of Theorem 3.1.
It will be omitted here. □

Theorem 3.2 can be generalized to general 2-D switched
linear systems.

xh(k + 1, l)
xv(k, l + 1)

 =Aσ(k,l)

xh(k, l)
xv(k, l)

 + ω(k, l)

+

N∑
s=1

Bsσ(k,l)

xh(k − τhs(k), l)
xv(k, lvs − τ(l))

 ,
k + l , εr,xh(k, l)

xv(k, l)

 = Q∑
z=1

F z
σ(k,l)

xh(k − dhz(k), l)
xv(k, l − dvz(l))

 , k + l = εr.

(3.14)

Denote ∣∣∣Ap

∣∣∣ = [∣∣∣api j

∣∣∣]
n×n
,
∣∣∣Bsp

∣∣∣ = [∣∣∣∣b(s)
pi j

∣∣∣∣]
n×n
.

Theorem 3.3. If for any p ∈ M, there exists a vector ξP ≫ 0
such that ∣∣∣Ap

∣∣∣ + N∑
s=1

∣∣∣Bsp

∣∣∣ ξp ≪ ξp,

then any solution of the system (3.14) converges

exponentially within a ball under certain ADT switching.

The ADT switching signals satisfy

τε > −
lnαβ
lnγ
,

where

γ = max
p∈M

max
1≤i≤n
γpi

with γpi

n∑
j=1

∣∣∣api j

∣∣∣ ξp j +

N∑
s=1

(γ−τs max
pi

n∑
j=1

∣∣∣∣b(s)
pi j

∣∣∣∣ ξp j) − γpiξpi = 0.

Proof. It is simple to check that
∣∣∣xh(k + 1, l)

∣∣∣
|xν(k, l + 1)|

 ≤|Aσ(k,l)|
[ ∣∣∣xh(k, l)

∣∣∣ |xv(k, l)|
]

+

N∑
s=1

|Bsσ(k,l)|


∣∣∣xh (k − τhs(k), l)

∣∣∣
|xv (k, l − τvs(l))|

 + ω(k, l).

Then, the method to prove Theorem 3.3 is similar to that
of Theorem 3.1, and it is omitted. □

3.3. 2-D SPNSs with heterogeneous time-varying delays

Consider 2-D SPNSs with heterogeneous time-varying
delays.



xh
i (k + 1, l) =fσ(k,l)i

 xh(k, l)
xv(k, l)

 + ωi(k, l)

+ gσ(k,l)i


(
xh

1

(
k − τi

h1(k), l
)
· · · xh

n1

(
k − τi

hn1
(k), l

))⊤(
xv

1

(
k, l − τi

v1(l)
)
· · · xv

n2

(
k, l − τi

vn2
(l)

))⊤  ,
k + l , εr,

xh
i (k, l) =Fσ(k,l)i


(
xh

1

(
k − di

h1
(k), l

)
· · · xh

n1

(
k − di

hn1
(k), l

))⊤(
xv

1

(
k, l − di

v1(l)
)
· · · xv

n2

(
k, l − di

vn2
(l)

))⊤  ,
k + l = εr.

(3.15)
xh

j (k, l) and xv
j(k, l) represent the j-th element of the vector

functions xh(k, l) and xv(k, l), respectively. The delay
functions are non-negative and have an upper bound. Denote

τmax = max(τi
h1(k), . . . , τi

hn1
(k), τi

v1(l), . . . , τi
vn2

(l), i = 1, 2, . . . , n),

dmax = max(di
h1(k), . . . , di

hn1
(k), di

v1(l), . . . , di
vn2

(l), i = 1, 2, . . . , n).

Supposing Assumptions 3.1 and 3.2 hold, we can get the
following result.

Theorem 3.4. If for any p ∈ M, there exists a vector ξP ≫ 0
such that

fp(ξp) + gp(ξp) ≪ ξp,

then system (3.15) converges exponentially within a ball

under appropriate ADT switching. Furthermore, the ADT

switching signals satisfy

τε > −
lnαβ
lnγ
,

where α, β, γ are defined in Theorem 3.1.

Proof. Since the heterogeneous time-varying delays are
bounded, Theorem 3.4 can be proved by using the same
method used in the proof of Theorem 3.1. □

4. Numerical example

Consider the system (3.15) consisting of two subsystems
with

f1

 xh(k, l)
xv(k, l)

 =  0.14 0.16
0.25 0.1

  xh(k, l)
xv(k, l)


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+

√(
xh(k, l)

)2
+ (xv(k, l))2

 0.01
0.05

 ,
g1

 xh(k, l)
xv(k, l)

 =


0.625xh(k,l)xv(k,l)√
(2.3xh(k,l))2

+(xv(k,l))2

0.5xh(k,l)xv(k,l)√
(xh(k,l))2

+(xv(k,l))2

 ,
f2

 xh(k, l)
xv(k, l)

 =  0.3 0.23
0.2 0.4

  xh(k, l)
xv(k, l)


+

√(
xh(k, l)

)2
+ (2xv(k, l))2

 0.02
0.04

 ,
g2

 xh(k, l)
xv(k, l)

 =


0.22xh(k,l)xv(k,l)√
(2.3xh(k,l))2

+(xv(k,l))2

0.1xh(k,l)xv(k,l)√
(xh(k,l))2

+(xv(k,l))2

 ,
F1 =

 0.5 0
0 1.02

 , F2 =

 1.01 0
0 0.8

 ,
ω(k, l) =0.25

 | sin(k)|
| cos(l)|

 .
Obviously, the vector fields f1, f2, g1, and g2 are

homogeneous of degree one and order preserving. F1, F2,

and ω(k, l) are bounded. It is determined that there exist
vectors

ξ1 = [1.09, 1.09]T and ξ2 = [0.8, 1.15]T

such that

( fi + gi) ξi ≪ ξi.

Let

τh(k) = 1 + 3 sin
(
π

2
k
)
, τv(l) = 1 + 3 cos

(
π

2
l
)

and

dh(k) = 1 + | sin
(
π

2
k
)
|, dv(l) = 1 + | cos

(
π

2
l
)
|.

It follows from Eq (3.1) that

γ11 = 0.8821, γ12 = 0.9181, γ21 = 0.8982, γ22 = 0.7595.

We pick γ = 0.9181. Then, according to Theorem 1, the
SPNS converges exponentially within a ball under ADT
switching τε ≥ 6.48. Figure 1 shows the ADT switching
signal. Figures 2 and 3 provide the estimates for xh(k, l) and
xv(k, l) under the switching signal τε = 7, respectively.
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Figure 1. The ADT switching signal.

Figure 2. The estimate for xh(k, l).

Figure 3. The estimate for xv(k, l).
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5. Conclusions

The reachable set estimation for 2-D SNPSs in the
Roesser model with unknown exogenous disturbances are
studied. System delays and delayed impulse effects are all
considered in the involved systems. For bounded directional
delays and delayed impulse effects, an explicit sufficient is
presented for the presence of a ball such that any solution
of the system converge exponentially within it. The existing
result can be seen as a special case of this article. Finally, we
also extend the result to 2-D SNPSs with multiple directional
delays, general 2-D switched linear systems, and 2-D SNPSs
with heterogeneous time-varying delays.
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