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Abstract: In this paper, we studied the dynamical behavior of various phases of breast cancer using the Caputo Fabrizio (CF) fractional
order derivative operator. The Picard-Lindelof (PL) method was used to investigate the existence and uniqueness of the proposed system.
Moreover, we investigated the stability of the system in the sense of Ulam Hyers (UH) criteria. In addition, the two-step Adams-Bashforth
(AB) technique was employed to simulate our methodology. The fractional model was then simulated using real data, which includes
reported breast cancer incidences among females of Saudi Arabia from 2004 to 2016. The real data was used to determine the values
of the parameters that were fitted using the least squares method. Also, residuals were computed for the integer as well as fractional-
order models. Based on the results obtained, the CF model’s efficacy rates were greater than those of the existing classical model.
Graphical representations were used to illustrate numerical results by examining different choices of fractional order parameters, then
the dynamical behavior of several phases of breast cancer was quantified to show how fractional order affects breast cancer behavior and
how chemotherapy rate affects breast cancer behavior. We provided graphical results for a breast cancer model with effective parameters,
resulting in fewer future incidences in the population of phases III and IV as well as the disease-free state. Chemotherapy often raises the
risk of cardiotoxicity, and our proposed model output reflected this. The goal of this study was to reduce the incidence of cardiotoxicity
in chemotherapy patients while also increasing the pace of patient recovery. This research has the potential to significantly improve
outcomes of patients and provide information of treatment strategies for breast cancer patients.
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1. Introduction

As per medical experts, breast cancer is characterized by
the abnormal development and division of cells inside the
breast tissue. This condition poses a significant risk to health
and is mostly seen in the female population. According
to [1], compared to other types of cancer, the most people
get breast cancer. It kills breast tissue and cells, causing the
breasts to grow out of control and change shape. Several risk
factors have been found that put women at a higher chance of
getting breast cancer. Dietary habits, personal experience of
malignancy, alcohol consumption, smoking, weight status,
dense breast tissue, physical inactivity, reproductive history
(including pregnancy and breastfeeding), menstrual history,

genetic predisposition, racial background, life span history,
specific breast changes, and getting older are all factors
to consider. The main clinical presentations of breast
cancer include lymphadenopathy, nipple discharge, nipple
retraction, breast/nipple pain, presence of flaky skin on the
breast/nipple, skin irritation, appearance of skin dimpling
with erythema, changes in breast form or size, localized
breast tissue thickening, and either complete or partial breast
swelling. Tumor, node, and metastatic stages are used by
medical professionals to evaluate a patient’s cancer state and
calculate their prospects of remission.

The odds of recovery are higher at earlier stages.
Bisphosphonates, bone marrow transplants, gene therapy,
hormone therapy, immunotherapy, surgery, stem cell
therapy, targeted cancer medications, radiation, and
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complementary and alternative treatments are only a few of
the therapeutic methods that have been created to prevent
cancer. Chemotherapy is the most popular kind of treatment
for the aforementioned conditions, and it uses medications to
destroy cancer cells. The medications used in chemotherapy
are either administered intravenously to the patient or
taken orally, with some efficacy but potential cardiac risks.
Cardiotoxicity is a negative side effect that may affect both
adults and children [2]. Mathematical models are employed
to analyze the complicated dynamics of illnesses and offer
precise outcomes for infection reduction and control.

One of the most rapidly expanding subfields of
mathematical analysis is called fractional calculus, and it is
concerned with the study of both derivatives and integrals
of any arbitrary order [3, 4]. The nonlocality is a major
advantage of the nonclassical derivatives that helps in the
depiction of memory and hereditary characteristics of the
system. As most of the biological processes involve the
memory effect in the study of the epidemiological model
fractional derivatives play a vital role.

Recent advancements suggest that fractional interpreters
exhibit superior accuracy, utility, and reliability compared
to the conventional derivative method. Contemporary
fractional derivative operators are now being formulated in
order to elucidate practical phenomena. Many mathematical
models including integer and fractional order have been
created in the literature for the detailed analysis of
various diseases such as diabetes [5, 6], breast cancer [7],
cancer treatment model [8, 9], HIV/AIDS [10, 11], lung
cancer [12], Covid-19 [13–15], and in several other scientific
and technological disciplines such as biology [16–18],
chemistry [19], engineering [20–26], and most of the
references cited therein.

The various techniques, such as the analytical
methods [27–29], the semi-analytic methods [30–35],
and the numerical methods [36–41] are found in the
literature for solving fractional differential equations.
Moreover, in [42], the solution of the fractional Sawada-
Kotera-Ito equation using Caputo and Atangana-Baleanu
(AB) derivatives have been derived. In [43], a robust
computational analysis of residual power series involving
general transform to solve fractional differential equations
has been proposed. Abdeljawad et al. in [44] derived a

higher-order extension of AB fractional operators with
respect to another function and a Gronwall-type inequality.
In [45], the authors provide studies on the coupled snap
system with integral boundary conditions in the G-Caputo
sense. The authors in [46], studied the nonlocal multi-order
implicit differential equation involving Hilfer fractional
derivative on unbounded domains. In [47], an efficient
variable step-size rational method for stiff, singular,
and singularly perturbed problems has been given. The
development of the reproducing kernel Hilbert space
algorithm for the numerical pointwise solution of the time-
fractional nonlocal reaction-diffusion equation is provided
in [48].

In fractional calculus, a number of fractional operators
are offered for the study of real issues. In contrast, these
operators have a power law kernel and can merely partly
simulate physical obstacles. Caputo and Fabrizio (CF) [49]
introduced a unique fractional operator with a nonsingular
kernel to address these issues and constraints. This
revolutionary operator’s results are more appropriate and
have several applications. In [50], the authors studied
the fractional mathematical modeling of the human liver.
Ullah et al. in [51] analyzed a fractional model for
the dynamics of tuberculosis infection. In [52], the
authors proposed fractional cancer treatment. In [53],
the authors studied the application of the CF derivative
to a cancer model with unknown parameters. Ngungu
et al. in [54] focused on mathematical epidemiological
modeling and analysis of monkeypox dynamics with non-
pharmaceutical intervation using real data from the UK.
In [55], the authors developed the mathematical modeling
of the immune-chemotherapeutic treatment of breast cancer
under some control parameters, and the majority of the
references listed therein have adequately represented the
diseases transmission process with therapy and unidentified
parameters.

The breast cancer classical mathematical model was
categorized into five epidemiological groups by authors
in [56]. However, it fails to optimally capture nonlocal
behavior for the dynamics of the cancer, and the deviation
between the real data and the data obtained through the
simulation of the classical model is found to be large.
Moreover, the freedom of having access to the real data is the
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chief motivation behind detailed analysis of the breast cancer
model under the CF fractional-order differential operator.
These precise fractional calculus findings and consequences
drive us to examine and analyze the dynamics of breast
cancer using actual data, which are reported cases in Saudi
Arabia from 2004 to 2016 [57]. It is noteworthy to mention
that, unlike several previous studies, we have diligently
ensured dimensional uniformity throughout the process of
fractionalization.

The following is the outline of article: Section 2 explains
the fractional calculus requirements for system analysis.
Section 3 uses a CF framework to develop a fractional order
model for breast cancer. Section 4 gives the Picard-Lindelof
(PL) technique and the fixed-point theorem to investigate
the existence and uniqueness of a proposed system. In
Section 5, we numerically investigate the dynamics of the
proposed model with variation in input parameters. Finally,
final observations are offered in the concluding portion.

2. Preliminaries

Definition 2.1. Let f ∈ H1(ι1, ι2) and 0 < r < 1, then the

CF fractional derivative [49] is defined as follows:

(cf
0 Dr

t N)(t) =
P(r)
1 − r

∫ t

ι1

N
′

(δ)exp
[
−

r(t − δ)
1 − r

]
dδ, (2.1)

where P(r) is a normalizing function with the property that

P(0) = P(1) = 1.

Definition 2.2. [58] If 0 < r < 1, then the CF fractional

integral of order r of a function N is:

(cf
0 Ir

t N)(t) =
2(1 − r)

(2 − r)P(r)
N(t) +

2r
(2 − r)P(r)

∫ t

0
N(δ)dδ. (2.2)

3. Formulation of fractional mathematical model

Authors in [56] classified the breast cancer model into
five epidemiological categories. During the initial medical
report, the overall population of breast cancer patients was
divided into phases 1 and 2 (S12), phase 3 (S3), phase 4 (S4),
disease-free state (SR), and cardiotoxic (SE) subpopulations.

The traditional system is described as:

dS12
dt = ∆ − (ρ + ν)S12,

dS3
dt = Γ + νS12 + ψSR − (σ + µ + κ + χ)S3,

dS4
dt = Ω + µS3 + ϕSR − (τ + ω + δ)S4,

dSR
dt = ρS12 + σS3 + τS4 − (ψ + ϕ + ζ)SR,

dSE
dt = ζSR + ωS4 + κS3 − ηSE ,

(3.1)

where the following are the parameters of the system (3.1):
∆: people who have been diagnosed with cancer at stages 1
and 2; Γ: people suffering with stage 3 cancer; Ω: cancer
patients in the fourth stage; ρ: chemotherapy recovery in
phases 1 and 2; σ: chemotherapy recovery at stage 3; τ:
chemotherapy recovery at stage 4; µ: people in worse health
enter the stage 4 population; ν: people in worse health enroll
in class S3; κ: patients undergoing severe treatment that
induces cardiotoxicity; ω: people undergoing treatment for
stage 4 cancer who suffer cardiotoxicity; ζ: at the disease-
free stage, patients who have had extensive chemotherapy,
which leads to cardiotoxicity; χ: cancer-related death at
stage 3; δ: cancer-related death at stage 4; η: cardiotoxic
patients’ mortality rate; ψ: people who regress to stage 3; ϕ:
people who regress to stage 4.

Now, to better approximate the spread of breast cancer
with varying treatment rates into various compartments and
to quantitatively demonstrate the influence of the above-
mentioned parameters, the integer order model must be
replaced by a fractional order model. The goal of this
research is to extend the traditional system (3.1) by adding
a fractional time derivative operator that allows for the
analysis of memory effects in an arbitrary-order system.
During the process of fractionalization, the dimensional
consistency for each of the equations in the model has
been maintained. We place the fractional order power
r on each time-dimensional parameter to make the equal
time dimension (time−r) on both sides of the model. The
proposed breast cancer transmission model, which includes
the CF derivative, is offered as:

cf
0 Dr

tS12 = ∆
r − (ρr + νr)S12,

cf
0 Dr

tS3 = Γ
r + νrS12 + ψ

rSR − (σr + µr + κr + χr)S3,

cf
0 Dr

tS4 = Ω
r + µrS3 + ϕ

rSR − (τr + ωr + δr)S4,

cf
0 Dr

tSR = ρ
rS12 + σ

rS3 + τ
rS4 − (ψr + ϕr + ζr)SR,

cf
0 Dr

tSE = ζ
rSR + ω

rS4 + κ
rS3 − η

rSE ,

(3.2)
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with initial conditions: S12(0) = S120 ,S3(0) = S30 ,S4(0) =
S40 ,SR(0) = SR0 ,SE(0) = SE0 .

4. Qualitative analysis of fractional system

The present study aims to thoroughly examine the
fractional system. The PL technique was used to investigate
the presence and singularity of the offered solutions for the
system (3.2). To begin the process, the system (3.2) is
transformed into an integral equation with arbitrary order by
applying (2.2) to both sides, resulting in

S12(t) − S12(0) = cfIr
t {N1(t,S12)} ,

S3(t) − S3(0) = cfIr
t {N2(t,S3)} ,

S4(t) − S4(0) = cfIr
t {N3(t,S4)} ,

SR(t) − SR(0) = cfIr
t {N4(t,SR)} ,

SE(t) − SE(0) = cfIr
t {N5(t,SE)} ,

(4.1)

where

N1(t,S12) = ∆r − (ρr + νr)S12,

N2(t,S3) = Γr + νrS12 + ψ
rSR − (σr + µr + κr + χr)S3,

N3(t,S4) = Ωr + µrS3 + ϕ
rSR − (τr + ωr + δr)S4,

N4(t,SR) = ρrS12 + σ
rS3 + τ

rS4 − (ψr + ϕr + ζr)SR,

N5(t,SE) = ζrSR + ω
rS4 + κ

rS3 − η
rSE ,

are contractions with respect to the functions S12,S3,S4,SR,
and SE , respectively. Applying (2.2) on (4.1), we obtain



S12(t) − S12(0) = Ω(r)N1(t,S12) + ω(r)
∫ t

0 N1(y,S12)dy,

S3(t) − S3(0) = Ω(r)N2(t,S3) + ω(r)
∫ t

0 N2(y,S3)dy,

S4(t) − S4(0) = Ω(r)N3(t,S4) + ω(r)
∫ t

0 N3(y,S4)dy,

SR(t) − SR(0) = Ω(r)N4(t,SR) + ω(r)
∫ t

0 N4(y,SR)dy,

SE(t) − SE(0) = Ω(r)N5(t,SE) + ω(r)
∫ t

0 N5(y,SE)dy,

(4.2)

where

Ω(r) =
2(1 − r)

(2 − r)P(r)
, ω(r) =

2r
(2 − r)P(r)

.

By Picard’s iterative algorithm,

S12n+1 (t) = Ω(r)N1(t,S12n ) + ω(r)
∫ t

0 N1(y,S12n )dy,

S3n+1 (t) = Ω(r)N2(t,S3n ) + ω(r)
∫ t

0 N2(y,S3n )dy,

S4n+1 (t) = Ω(r)N3(t,S4n ) + ω(r)
∫ t

0 N3(y,S4n )dy,

SRn+1 (t) = Ω(r)N4(t,SRn ) + ω(r)
∫ t

0 N4(y,SRn )dy,

SEn+1 (t) = Ω(r)N5(t,SEn ) + ω(r)
∫ t

0 N5(y,SEn )dy.

(4.3)

The solutions are achieved as follows:

lim
n→∞
S12n (t) = S12(t), lim

n→∞
S3n (t) = S3(t), lim

n→∞
S4n (t) = S4(t),

lim
n→∞
SRn (t) = SR(t), lim

n→∞
SEn (t) = SE(t).

To demonstrate the existence of the solution, we use the PL
approach and the Banach fixed point theorem.

Let

N∗1 = sup
C[a,b1]

∥N1(t,S12)∥ , N∗2 = sup
C[a,b2]

∥N2(t,S3)∥ ,

N∗3 = sup
C[a,b3]

∥N1(t,S4)∥ , N∗4 = sup
C[a,b4]

∥N1(t,SR)∥ ,

N∗5 = sup
C[a,b5]

∥N1(t,SE)∥ ,

where

C[a, b1] = [t − a, t + a] × [S12 − b1,S12 + b1] = A × B1,

C[a, b2] = [t − a, t + a] × [S3 − b2,S3 + b2] = A × B2,

C[a, b3] = [t − a, t + a] × [S4 − b3,S4 + b3] = A × B3,

C[a, b4] = [t − a, t + a] × [SR − b4,SR + b4] = A × B4,

C[a, b5] = [t − a, t + a] × [SE − b5,SE + b5] = A × B5.

Consider a uniform norm on C[a, bι], (ι = 1, 2, 3, 4, 5) as
given by

∥U(t)∥∞ = sup
t∈[t−a,t+a]

|U(t)| .

We define the Picard operator as:

△ : C(A,B1,B2,B3,B4,B5)→ C(A,B1,B2,B3,B4,B5)

described by

△(U(t)) = U0(t) + Ω(r)N(t,U(t)) + ω(r)
∫ t

0
N(y,U(y))dy,

where

U(t) = {S12(t),S3(t),S4(t),SR(t),SE(t)} ,

U0(t) = {S12(0),S3(0),S4(0),SR(0),SE(0)} ,

N(t,U(t)) = {N1(t,S12),N2(t,S3),N3(t,S4),N4(t,SR),N5(t,SE)} .

We consider the solutions to the problem under examination
are bounded within a time interval, that is,

∥U(t)∥∞ ⩽ max {b1, b2, b3, b4, b5} = b.

Let
N∗ = max

{
N∗1 ,N

∗
2 ,N

∗
3 ,N

∗
4 ,N

∗
5

}
,
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and ∃ t0, so t ⩽ t0, then

∥△U(t) − U0(t)∥

=

∥∥∥∥∥∥Ω(r)N(t,U(t)) + ω(r)
∫ t

0
N(y,U(y))dy

∥∥∥∥∥∥
⩽ Ω(r) ∥N(t,U(t))∥ + ω(r)

∫ t

0
∥N(y,U(y))∥ dy

⩽ (Ω(r) + ω(r)t) N∗

⩽ (Ω(r) + ω(r)t0) N∗

⩽ µ∗N∗

⩽ b,

where
µ∗ = (Ω(r) + ω(r)t0) ⩽

b
N∗
.

Further, we prove the following equality:

∥△U1 − △U2∥ = sup
t∈A
|U1(t) − U2(t)| .

Using the Picard operator, we get

∥△U1 − △U2∥

= ∥Ω(r) {N(t,U1(t)) − N(t,U2(t))}

+ω(r)
∫ t

0
{N(y,U1(y)) − N(y,U2(y))} dy

∥∥∥∥∥∥
⩽ Ω(r) ∥N(t,U1(t)) − N(t,U2(t))∥

+ ω(r)
∫ t

0
∥N(y,U1(y)) − N(y,U2(y))∥ dy

⩽ Ω(r)γ∗ ∥U1(t) − U2(t)∥ + ω(r)γ∗
∫ t

0
∥U1(y) − U2(y)∥ dy

⩽ (Ω(r) + ω(r)t0) γ∗ ∥U1(y) − U2(y)∥

⩽ µ∗γ∗ ∥U1(y) − U2(y)∥

with γ∗ < 1.
Since N is a contraction, then µ∗γ∗ < 1, so the discussed

operator ∆ is a contraction. Hence, system (3.2) has a unique
solution.

5. Stability analysis of the proposed fractional model

In this section, we discuss the Ulam-Hyres (UH) stabiity
(such as [59, 60]) of the proposed fractional model (3.2)
using the notion of nonlinear functional analysis. For the
sake of simplicity we consider the proposed model (3.2) as: cf

0 Dr
tB(t) = Θ (t,B(t)) ,
B(0) = B0 ≥ 0,

(5.1)

where

B(t) = (S12(t),S3(t),S4(t),SR(t),SE(t))T ,

B0 =
(
S120 ,S30 ,S40 ,SR0 ,SE0

)T ,

Θ(t,B(t)) = (N1,N2,N3,N4,N5)T .

Applying fractional integral (2.2) on (5.1), we get

B(t) = B0 + Ω(r)Θ(t,B(t)) + ω(r)
∫ t

0
Θ(δ,B(δ))dδ. (5.2)

Definition 5.1. The proposed system (3.2) is UH stable if ∃

µ > 0 with the following property. For any ϵ > 0 and B ∈ B

(Banach space), if∣∣∣∣cf
0 Dr

tB(t) − Θ
(
t,B(t)

)∣∣∣∣ ≤ ϵ, (5.3)

then ∃ B ∈ B satisfies system (3.2) with initial condition

B(0) = B(0) = B0,

such that ∥∥∥B − B∥∥∥ ≤ µϵ.
where

B(t) =
(
S12(t),S3(t),S4(t),SR(t),SE(t)

)T
,

B0 =
(
S120 ,S30 ,S40 ,SR0 ,SE0

)T
,

Θ(t,B(t)) =
(
N1,N2,N3,N4,N5

)T
,

ϵ = max(ϵ j)T ; j = 1, 2, 3, 4, 5,

µ = max(µ j)
T ; j = 1, 2, 3, 4, 5.

Remark 5.1. Consider a small perturbation k ∈ C[0,T],
such that k(0) = 0 along with the following property : |k(t)| ≤
ϵ, for t ∈ [0,T] and ϵ > 0,

Lemma 5.1. [10] The solution Bk(t) of the perturbed

system

cf
0 Dr

tB(t) = Θ
(
t,B(t)

)
+ k(t), B(0) = B0, (5.4)

saisfies the relation:∥∥∥Bk(t) − B(t)
∥∥∥ ≤ Φϵ,

where

Φ = Ω(r) + ω(r)T,

k(t) = (k1(t), k2(t), k3(t), k4(t), k5(t))T .
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Proof. Applying fractional integral (2.2) on (5.4), we get

Bk(t) =B0 + Ω(r)Θ
(
t,B(t)

)
+ ω(r)

∫ t

0
Θ

(
δ,B(δ)

)
dδ

+ Ω(r)k(t) + ω(r)
∫ t

0
k(δ)dδ. (5.5)

Also,

B(t) = B0 + Ω(r)Θ
(
t,B(t)

)
+ ω(r)

∫ t

0
Θ

(
δ,B(δ)

)
dδ. (5.6)

Using Remark 5.1,

∥∥∥Bk(t) − B(t)
∥∥∥ ≤ Ω(r) |k(t)| + ω(r)

∫ t

0
|k(δ)| dδ

≤ (Ω(r) + ω(r)T ) ϵ

= Φϵ.

This completes the proof. □

Theorem 5.1. [10] The proposed fractional system (3.2) is

UM stable if ∥∥∥B(t) − B(t)
∥∥∥ ≤ µϵ.

Proof. Let B be the solution of (5.3) and, due to uniqueness,
B be a unique solution of the system (5.1), then∥∥∥B(t) − B(t)

∥∥∥ ≤ ∥∥∥Bh(t) − B(t)
∥∥∥ + ∥∥∥Bh(t) − B(t)

∥∥∥
≤Φϵ + Ω(r)

∥∥∥Θ(t,B(t)) − Θ(t,B(t))
∥∥∥

+ ω(r)
∫ t

0

∥∥∥Θ(δ,B(δ)) − Θ(δ,B(δ))
∥∥∥ dδ + Φϵ

≤2Φϵ + Φδ
∥∥∥B(t)) − B(t))

∥∥∥ ,
which implies that

∥∥∥B(t) − B(t)
∥∥∥ ≤ 2Φϵ

1 − Φδ
= µϵ,

where
µ =

2Φ

1 − Φδ
.

Hence, the considered fractional system (3.2) is UM stable.
□

6. Numerical algorithm on CF frame for dynamics of
breast cancer model

The present part of the paper provides an approximate
solution for the fractional order model (3.2) using two-step

fractional Adams-Bashforth technique [37]. We discretized
model (3.2) as follows:

S12ι+1 = S12ι + M1(r)N1(tι,S12ι,S3ι,S4ι,SRι,SE ι) − M2(r)

N1(tι−1,S12ι−1,S3ι−1,S4ι−1,SRι−1,SE ι−1),

S3ι+1 = S3ι + M1(r)N2(tι,S12ι,S3ι,S4ι,SRι,SE ι) − M2(r)

N2(tι−1,S12ι−1,S3ι−1,S4ι−1,SRι−1,SE ι−1),

S4ι+1 = S4ι + M1(r)N3(tι,S12ι,S3ι,S4ι,SRι,SE ι) − M2(r)

N3(tι−1,S12ι−1,S3ι−1,S4ι−1,SRι−1,SE ι−1),

SRι+1 = SRι + M1(r)N4(tι,S12ι,S3ι,S4ι,SRι,SE ι) − M2(r)

N4(tι−1,S12ι−1,S3ι−1,S4ι−1,SRι−1,SE ι−1),

SE ι+1 = SE ι + M1(r)N5(tι,S12ι,S3ι,S4ι,SRι,SE ι) − M2(r)

N5(tι−1,S12ι−1,S3ι−1,S4ι−1,SRι−1,SE ι−1),
(6.1)

where

M1(r) =
(

1 − r
P(r)

+
3rh

2P(r)

)
and

M2(r) =
(

1 − r
P(r)

+
rh

2P(r)

)
.

7. Numerical simulation and discussion

The dynamical behavior of the proposed fractional
system (3.2) is investigated numerically using (6.1)
for the approximate solution of the state variables
S12(t),S3(t),S4(t),SR(t), and SE(t) in (3.2). We take the
initial values as S12(0) = 30000, S3(0) = 12300, S4(0) =
783, SR(0) = 334, SE(0) = 10 and parameters values:
∆ = 14000, Γ = 80, Ω = 90, µ = 0.01, ν = 0.034, ψ =
0.03, ϕ = 0.3, ω = 0.1, ζ = 0.2, χ = δ = η = 0.0256 [56],
ρ = 0.149( f itted), κ = 0.09( f itted), σ = 0.47( f itted),
and τ = 0.01( f itted), as fitted with real data. In Figure 1,
we used real data [57] from Kingdom of Saudi Arabia
from 2004 to 2016 to fit the classical model (3.1) and the
suggested fractional order model (3.2). This demonstrates
that the fractional model better matches the actual data and
may be used to forecast future instances than the classical
model. Figure 2 shows a long-term estimate of the cases
based on a fractional model. Here, we can see from Figure 2
that the data fits the model curve well, and we can also
see that the number of long-term behavior cases grows in
an exponential way over time. This case could be scary
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because the number of cases could go up even more in the
next few years if the health department does not use the right
treatment methods to get rid of breast cancer.

Figure 1. Fitting real data of breast cancer with
integer and fractional order(r = 1) models.

Figure 2. Fractional order (r = 1) model
prediction with real data.

Figures 3–7 show how the model compartments change
over time (t = 50 years) as the fractional-order r varies
for each compartment. We discovered that the memory
index r has a significant impact on the breast cancer model’s
solution route, and that controlling r gives us a lot of
control over the way breast cancer behaves in all subgroups.
Figures 8–11 show the solution of the proposed CF model
while adjusting the input parameter κ. We found that raising
this quantity makes fewer people get cancer in stage 3,
stage 4, and disease-free states, implying that the cancer
mortality rate would be reduced. However, increasing
κ increases the number of people who are cardiotoxic,
increasing the risk of cardiac mortality.

Figure 3. Simulation of stage 1 and 2 patients
with variation of fractional order.

Figure 4. Simulation of stage 3 patients with
variation of fractional order.

Figure 5. Simulation of stage 4 patients with
variation of fractional order.
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Figure 6. Simulation of patients at disease-free
state with variation of fractional order.

Figure 7. Simulation of cardiortoxicity patients
with variation of fractional order.

Figure 8. Effect of κ on stage 3 patients.

Figure 9. Effect of κ on stage 4 patients.

Figure 10. Effect of κ on patients at disease-free
state.

Figure 11. Effect of κ on cardiortoxicity patients.

The diagram shown in Figures 12–14 illustrates the
effects of rigorous chemotherapy on patients diagnosed
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with stage 4. This treatment approach has been found
to potentially contribute to higher rates of morbidity
and death within the population, particularly among
those who experience cardiotoxicity. By intensifying the
administration of chemotherapy to individuals in phase 4,
populations with disease-free status, and those experiencing
cardiotoxicity, it becomes evident that stage 4 and disease-
free individuals exhibit significant improvements in disease
reduction. However, the same level of improvement
is not observed in individuals with cardiotoxicity. The
adverse effects of chemotherapy have been shown to
significantly increase the risk of developing cardiovascular
complications in individuals. The simulations provide
a visual representation of the parameters’ functions,
facilitating comprehension of strategies to reduce cancer and
cardiac mortality rates in cancer patient healthcare facilities.

Figure 12. Effect of ω on stage 4 patients.

Figure 13. Effect of ω on patients at disease-free
state.

Figure 14. Effect of ω on cardiortoxicity patients.

Figures 15–18 depict the simulation of the model
compartment in the disease-free condition with intense
treatment. The findings show a little rise in the
cardiotoxicity population, whereas there are minor
reductions in the population of phases 3, 4, and the
disease-free state. Figure 15 shows that there is minimal
improvement in the decline of instances in phase 3 sufferers.
Figure 16 shows a significant decrease in cases among
phase 4 patients. Figure 17 shows a significant drop
in the number of patients in the disease-free state, but
Figure 18 shows a modest rise in the number of instances
of cardiotoxicity. The CF operator demonstrates a 66.64%
improvement in the accuracy of estimating actual data
compared to the classical order model as determined by

classical model norm - fractional model norm
classical model norm

=
11045.11902 − 3685

11045.11902
= 0.6664.

Figure 15. Effect of ζ on stage 3 patients.
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Figure 16. Effect of ζ on stage 4 patients.

Figure 17. Effect of ζ on disease-free state
patients.

Figure 18. Effect of ζ on cardiortoxicity patients.

8. Conclusions

We developed a mathematical model in a fractional
framework for breast cancer in this research to study the

impact of treatment at various phases, incorporating the
CF derivative and various chemotherapy rates. The PL
technique is established for the system’s existence and
uniqueness. We have constructed some results for UH
stability and have shown that our proposed model is UH
stable. The numerical simulations supported our approach
using the two-step AB algorithm. Through graphical
representations, we illustrated the impact of fractional order
and the effect of chemotherapy rates on breast cancer
dynamics. Using real incidence data, the CF operator
demonstrates a 66.64% improvement in the accuracy of
estimating actual data compared to the classical order
model. Notably, we identified effective parameters (κ, ω,
and ζ) associated with reduced occurrences of stages 3
and 4 as well as disease-free states in breast cancer
modeling. Our results emphasized the increased risk of
cardiotoxicity linked with chemotherapy, indicating that
pretreatment may be beneficial in mitigating such risks.
Our research seeks to reduce cardiotoxicity prevalence
among chemotherapy patients and improve their recovery
rates, with implications for public health decision-making.
Furthermore, by elucidating breast cancer mechanisms
through the CF operator, our study paves the way for
targeted therapies to minimize cardiotoxicity, thereby
improving patient outcomes and guiding future breast cancer
treatment strategies. In future work, we want to leverage our
actual data-oriented estimated parameter values to anticipate
breast cancer patients utilizing various models and fractional
derivative operators. Using the provided data, certain
optimal controls may also be added in the same model.
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