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Abstract: The focus of this paper was to explore the stability issues associated with delayed neural networks (DNNs). We introduced a
novel approach that departs from the existing methods of using quadratic functions to determine the negative definite of the Lyapunov-
Krasovskii functional’s (LKFs) derivative V̇(t). Instead, we proposed a new method that utilizes the conditions of positive definite
quadratic function to establish the positive definiteness of LKFs. Based on this approach, we constructed a novel the relaxed LKF that
contains delay information. In addition, some combinations of inequalities were extended and used to reduce the conservatism of the
results obtained. The criteria for achieving delay-dependent asymptotic stability were subsequently presented in the framework of linear
matrix inequalities (LMIs). Finally, a numerical example confirmed the effectiveness of the theoretical result.
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1. Introduction

Neural networks (NNs) serve as computational models
that replicate the neural system of the human brain, and
they are applied to address diverse problems in the field
of machine learning. NNs have been widely used in
various fields, including natural language processing, picture
recognition, image encryption, wireline communication,
finance, and business forecasting, because of its strong
information processing capabilities (see [1–8]). Therefore,
the stability analysis of NNs is a crucial matter, and has
received a lot of attention in recent years (see [9–11]).
Furthermore, the transmission of signals between neurons
is subject to time-delay, which can adversely affect the
performance of NNs ([12, 13]). Consequently, determining
the maximum allowable delay bounds (MADBs) that can
ensure the stability of NNs is an important research topic that
has drawn a lot of attention [14]. In the existing literature,

the method of delay partitioning is commonly employed
for analyzing time-delay systems. In order to obtain the
MADBs, on the one hand, it is necessary to require that

the constructed augmented Lyapunov-Krasovskii functional
(LKF) contains more delay information. On the other hand,

it is necessary to relax the requirements on the matrix
variables involved. The research [15] introduced a novel
asymmetric LKF, where all matrix variables involved do
not need to be symmetric or positive definite. To make
the augmented LKFs contain more delay information, a
novel approach to delay partitioning was presented by Guo

et al. [16], which involves dividing the variation interval
of the delay into several subintervals. A new method
for determining the negativity of a quadratic function is
presented in [17], based on its geometric information. A
more thorough reciprocity convex combination inequality

was used by Chen et al. [18] to add quadratic terms to the
time derivative of a LKF. It leads to less stringent stability
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conditions for delayed neural network (DNNs). A novel
approach to free moving points generation was introduced
in [19] based on the work of [18]. Specifically, free
moving points were established for synchronous movements
in each subinterval. In addition, the integral inequalities can
reduce conservatism by providing tighter bounds through
replacement of a function with its upper or lower limit,
improving our ability to predict actual results.

As previously discussed, the majority of existing research
has focused on the negative condition of LKFs. However,
there is a lack of investigation into its positive condition in
the literature. The main work of this paper is to construct a
relaxed LFK, and study the stability properties of DNNs by
using a quadratic function positive definiteness method. The
main contributions are summarized as follows:

(1) Distinct from prevailing methodologies, this paper
presents a novel approach for demonstrating the
positive definiteness of the LKF, based on the
requirement that the quadratic function satisfies the
positive definite condition.

(2) By employing the asymmetric LKFs methodology,
we construct a relaxed LKF that incorporates delay
information. The matrix variables included in
this method do not require symmetry and positive
definiteness.

(3) A new delay-dependent stability criterion with reduced
conservatism is derived for DNNs by extending basic
inequalities and incorporating the conditions of positive
definiteness for the quadratic function.

Notations: Y is an n × n real matrix; YT is transpose of Y

and Y > 0; (Y < 0) represents the positive definite (negative
definite) matrix. The ∗ is a symmetric block in a symmetric
matrix, He{Y} = Y + YT . The diagonal matrix is denoted by
diag{}. The n-dimensional Euclidean space is denoted by Rn

and Rn×nis the set of all n × n real matrices.

2. Preliminaries

Consider the following NNs with time-varying delay: ẋ(t) = −Ax(t) + B f (x(t)) +C f (x(t − hτ(t))),

x(t) = ρ(t),
(2.1)

where

x(·) = col [x1(·), x2(·), . . . , xn(·)] ∈ Rn

is the neuron state vector and ρ(t) is the initial condition.

f (x(·)) = col
[
f1 (x1(·)) , f2 (x2(·)) , . . . , fn (xn(·))

]
denotes the activation functions.

A = diag {a1, a2, . . . , an}

with ai > 0. B and C are the connection matrices. The
hτ(t) is the time-varying delay differentiable function that
satisfies 0 ≤ hτ(t) ≤ h, ḣτ(t) ≤ µ, where h and µ are known
constants. To derive our primary outcome, we need to rely
on the following assumption and lemmas.

Assumption 2.1. The Lipschitz condition that the neuron

activation function satisfies is as follows: ι−i ≤
fi(α)− fi(β)
α−β

≤ ι+i ,

α , β, fi(0) = 0, i = 1, 2, . . . , n,

where ι−i and ι+i are known constants. For simplicity, denote

the following matrices: L1 = diag{ι−1 ι
+
1 , ι
−
2 ι
+
2 , . . . , ι

−
n ι
+
n },

L2 = {
ι−1+ι

+
1

2 ,
ι−2+ι

+
2

2 , . . . ,
ι−n+ι

+
n

2 }.

Lemma 2.1. [20] Given any constant positive definite

matrix K ∈ Rn×n, for any continuous function χ(u) and

v1 < v2, the following inequalities hold:

(v2 − v1)
∫ v2

v1

χT (µ)Kχ(µ)dµ ≥
∫ v2

v1

χT(µ)dµK
∫ v2

v1

χ(µ)dµ.

Lemma 2.2. [21] Given any constant positive definite

matrix K ∈ Rn×n, for any continuous function χ(u) and

v1 < v2, the following inequalities hold:∫ v2

v1

χT (µ)Kχ(µ)dµ

≥
1

(v2 − v1)

∫ v2

v1

χT(µ)dµK
∫ v2

v1

χ(µ)dµ +
3

(v2 − v1)
ΩT KΩ,

where

Ω =

∫ v2

v1

χ(µ)dµ −
2

(v2 − v1)

∫ v2

v1

∫ v2

θ

χ(µ)dµdθ.
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Lemma 2.3. [22] Let R = RT ∈ Rn×n be a positive definite

matrix. If there exists matrix X ∈ Rn×n such thatR X

∗ R

 ≥ 0,

then the following inequality holds:

(β1 − β3)
∫ β1

β3

χ̇T (µ)Rχ̇(µ) ≥ ψTΛψ,

where

ψ =col[χ(β1), χ(β2), χ(β3)], β3 < β2 < β1,

Λ =


R −R + X −X

∗ 2R − X − XT −R + X

∗ ∗ R

 .
Lemma 2.4. For a quadratic function of delay,

ξ(hτ) = ah2
τ(t) + bhτ(t) + c,

where a, b, c ∈ R, hτ ∈ [0, h], ξ(hτ) > 0 holds, if ξ(hτ)
satisfies: 

ξ(0) > 0,

ξ(h) > 0,

hb + 2c > 0.

Proof. We will prove Lemma 2.4 by the geometry approach.

• For a > 0: ξ(hτ(t)) is a convex function. When
ξ(hτ(t)) increases monotonically in [0, h], ξ(0) > 0
will make ξ(hτ(t)) > 0 (see Figure 1); when ξ(hτ(t))
is monotonically decreasing in [0, h], if ξ(h) > 0,
then ξ(hτ(t)) > 0 (see Figure 2); when ξ(hτ(t)) is not
monotonically increasing or decreasing in [0, h], D is
the intersection of the two tangents at ξ(0) and ξ(h); if
D > 0, then ξ(hτ(t)) > 0 (see Figure 3).

• For a < 0: ξ(hτ(t)) is a concave function. ξ(hτ(t)) > 0
in [0, h] if ξ(0) > 0 and ξ(h) > 0 (see Figure 4).

□

2( ( )) ( ) ( )h t ah t bh t c   = + +

x

y

(0)h

( )h h

0 h

Figure 1. ξ(hτ(t)) is monotonically increasing.

2( ( )) ( ) ( )h t ah t bh t c   = + +

x

y

(0)h

( )h h

0 h

Figure 2. ξ(hτ(t)) is monotonically decreasing.

2( ( )) ( ) ( )h t ah t bh t c   = + +

x

y

(0)h
( )h h

0 h

D

Figure 3. ξ(hτ(t)) is not monotonically increasing
or decreasing.

2( ( )) ( ) ( )h t ah t bh t c   = + +

x

y

(0)h
( )h h

0 h

Figure 4. ξ(hτ(t)) is a concave function.

Through the above discussion, we obtained three
conditions for positive definiteness of quadratic functions.
In Theorem 3.1, we constructed a quadratic function form
of LKFs, and under the condition of satisfying these three
conditions, we can prove that LKF is positive definite.

Remark 2.1. Lemma 2.3 is a formula derived from

the Bessel-Legendre integral inequality, which provides a

varying estimate based on N that can help us to evaluate

the upper bound of
∫ β1

β3
χ̇T (µ)Rχ̇(µ). It is apparent that

Lemma 2.3 can be reduced to Lemma 2.1 when N = 0
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(see [23]). In [17–19], the negative definiteness criterion

of a quadratic function is utilized to demonstrate the

negativity of the derivative of the LKFs. At present, there

is no research that explores the use of quadratic function

methods for determining the positive-definiteness property

of LKFs. In this paper,the Lemma 2.4 is a condition for a

quadratic function to be positive definite. In Theorem 3.1,

the h2
τ(t) term is introduced in the augmented asymmetric

LKFs through the integral inequalities. On the one hand,

introducing h2
τ(t) can include more time delay information

in the LKFs and reduce conservatism. On the other hand, it

can make the LKFs a quadratic function.

3. Main results

The symbols used in the theorem are described here to
help clarify its formulation.

η(t) =col[x(t)x(t − hτ(t))x(t − h) f (x(t)) f (x(t − hτ(t)))∫ t

t−hτ(t)
x(s)ds

∫ t

t−h
x(s)ds

∫ t

t−hτ(t)
ẋ(s)ds

∫ t−hτ(t)

t−h
ẋ(s)ds∫ t

t−hτ(t)
f (x(s))ds

∫ t

t−h
f (x(s))ds

∫ 0

−h

∫ t

θ

f (x(s))dsdθ∫ t

t−h

∫ t

θ

x(s)dsdθ]

el =[0n×(l−1)n, In×n, 0n×(13−l)n] ∈ Rn×13n,

l =1, 2, . . . , 13, ϵ =
1
h
.

Theorem 3.1. For given scalars µ and h > 0, system (2.1)
with time-varying delay is asymptotically stable if there

exist positive definite symmetric matrices W1, W2; positive

definite diagonal matrices Z1, Z2; positive definite matrices

R1, R2, Q1, Q2; symmetric matrices P1; and any appropriate

dimension matrices P2, P3, M, N, F, and P = [P1, 2P2, 2P3],
such that the following linear matrix inequalities (LMIs)

hold:

ξ(hτ(t), ḣτ(t)) > 0, (3.1)W2 F

∗ W2

 ≥ 0,

Ξ11 Ξ12

∗ Ξ13

 < 0, (3.2)

where

ξ(hτ(t), ḣτ(t)) = h2
τ(t)Σ1 + hτ(t)Σ2 + Σ3,

Σ1 =2ϵ4eT
13W1e13,

Σ2 =ϵ
2eT

7 R2e7,

Σ3 =eT
1 [P1 +W2]e1 + ϵeT

6 R1e6

+ 4ϵ2eT
7 W2e7 + ϵeT

10Q1e10 + 2ϵ2eT
12Q2e12

+ 12ϵ4eT
13W2e13 + He{eT

1 [P2 − ϵW2]e7

+ eT
1 P3e13 − 6ϵ3eT

7 W2e13},

Ξ11 =eT
1 [2P2 − 2P1A + 2hP3 + R1 + R2

+ hW1 −
1
2
ϵW2 + hAT W2A − L1Z1]e1

+ eT
2 [

1
2
ϵF +

1
2
ϵFT − (1 − µ)R2 − ϵW2

− 2M − 2N − L1Z2]e2 − eT
3 [R2 +

1
2
ϵW2]e3

+ eT
4 [hBT W2B + Q1 + hQ2 − Z1]e4

+ eT
5 [hCT W2C − (1 − µ)Q1 − Z2]e5

+ He{eT
1 [

1
2
ϵW2 −

1
2
ϵF + MT ]e2

+ eT
1 [

1
2
ϵF − P2]e3 + eT

1 [P1B − hAT W2B

+ L2Z1]e4 + eT
1 [P1C − hAT W2C]e5

+ eT
2 [

1
2
ϵW2 −

1
2
ϵF + N]e3

+ eT
2 [L2Z2]e5 + eT

4 [hBT W2C]e5},

Ξ12 = eT
1 [−AT P2 − P3]e7 + eT

1 [−AT P3]e13

− eT
2 Me8 + eT

2 Ne9 + eT
4 [BT P2]e7

+ eT
5 [CT P2]e7 + eT

4 [BT P3]e13

+ eT
5 [CT P3]e13,

Ξ22 = −4ϵeT
7 W1e7 −

1
2
ϵeT

8 W2e8 −
1
2
ϵeT

9 W2e9

− ϵeT
11Q2e11 − 12ϵ3eT

13R2e13

+ He{6ϵ2eT
7 W1e13}.

Proof. Consider the following candidate LKF for
system (2.1):

V(t) =
4∑

i=1

Vi(t), (i = 1, 2, 3, 4), (3.3)

where

V1(t) =xT (t)P


x(t)∫ t

t−h x(s)ds∫ t
t−h

∫ t
θ

x(s)dsdθ

 ,
V2(t) =

∫ t

t−hτ(t)
xT (s)R1x(s)ds +

∫ t

t−h
xT (s)R2x(s)ds,
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V3(t) =
∫ t

t−h

∫ t

θ

xT (s)W1x(s)dsdθ

+

∫ t

t−h

∫ t

θ

ẋT (s)W2 ẋ(s)dsdθ,

V4(t) =
∫ t

t−hτ(t)
f T (x(s))Q1 f (x(s))ds

+

∫ 0

−h

∫ t

t+θ
f T (x(s))Q2 f (x(s))dsdθ.

By Lemmas 2.1 and 2.2, we can deduce

V2(t) ≥ηT (t){ϵeT
6 R1e6 + hτ(t)ϵ2eT

7 R2e7}η(t),

V3(t) ≥ηT (t){2h2
τ(t)ϵ

4eT
12W1e12 + eT

1 W2e1

− 2ϵeT
1 W2e7 + 4ϵ2eT

7 W2e7

− 12ϵ3eT
7 W2e13 + 12ϵ4eT

13W2e13}η(t),

V4(t) ≥ηT (t){ϵeT
10Q1e10 + 2ϵ2eT

12Q2e12}η(t).

From the above derivation, we can conclude

V(t) ≥ ηT (t)[h2
τ(t)Σ1 + hτ(t)Σ2 + Σ3]η(t).

The LKF (3.3) is positive definite if

ξ(hτ(t), ḣτ(t)) > 0.

Next we need to derive that the derivative of LKF is
negative definite. Taking the time-derivative of LKF, we
have

V̇1(t) =ηT (t)
{
− 2eT

1 [P1A − 2P2 + 2hP3]e1 + 2eT
1 P1Be4

+ 2eT
4 P1Ce5 − 2eT

1 AT P2e7 + 2eT
4 BT P2e7

+ 2eT
5 CT P2e7 + 2eT

1 P2e3 − 2eT
1 AT P3e13

+ 2eT
4 BT P3e13 + 2eT

5 CT P3e13 − 2eT
1 P3e7

}
η(t),

V̇2(t) =ηT (t)
{
eT

1 [R1 + R2]e1 − (1 − µ)eT
2 R1e2 − eT

3 R2e3}η(t),

V̇3(t) = −
∫ t

t−h
xT (s)W1x(s)ds + hxT (t)W1x(t)

−

∫ t

t−h
ẋT (s)W2 ẋ(s)ds + hẋT (t)W2 ẋ(t).

(3.4)

Applying inequalities from Lemmas 2.1–2.3, we can
obtain

V̇3(t) ≤ηT (t)
{
− 4ϵeT

7 W1e7 − 12ϵ3eT
1 W1e1

+ He
{
6ϵ2eT

7 W1e13

}
−

1
2
ϵeT

7 W2e7 −
1
2
ϵeT

8 W2e8

+ [−Ae1 + Be4 +Ce5]T W2[−Ae1 + Be4 +Ce5]

+ γTΠγ}η(t),

(3.5)

where

Π = −
1
2
ϵ


W2 −W2 + F −F

∗ W2 − F − FT −W2 + F

∗ ∗ W2

 ,
γ =col

[
e1 e2 e2

]
.

Furthermore, based on Assumption 2.1, the following
condition holds for any positive definite diagonal matrices
Z1 and Z2:

0 ≤ −
n∑

j=1

Z1 j

[
f j(x j(t)) − ι−j x j(t)

] [
f j(x j(t)) − ι+j x j(t)

]
−

n∑
j=1

Z2 j

[
f j(x j(t − hτ(t))) − ι−j x j(t − hτ(t))

]
[
f j(x j(t − hτ(t))) − ι+j x j(t − hτ(t))

]
.

(3.6)

For any matrices M and N, from the Newton-Leibniz
integral formula, we can obtain that:

0 = 2xT (t − hτ(t))M[x(t) − x(t − hτ(t))

−
∫ t

t−hτ(t)
ẋ(s)ds],

0 = −2xT (t − hτ(t))N[x(t − hτ(t)) − x(t − h)

−
∫ t−hτ(t)

t−h ẋ(s)ds],

then,  0 = ηT (t){2eT
2 M[e1 − e2 − e8]}η(t),

0 = ηT (t){−2eT
2 N[e2 − e3 − e9]}η(t).

(3.7)

By adding the (3.4)–(3.7) together, we can obtain

V̇(t) ≤ ηT (t)

Ξ11 Ξ12

∗ Ξ13

 η(t). (3.8)

Therefore, the proof has been completed. □

Remark 3.1. The purpose of constructing an augmented

LKF is to extract more information from the system. By

introducing new variables and parameters, the augmented

LKF can describe the dynamic characteristics of the

system in greater detail, helping us to better understand

and analyze system behavior. Typically, in order to

satisfy the stability conditions of an augmented LKF, the

matrix variables involved need to be positive definite

and symmetric. This is because in control theory,

positive definite matrices and symmetric matrices have good
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properties that can ensure the nonnegativity and convexity

of the LKF [24]. When requiring all matrix variables

in the designed augmented LKFs to be positive definite

and symmetric, it may lead to increased conservatism.

This is because the restrictions of positive definiteness and

symmetry narrow down the set of available LKFs, possibly

failing to capture all system dynamics.

Remark 3.2. Inspired by [15], a relaxed and asymmetric

LKF is constructed in this paper. The involved matrix

variables do not require them to be all positive definite

or symmetric in this LKF. By utilizing the condition that

the quadratic function is positive definite, the proposed

Lemma 2.4 ensures the positive definiteness of the

LKF. Furthermore, when combined with certain extended

fundamental inequalities, Theorem 1 is less conservative

compared to some of the existing literature.

4. Numerical example

This section uses a numerical example to demonstrate the
feasibility of the proposed approach.

Example 4.1. Consider DNNs (2.1), with the following

system parameters:

A =

1.5 0
0 1.7

 ,
L1 = diag{0, 0},

L2 = diag{0.15, 0.4},

B =

0.0503 0.0454
0.0987 0.2075

 ,
C =

0.2381 0.9320
0.0388 0.5062

 .
Solving the LMI in Theorem 3.1 yields the MADBs.

Table 1 shows the MADBs of Example 1 with various µ
by the obtained Theorem 3.1. Compared to some recent
results in other literature both theoretically and numerically.
It is undeniably established that this paper’s results are
significantly better than some reported. Based on the data
presented in Table 1, the MADBs system (2.1) yields a value
of 11.8999 for µ = 0.4.

Table 1. The MADBs of h with various µ for
Example 1.

Methods µ=0.4 µ=0.45 µ=0.5 µ=0.55

[25] Theorem 1 7.6697 6.7287 6.4126 6.2569
[26] Theorem 2.1 (m=6) 8.970 7.663 7.115 6.855
[27] Theorem 1 10.2637 9.0586 9.0586 9.1910
[28] Theorem 2 10.4371 9.1910 8.6957 8.3806
[29] Theorem 2 10.5730 9.3566 8.8467 8.5176
Theorem 3.1 11.8999 11.4345 10.1016 9.8864
Improvement 19.472% 26.543% 20.550% 20.697%

In addition, we use different initial values (x1(0) =
col[0.5, 0.8], x2(0) = col[−0.2, 0.8]) and

f (x(t)) = col
[
0.3tanh(x1(t)) 0.8tanh(x2(t))

]
to obtain the state trajectory of the system (2.1). The graph
of state trajectories show that all state trajectories ultimately
converge to the equilibrium point, albeit with varying time
requirements (Figures 5–8). Finally, numerical simulation
results show that our proposed method is effective and the
new stability criterion obtained is feasible.
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Figure 5. State response of the DNNs (2.1) with
x1(0) = col[0.5, 0.8], µ = 0.4, MADBs= 11.8999.
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Figure 6. State response of the DNNs (2.1) with
x1(0) = col[0.5, 0.8], µ = 0.55, MADBs= 9.8864.
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Figure 7. State response of the DNNs (2.1)
with x2(0) = col[−0.2, 0.8], µ = 0.4, MADBs=
11.8999.
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Figure 8. State response of the DNNs (2.1) with
x2(0) = col[−0.2, 0.8], µ = 0.55, MADBs=
9.8864.

5. Conclusions

The main focus of this study is on the stability analysis
of NNs with time-varying delays. To improve upon existing
literature, this paper has proposed a quadratic method for
proving the LKF positive definite. A relaxed LKFs has
been constructed based on this method, which contains
more information about the time delay and allows for more
relaxed requirements on the matrix variables. Using LMIs,
a new stability criterion with lower conservatism has been
derived. These improvements make the stability criteria
applicable in a wider range of scenarios. The numerical
examples illustrate the feasibility of the proposed approach.
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