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Abstract: Traditional compartmental models describe the evolution of a virus over a population of nodes; one common model separates
the population into compartments of susceptible, infected, and removed nodes. More complex bi-virus models describe this evolution for
two competing viruses in the same population, having an additional parameter known as the virus interaction factor, which defines the
effect one virus has on the rate of infection of another. Although these models are generally used in the context of infectious diseases, they
could also describe the spread of ideas, or competing products in a market of consumers. In this paper, a new model was proposed that
added separate interaction factors for each virus, differentiating the effects of viruses on one another. Adding this additional parameter
will allow for more accurate interactions to be modeled and analyzed. A focus was placed on the limiting behavior of this model, an
eventual end-state equilibrium where the number of nodes in each compartment remains constant. Relationships between the virus
interaction factors and the strengths of the viruses on the limiting behavior were identified. Finally, a complete numerical solution to the
model and a condition for real-valued limiting behaviors was calculated and tested against the simulation data.

Keywords: epidemiology; competition; co-existence; equilibrium

1. Introduction

The spread of viruses over a population network is
an extremely important topic of study in today’s society,
especially after the events of the COVID-19 pandemic.
In the field of epidemiology, compartmental models are
commonly used to simulate the progression of a virus
over a population space. There are many commonly used
single-virus models, such as the SIR model: Consisting of
susceptible, infected, and removed compartments. While
modeling, nodes in populations travel between these
compartments from one to another: Susceptible nodes are
infected at a certain attack rate β, which are then removed
at a certain healing rate δ. These three compartments can
be modeled together using a system of ordinary differential
equations (ODEs), which represent the change in the number
of nodes in each compartment with respect to time. When
analyzing the behavior of these compartmental models, after
initial fluctuations, there is a limiting behavior of constant
end-state values (a steady state) for each compartment [1].

This limiting behavior is demonstrated in the SIR model in
Figure 1.

Figure 1. A classic susceptible-infected-removed
(SIR) model run with parameters β = 1/3
and δ = 1/10. This model demonstrates how
all compartment populations eventually reach a
constant end state.
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However, SIR and other similar models fail to consider
competition within the population. A type of model that
adds another layer of complexity are bi-virus models,
which model the progression of two viruses over the same
population. One previously proposed bi-virus model is based
off of the susceptible-infected-susceptible (SIS) single-virus
model [1, 2], where infected nodes have no immunity
and are susceptible to the virus afterwards (there is no
recovered compartment). A new compartment I12 is created
to represent nodes infected with both viruses [3]. In order to
model competition between the viruses, the virus interaction
factor ε is incorporated, which alters the attack rate of one
virus on a node that has already been infected with the other
virus. This model is named the susceptible-infected 1 or 2-
susceptible (S I1|2S ) model. An important discovery with
this model is a critical interaction factor value εcritical, that
represents an equilibrium point of coexistence between the
two viruses [3, Theorem 1]:

εcritical =


σ1−σ2
σ2(σ1−1) , if σ1 + σ2 ≥ 2,
2(1+

√
1−σ1σ2)
σ1σ2

, if σ1 + σ2 < 2,

where σ1 ≥ σ2, and σ represents the strength of a virus:
the size of the population multiplied by its rate of infection
(attack rate), divided by its healing rate (see Table 1).

Table 1. Definitions of variables.

Variable Definition

N Size of population = S + I1 + I2 + I12

β1, β2 Attack rates of viruses 1 and 2
δ1, δ2 Healing rates of viruses 1 and 2
σ1, σ2 Strength of viruses 1 and 2 =Nβ

δ

ε1, ε2 Interaction factors of viruses 1 and 2
I1, I2, I12 # of nodes infected with either or both viruses
S Number of susceptible nodes

I am motivated by the reality where competing viruses
have interactions that are individualized in their impact on
the opposing virus’s attack rate; as opposed to the S I1|2S

model previously cited where the viruses exhibit the same
effect on each other. Therefore, a new model is proposed
that incorporates two virus interaction factor values, one
for each virus. For example, this will differentiate the
effect of having COVID-19 on catching the flu and the
effect of having flu on catching COVID-19. This would
allow for the ability to model more realistic interactions,

expanding outside the scope of epidemiology in applications
such as products in a market or political opinions over a
population [4]. This model is then analyzed to determine
different limiting behaviors based on initial parameters.

2. Methods

2.1. The model

The proposed model with two interaction factors is
represented by the following system of ODEs:

dI1

dt
= β1S (I1 + I12) + δ2I12 − δ1I1 − ε2β2I1(I2 + I12), (2.1)

dI2

dt
= β2S (I2 + I12) + δ1I12 − δ2I2 − ε1β1I2(I1 + I12), (2.2)

dI12

dt
= ε1β1I2(I1 + I12) + ε2β2I1(I2 + I12) − (δ1 + δ2)I12. (2.3)

In this model, the size of the population N stays constant,
which implies

dS
dt
= −

dI1

dt
−

dI2

dt
−

dI12

dt
. (2.4)

As illustrated in Figure 2, susceptible nodes move into
infected compartments at the attack rate β, and move back
to the susceptible compartment at the healing rate δ.

Figure 2. Visual depiction of the compartments in
the model, with arrows representing the direction
of movement between compartments and the
variables that define the rate of movement.

Nodes infected with one virus also move into the I12

compartment at a rate defined by the interaction factor ε
multiplied by the original attack rate of the other virus.
Nodes infected with both viruses also move back into single-
virus compartments with their respective healing rate.
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2.2. Restrictions on domain

It is important to consider the positivity and
boundedness [5] of the proposed model in order for it
to have a physically relevant meaning, i.e., ensuring all
values will stay positive and bounded within the population.
The work is presented under the following assumptions,
where i1 = I1

N , i2 = I2
N , i12 =

I12
N :

(1) i1, i2, i12, (1 − i1 − i2 − i12) ∈ [0, 1]
The initial fraction of infected and susceptible nodes
are between 0 and 1.

(2) β1, β2, δ1, δ2 ≥ 0
All attack rates and healing rates are nonnegative.

Consider a time t where i1 = 0. Under Assumption 2,
Eq (2.1) now implies that dI1

dt ≥ 0. The same applies to i2
and i12. If i1 = 1 at time t, then under Assumption 2 and
Eq (2.1), dI1

dt ≤ 0. The same applies to i2 and i12.
Under Assumption 1 and the above arguments, we can

conclude i1, i2, i12, i1 + i2 + i12 ∈ [0, 1] for all t ≥ 0 and that
the set

D = {(i1, i2, i12) | i1 ≥ 0, i2 ≥ 0, i12 ≥ 0, i1 + i2 + i12 ≤ 1} (2.5)

is positively invariant in the context of the system of ODEs.
The analysis of the model will be carried out with these
assumptions and therefore exclusively within domain D.

2.3. Stability analysis

The stability of the model during a steady state must
be confirmed before analyzing its limiting behaviors. In a
steady state

dI1

dt
,

dI2

dt
,

dI12

dt
= 0, (2.6)

which implies

dS
dt
= 0. (2.7)

2.3.1. Stability with respect to time

Consider the derivative of Eq (2.1) with respect to time:

d2I1

dt2 =β1S (
dI1

dt
+

dI12

dt
) + β1

dS
dt

(I1 + I12) + δ2
dI12

dt
− δ1

dI1

dt

− ε2β2
dI1

dt
(I1 + I12) − ε2β2I1(

dI2

dt
+

dI12

dt
). (2.8)

Given Eqs (2.6) and (2.7), d2I1
dt2 = 0. As time elapses,

the derivatives of the compartments are not effected,
demonstrating stability across the dimension of time. The
same applies to the other compartments in the model.

2.3.2. Stability with respect to compartments

Let

I′1(t) ≡
dI1

dt
. (2.9)

Consider the partial derivative of (2.9) with respect to I1

∂I′1(t)
∂I1

=β1S + β1
∂S
∂I1

(I1 + I12)

− δ1 − ε2β2(I2 + I12). (2.10)

Substituting from Eq (2.6) and ∂S
∂I1
= −1

∂I′1(t)
∂I1

=β1S − β1(I1 + I12) − δ1 −
β1S (I1 + I12) + δ2I12 − δ1I1

I1

= − β1(I1 + I12) −
β1S I12 + δ2I12

I1
. (2.11)

Under Assumptions 1 and 2, ∂I
′
1(t)
∂I1
≤ 0. Any fluctuations in

I1 will result in

I′1(t) =
dI1

dt
being a force that pulls I1 back to the stable state,
demonstrating stability. The same applies to the other
compartments in the model.

2.4. Goals

This model is simulated in silico by integrating the system
of ODEs along a unitless timescale (code can be found
at: https://github.com/benz5460/bi-virus-model).
The procedure is split into two parts with different goals:

(1) Observations of the effect of varying virus interaction
factors ε1 and ε2 on the number of nodes infected with
each virus at its end behavior.

(2) A numerical method to calculate the end behavior of
the system using the initial parameters.

Throughout the simulations, the end behavior is measured
at time t = 5000. This was empirically determined to be a
reasonable stopping point that was far into the end behavior
of all tests. Initial compartment values of I1 = 50, I2 = 50,
and I12 = 0 were used, although it is observed that initial
values do not influence end state behavior.

Mathematical Modelling and Control Volume 4, Issue 1, 64–70.
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3. Results and discussion

3.1. Observations

When running simulations on this model, there are three
possible end states: Both viruses survive, one virus survives
while the other dies out, or both viruses die out. It is found
that the strengths σ1 and σ2 have a large effect on the end
behaviors of this model when varying the virus interaction
factors ε1 and ε2. Two conditions based on strength values
are investigated by graphing the effect of changes in virus
interaction factor, on end state values of nodes infected with
virus 1 (I1 + I12) and virus 2 (I2 + I12).

3.1.1. Condition 1: σ1 + σ2 ≥ 2

When the strengths of the two viruses have a sum greater
than or equal to two, then

εcritical =
σ1 − σ2

σ2(σ1 − 1)

in the single interaction factor model. The stronger virus
will be able to dominate the weaker until ε2 is high enough
to ensure survival through collaboration. In Figures 3 and 4,
example simulations are shown where the weaker virus will
die out unless its virus interaction factor ε2 is greater than or
equal to the aforementioned εcritical value. This indicates that
within this condition, the model behaves in a similar way to
if there were only one virus interaction factor.

Figure 3. Simulations run with parameters: N =

300, β1 = 0.005, δ1 = 0.4, β2 = 0.0002, δ2 =
0.05.εcritical = 0.773. Axes e1 and e2 represent
varying virus interaction factors, and the end-state
population of infected nodes for each virus is
given by the Infected axis. The location of the fold
up seen in the weaker (blue) virus at εcritical.

Figure 4. Simulations run with parameters: N =

300, β1 = 0.002, δ1 = 0.2, β2 = 0.001, δ2 =
0.2. The stronger virus will be overpowered by the
weaker if its interaction factor is much lower, as
seen with the red virus dropping at low values of
ε1.

3.1.2. Condition 2: σ1 + σ2 < 2

Within this condition, either both viruses have strengths
less than 1, or one virus has a strength greater than 1. In
the first case, both viruses do not have enough strength
to survive on their own, and collaboration is required for
survival. This results in a graph that shows a relationship
between interaction factors that act as a threshold between
the flat region of extinction and raised region of survival (see
Figure 5).

Figure 5. Simulations run with parameters: N =

300, β1 = 0.0006, δ1 = 0.2, β2 = 0.0008, δ2 =
0.3. The flat plane in both images describes both
viruses dying out (0 infected), until the virus
interaction factors are large enough. The image
on the right extends the range of values for ε1 and
ε2 shown.

In the case where one virus has a strength greater than 1, a
drastically different behavior is observed. The stronger virus
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will dominate until ε2 reaches a threshold where both viruses
will jump to increased numbers of infected nodes. This
threshold is observed to be near the εcritical values but not
exact, through the observation of several simulations (see
Figure 6).

Figure 6. Simulations run with parameters: N =

300, β1 = 0.00025, δ1 = 0.05, β2 = 0.0003, δ2 =
0.5, where one virus has a strength greater than 1
and the sum of strengths is less than 2.

3.2. Calculations for a numerical method

An end state equilibrium is achieved when all three ODEs
are equal to 0. With this, a concrete condition for real-
valued, positive end state behavior is described, as well as
a numerical method for calculating end state behavior given
initial parameters

β1S (I1 + I12) + δ2I12 − δ1I1 − ε2β2I1(I2 + I12) = 0, (3.1)

β2S (I2 + I12) + δ1I12 − δ2I1 − ε1β1I2(I1 + I12) = 0, (3.2)

ε1β1I2(I1 + I12) + ε2β2I1(I2 + I12) − (δ1 + δ2)I12 = 0. (3.3)

These equations are then manipulated into the following:

Nκ1β1 [1 − κ1 − (1 − ε1) i2] = δ1κ1, (3.4)

Nκ2β2 [1 − κ2 − (1 − ε2) i1] = δ2κ2, (3.5)

N (ε1β1κ1i2 + ε2β2κ2i1) = (δ1 + δ2) i12, (3.6)

where

κ1 =
I1 + I12

N
, κ2 =

I2 + I12

N
, i1 =

I1

N
, i2 =

I2

N
, i12 =

I12

N

Assuming positive, non-zero values of κ1 and κ2, and
substituting

1
σ
=
δ

Nβ
, i1 = κ1 − i12, i2 = κ2 − i12

into the three equations:

1 − κ1 − (1 − ε1) i2 = 1/σ1, (3.7)

1 − κ2 − (1 − ε2) i1 = 1/σ2, (3.8)

κ1κ2 (ε1σ1δ1 + ε2σ2δ2)

= i12(δ1 + δ2 + ε1σ1δ1κ1 + ε2σ2δ2κ2). (3.9)

Equation (3.10) is a rearrangement of Eq (3.9), while
Eq (3.11) is the rearrangement of

Eq(3.7) × (1 − ε2) − Eq(3.8) × (1 − ε1) .

Equation (3.12) is an expanded form of Eq (3.7), substituting
i2 = κ2 − i12

i12 =
κ1κ2 (ε1σ1δ1 + ε2σ2δ2)

δ1 + δ2 + ε1σ1δ1κ1 + ε2σ2δ2κ2
, (3.10)

κ1 =
(1 − ε1)ε2

(1 − ε2)ε1
κ2 +

ε1 − ε2 −
1−ε2
σ1
+ 1−ε1
σ2

ε1(1 − ε2)
, (3.11)

1 − κ1 − (1 − ε1) (κ2 − i12) = 1/σ1. (3.12)

Substituting Eqs (3.10) and (3.11) into Eq (3.12) results
in a quadratic equation in the form of:

a(κ2)2 + b(κ2) + c = 0, (3.13)

where:

a = −δ1 (ε2)2 (σ1)2 (σ2)2 + δ1ε1 (ε2)2 (σ1)2 (σ2)2 +

δ2ε1 (ε2 − 1) ε2σ1 (σ2)3 ,

b = −2δ1ε2 (σ1)2 σ2 + 2δ1ε1ε2 (σ1)2 σ2+

δ2ε1 (ε2 − 1)σ1 (σ2)2 − δ1ε1 (ε2 − 1)2 σ1 (σ2)2 −

δ1 (ε2 − 1) ε2σ1 (σ2)2 + δ2 (ε2 − 1) ε2σ1 (σ2)2 +

δ1ε1 (ε2 − 1) ε2σ1 (σ2)2 − δ1ε1ε2 (σ1)2 (σ2)2 +

2δ1 (ε2)2 (σ1)2 (σ2)2 − δ1ε1 (ε2)2 (σ1)2 (σ2)2 −

δ2ε1 (ε2 − 1) ε2σ1 (σ2)3,

c = −δ1 (σ1)2 + δ1ε1 (σ1)2 − δ1(ε2 − 1)σ1σ2+

δ2(ε2 − 1)σ1σ2 + δ1ε1(ε2 − 1)σ1σ2 − δ1ε1 (σ1)2 σ2+

2δ1ε1 (σ1)2 σ2 − δ1ε1ε2 (σ1)2 σ2 + δ2(ε2 − 1)2 (σ2)2 −

δ1ε1(ε2 − 1)σ1 (σ2)2 + δ1(ε2 − 1)ε2σ1 (σ2)2 −

δ2(ε2 − 1)ε2σ1 (σ2)2 + δ1ε1ε2 (σ1)2 (σ2)2 −

δ1(ε2)2 (σ1)2 (σ2)2 .
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Equation (3.13) can be used in conjunction with Eq (3.11)
to calculate the end state behavior of both viruses given
initial parameters δ1, δ2, ε1, ε2, σ1, σ2. This agrees with the
earlier observation that initial compartment values do not
influence the end behavior.

For κ2 to be real-valued, the discriminant of the quadratic
must be positive: b2 − 4ac ≥ 0. In addition, only accepting
roots where κ2 ∈ [0, 1] will further constrain the condition.
This condition describes a numerical constraint for real-
valued end state conditions based on initial parameters.

The original S I1|2S model exists as a unique case in
the new model where ε = ε1 = ε2. When this is true, the
constraint can be reduced to the form:

σ1σ2ε
2 − 4ε + 4 ≥ 0. (3.14)

This agrees with the result found for the original model [3,
Lemma 4], demonstrating the new model’s validity.

3.3. Testing the numerical method

Results from the numerical method are compared to those
from the simulations. To achieve this, parameter values from
selected conditions in Section 3.1 are plugged into Eq (3.13).
Parameters from Figure 3 are first tested: β1 = 0.005, δ1 =
0.4, β2 = 0.0002, δ2 = 0.05, σ1 = 3.75, σ2 = 1.2. Plugging
this into Eq (3.13),

[0.324ε1(ε2 − 1) − 8.1ε2
2 + 8.1ε1ε

2
2]κ22+

[0.27ε1(ε2 − 1) − 2.16ε1(ε2 − 1)2 − 13.5ε2 + 5.4ε1ε2

− 1.89(ε2 − 1)ε2 + 1.836ε1(ε2 − 1)ε2 + 16.2ε2
2 − 8.1ε1ε

2
2]κ2

− 5.625 − 1.125ε1 − 1.575(ε2 − 1) − 0.36ε1(ε2 − 1)

+ 0.072(ε2 − 1)2 + 13.5ε2 + 1.35ε1ε2 + 1.89(−1 + ε2)ε2

− 8.1ε2
2 = 0. (3.15)

Given ε1 and the condition κ2 ∈ [0, 1], the corresponding
lower bound for ε2 is found from Eq (3.15) (e.g., let ε1 = 1,
then ε2 ≥ 0.772727). This is repeated for a range of ε1

values and results are compared to the original simulation.
The same procedure is repeated with the parameters from

Figure 5, with the results shown in Figure 7. As shown in
Figures 7 and 8, the calculated threshold values for mutual
survival of both viruses of ε2 match closely with simulation
data for both observation conditions of virus strength values
outlined in Section 3.1.

Figure 7. Using parameter values from Figure 3
and selected ε1 = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5;
comparison of the threshold value of virus
interaction factor and ε2 (where both viruses will
survive) between simulation data from the ODEs
and the numerical method.

Figure 8. Similar to Figure 7, now using
parameters from Figure 5 and selected ε1 =

2.5, 5.0, 7.5, 10.0, 12.5.

4. Conclusions

A new bi-virus model is proposed and analyzed using a
system of ODEs, which introduce unique virus interaction
factors for each virus. This allows the impact of one
virus on another to be fine-tuned and model more realistic
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interactions. With the analysis, the following is concluded:

• End behaviors in this model are somewhat reliant on
the original εcritical value. This is seen most clearly
in the case where σ1 + σ2 ≥ 2, while a less concrete
dependence is seen when σ1 + σ2 < 2.
• Whenσ1+σ2 < 2 and both are less than 1, the threshold

of survival for the interaction factors are related in the
form of a curve.
• A numerical solution of the model’s end behavior is

found in the form of a quadratic equation using initial
parameters. The solution is tested against simulation
data and found to be accurate.
• Similarly, a numerical constraint for real-valued

solutions is found, of which the original model’s
constraint is uncovered as a unique case of the new
model.
• Future work can be done to identify the exact relation

between the interaction factors when σ1 + σ2 < 2
and both are less than 1. Additionally, fitting the
model to data of epidemics or sales of products can
demonstrate the model’s flexibility and applicability in
the real world.

• Other interesting possibilities include models with
greater than 2 viruses, with interactions determined
through a virus interaction matrix, or one that
incorporates the effect of interaction on healing rates.
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