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Abstract: From geometric point of view, we introduced the Sombor-Wiener index of a graph and studied the basic properties of the
new index. It was shown that the Sombor-Wiener index was useful in predicting the acentric factor of octane isomers. In addition, we
proposed a degree-weighted Wiener index to generalize the Schultz index, the Gutman index, and the Sombor-Wiener index. Meanwhile,
we gave the calculation formula of degree-weighted Wiener index for generalized Bethe trees.
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1. Introduction

In theoretical chemistry, the topological index of a graph,
also called molecular structure descriptor, is a real number
related to a structural graph of a molecule, and is often used
to predict the physico-chemical properties and biological
activities of molecules. A large number of molecular
structure descriptors have been conceived and several of
them have found applications in quantitative structure-
activity and structure-property relationships (QSAR/QSPR)
studies. In particular, degree-based topological indices and
distance-based topological indices are the most important
molecular structure descriptors that play an important role
in QSAR/QSPR.

Throughout in this paper, G is a simple connected
undirected graph with the vertex set V(G) and edge set
E(G). For u, v ∈ V(G), dv is the degree of vertex v in
G and d(u, v) is the distance between vertices u and v in
G. As a molecular descriptor, the Wiener index, introduced
by Wiener [1] in 1947, is considered as one of the most
used topological indexes with high correlation with many
physical and chemical indices of molecular compounds. The
Wiener index equals the sum of distances between all pairs

of vertices of a graph G, that is,

W(G) =
∑

{u,v}⊆V(G)

d(u, v).

In 1989, the Schultz index [2] of a chemical graph G was
put forward as a topological index of alkanes. It is defined
as

S (G) =
∑

{u,v}⊆V(G)

(du + dv)d(u, v).

The proposal of this index has opened up the research
on the degree-distance-type index. Plavs̆ić et al. [3]
showed that the Wiener index and the Schultz index are
highly intercorrelated topological indices. For arbitrary
catacondensed benzenoid graphs, Dobrynin [4] proved that
the Schultz index has the same discriminating power with
the Wiener index. So, it is both significant and interesting to
study the Schultz index for some given class of graphs (or
network), no matter whether they are molecular graphs or
not.

In 1994, Gutman [5] proposed the Schultz index of the
second kind, often called the Gutman index, and defined it
as

Gut(G) =
∑

{u,v}⊆V(G)

dudvd(u, v).
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Bounds of this index have been extensively studied using
mathematical methods; see [6]. Moreover, for a tree T on
n vertices, the Gutman index and Wiener index are closely
related by

Gut(T ) = 4W(T ) − (n − 1)(2n − 1).

In 2021, from a geometric perspective (degree radius),
Gutman [7] introduced a novel degree-based topological
index called the Sombor index, which is defined as

S O(G) =
∑

uv∈E(G)

√
d2

u + d2
v .

Note that the Sombor index is the sum of Euclidean
distances of the degrees of the two vertices of each edge in
the graph. This index is widely studied in mathematics and
chemistry; see [8].

Inspired by the above research, we propose a new
topological index called the Sombor-Wiener (SW) index ,
and define it as

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v).

The new index can be regarded as the sum of the product
of degree radius and distance between any two vertices in
the graph, which is a novel version of the distance-based
topological index.

Naturally, we define a general topological index DWW(G)
of a graph G contributed by the degree weights of all vertices
as

DWW(G) =
∑

{u,v}⊆V(G)

f (du, dv)d(u, v),

where f (du, dv) is a real function of du and dv with

f (du, dv) ≥ 0 and f (du, dv) = f (dv, du).

Clearly, the general topological index, called the degree-
weighted Wiener index, is the generalization of the Schultz
index, the Gutman index, and the SW index.

In this paper, we study the basic properties of the SW
index, and the linear regression analysis of the SW index,
with respect to acentric factor of octane isomers. In addition,
we give the calculation formula of degree-weighted Wiener
index for generalized Bethe trees. Our results generalize
some known formulae on the Schultz index and Gutman
index.

2. Basic properties of the SW index

Theorem 2.1. Let G be a connected graph with n vertices.

(i) If G = Pn, then

S W(G) = (n − 1)
 √2(n2 − 5n + 9)

3
+
√

5(n − 2)
 .

(ii) If G is r-regular, then

S W(G) =
√

2rW(G).

Moreover, if G = Kn, then

S W(G) =

√
2n(n − 1)2

2
.

If G = Cn, then

S W(G) =


√

2n3

4
, if n is even;

√
2n(n2 − 1)

4
, if n is odd.

(iii) If G = Kn1, n2 , then

S W(G) = n1n2

[√
n2

1 + n2
2 +
√

2(n1 + n2) − 2
√

2
]
.

In particular, if G = K1, n−1, then

S W(G) = (n − 1)(
√

n2 − 2n + 2 +
√

2n − 2
√

2).

Proof. (i) If G = Pn, then

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v)

=
√

5(1 + 2 + · · · + n − 2) +
√

2(n − 1)

+ 2
√

2(1 + 2 + · · · + n − 3)

+
√

5(n − 2) + · · · + 2
√

2 + 2
√

5 +
√

5

=

√
5(n − 1)(n − 2)

2
+
√

2(n − 1)

+ 2
√

2
(
1 + 3 + · · · +

(n − 3)(n − 2)
2

)
+
√

5(1 + 2 + · · · + n − 2)

=
√

2(n − 1) +
√

5(n − 1)(n − 2)

+
2
√

2(n − 1)(n − 2)(n − 3)
6

=(n − 1)
 √2(n2 − 5n + 9)

3
+
√

5(n − 2)
 .
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(ii) If G is r-regular, then

S W(G) =
∑

{u,v}⊆V(G)

√
r2 + r2d(u, v) =

√
2rW(G).

In particular, if G = Kn, then

S W(G) =
√

2(n − 1)W(G)

=
√

2(n − 1)
n(n − 1)

2

=

√
2n(n − 1)2

2
.

If G is a cycle Cn, from [9], we have

S W(G) =


√

2n3

4
, if n is even;

√
2n(n2 − 1)

4
, if n is odd.

(iii) If G = Kn1, n2 , then

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v)

=n1n2

√
n2

1 + n2
2 + 2

(
n1

2

)√
n2

2 + n2
2

+ 2
(
n2

2

)√
n2

1 + n2
1

=n1n2

[√
n2

1 + n2
2 +
√

2(n1 + n2) − 2
√

2
]
.

Let n1 = 1 and n2 = n − 1, then

S W(K1, n−1) = (n − 1)(
√

n2 − 2n + 2 +
√

2n − 2
√

2).

This completes the proof. □

Theorem 2.2. Let G be a connected graph with the

maximum degree ∆ and the minimum degree δ, then

√
2δW(G) ≤ S W(G) ≤

√
2∆W(G)

with equality if, and only if, G is regular.

Proof. By definition of S W(G), we have the proof. □

Corollary 2.3. Let G be a connected graph with n vertices,

then
√

2W(G) ≤ S W(G) ≤
√

2(n − 1)W(G).

Theorem 2.4. Let G be a connected graph with the

minimum degree δ, then

1
√

2
S (G) ≤ S W(G) ≤ S (G) − (2 −

√
2)δW(G) (2.1)

with equality (left and right) if, and only if, G is regular.

Proof. First, we prove the left-hand side of (2.1). By
Cauchy-Schwarz’s inequality, we have

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v)

≥
∑

{u,v}⊆V(G)

1
√

2
(du + dv)d(u, v)

=
1
√

2
S (G)

with equality if, and only if, du = dv for u, v ∈ V(G), that is,
G is regular.

Second, we prove the righthand side of (2.1). For any
u, v ∈ V(G) (du ≥ dv), we have√

d2
u + d2

v ≤ du + (
√

2 − 1)dv

with equality if, and only if, du = dv. Thus,

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v)

≤
∑

{u,v}⊆V(G)

[du + (
√

2 − 1)dv]d(u, v)

≤
∑

{u,v}⊆V(G)

(du + dv)d(u, v) −
∑

{u,v}⊆V(G)

(2 −
√

2)δd(u, v)

≤ S (G) − (2 −
√

2)δW(G)

with equality if, and only if, G is regular.
This completes the proof. □

Theorem 2.5. Let G be a connected graph with the

maximum degree ∆ and the minimum degree δ, then

√
2
∆

Gut(G) ≤ S W(G) ≤

√
2
δ

Gut(G)

with equality (left and right) if, and only if, G is regular.

Proof. Note that

√
d2

u + d2
v = dudv

√
1
d2

u
+

1
d2

v
,
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then we have

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v)

≤
∑

{u,v}⊆V(G)

dudv

√
1
δ2
+

1
δ2

d(u, v)

=

√
2
δ

∑
{u,v}⊆V(G)

dudvd(u, v)

=

√
2
δ

Gut(G)

and

S W(G) =
∑

{u,v}⊆V(G)

√
d2

u + d2
v d(u, v)

≥
∑

{u,v}⊆V(G)

dudv

√
1
∆2 +

1
∆2 d(u, v)

=

√
2
∆

∑
{u,v}⊆V(G)

dudvd(u, v)

=

√
2
∆

Gut(G).

This completes the proof. □

3. Degree-weighted Wiener index of generalized Bethe
trees

The generalized Bethe tree is an important graph structure
that has wide applications in many fields. The investigation
on topological indices of generalized Bethe trees and
dendrimer trees frequently appeared in various journals. A
Bethe tree Bk,d is a rooted tree at k levels whose root is
on level 1 and has degree equal to d, the vertices of levels
from 2 to k − 1 have degrees equal to d + 1, and the vertices
on the level k have degree equal to 1; see [10]. In 2007,
Rojo [11] generalized the notion of a Bethe tree as follows:
A generalized Bethe tree Bk is a rooted tree whose vertices
at the same level have equal degrees. Moreover, a regular
dendrimer tree Tk,d is a generalized Bethe tree of k+1 levels
with each non-pendent vertex having degree d.

Theorem 3.1. Let Bk+1 be a generalized Bethe tree of k + 1
levels. If d1 denotes the degree of rooted vertex and di + 1
denotes the degree of vertices on the i-th level of Bk+1 for

i < 1 ≤ k, then

DWW(Bk+1) =
k+1∑
l=1

Al,

where n j is the number of vertices on the j-th level of Bk+1,

and

n1 = 1 and n j+1 = d1d2 · · · d j

for 1 ≤ j ≤ k, and

A1 =

k∑
j=2

n j( j − 1) f (d1, d j + 1) + knk+1 f (d1, 1),

Al =
[
2
(
dl−1

2

)
+ 4

(
dl−1

1

)(
dl−1dl−2 − dl−1

1

)
+ · · ·

+ 2(l − 1)
(
dl−1 · · · d2

1

)(
nl − dl−1 · · · d2

1

)]
f (dl + 1, dl + 1)

+

k∑
j=l+1

n j( j − l) f (dl + 1, d j + 1)

+ (k − l + 1)nk+1 f (dl + 1, 1)

+ (dl−1 − 1)
[ k∑

j=l+1

n j( j − l + 2) f (dl + 1, d j + 1)

+ (k − l + 3)nk+1 f (dl + 1, 1)
]

+ (dl−1dl−2 − dl−1)
[ k∑

j=l+1

n j( j − l + 4) f (dl + 1, d j + 1)

+ (k − l + 5)nk+1 f (dl + 1, 1)
]
+ · · ·

+ (nl − dl−1 · · · d2)
[ k∑

j=l+1

n j( j + l − 2) f (dl + 1, d j + 1)

+ (k + l − 1)nk+1 f (dl + 1, 1)
]
,

Ak+1 = f (1, 1)
[
2
(
dk

2

)
+ 4

(
dk

1

)(
dkdk−1 − dk

1

)
+ · · ·

+ 2k
(
dk · · · d2

1

)(
nk+1 − dk · · · d2

1

)]
.

Proof. Let Ai be the value of degree-weighted Wiener index
of vertices on the i-th level of Bk+1, then

DWW(Bk+1) =
k+1∑
i=1

Ai.

By definition of Bk+1, we have

A1 =n2 f (d1, d2 + 1) + 2n3 f (d1, d3 + 1) + · · ·

+ (k − 1)nk f (d1, dk + 1) + knk+1 f (d1, 1)

=

k∑
j=2

n j( j − 1) f (d1, d j + 1) + knk+1 f (d1, 1),

A2 =2
(
d1

2

)
f (d2 + 1, d2 + 1) + n2

[
d2 f (d2 + 1, d3 + 1)

+ 2d2d3 f (d2 + 1, d4 + 1) + · · ·

Mathematical Modelling and Control Volume 4, Issue 1, 9–16.
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+ d2d3 · · · dk−1(k − 2) f (d2 + 1, dk + 1)

+ d2d3 · · · dk(k − 1) f (d2 + 1, 1)

+ (n2 − 1)(3d2 f (d2 + 1, d3 + 1)

+ 4d2d3 f (d2 + 1, d4 + 1) + · · ·

+ d2d3 · · · dk−1k f (d2 + 1, dk + 1)

+ d2d3 · · · dk(k + 1) f (d2 + 1, 1))
]

=d1(d1 − 1) f (d2 + 1, d2 + 1)

+ n2

[
n3/d1 f (d2 + 1, d3 + 1)

+ 2n4/d1 f (d2 + 1, d4 + 1) + · · ·

+ nk/d1(k − 2) f (d2 + 1, dk + 1)

+ nk+1/d1(k − 1) f (d2 + 1, 1)

+ (n2 − 1)(3n3/d1 f (d2 + 1, d3 + 1)

+ 4n4/d1 f (d2 + 1, d4 + 1) + · · ·

+ knk/d1 f (d2 + 1, dk + 1)

+ nk+1/d1(k + 1) f (d2 + 1, 1))
]

=d1(d1 − 1) f (d2 + 1, d2 + 1)

+ n2/d1

[ k∑
j=3

( j − 2)n j f (d2 + 1, d j + 1)

+ (k − 1)nk+1 f (d2 + 1, 1)

+ (n2 − 1)(
k∑

j=3

jn j f (d2 + 1, d j + 1)

+ (k + 1)nk+1 f (d2 + 1, 1))
]

=d1(d1 − 1) f (d2 + 1, d2 + 1)

+

k∑
j=3

( j − 2)n j f (d2 + 1, d j + 1)

+ (k − 1)nk+1 f (d2 + 1, 1)

+ (n2 − 1)
[ k∑

j=3

jn j f (d2 + 1, d j + 1)

+ (k + 1)nk+1 f (d2 + 1, 1)
]
,

A3 =
[
2
(
d2

2

)
+ 4

(
d2

1

)(
n3 − d2

1

)]
f (d3 + 1, d3 + 1)

+ n3

[
d3 f (d3 + 1, d4 + 1)

+ 2d3d4 f (d3 + 1, d5 + 1) + · · ·

+ (k − 3)d3d4 · · · dk−1 f (d3 + 1, dk + 1)

+ (k − 2)d3d4 · · · dk f (d3 + 1, 1)

+ (d2 − 1)(3d3 f (d3 + 1, d4 + 1)

+ 4d3d4 f (d3 + 1, d5 + 1) + · · ·

+ (k − 1)d3d4 · · · dk−1 f (d3 + 1, dk + 1)

+ kd3d4 · · · dk f (d3 + 1, 1))

+ (n3 − d2)(5d3 f (d3 + 1, d4 + 1)

+ 6d3d4 f (d3 + 1, d5 + 1) + · · ·

+ (k + 1)d3d4 · · · dk−1 f (d3 + 1, dk + 1)

+ (k + 2)d3d4 · · · dk f (d3 + 1, 1))
]

=
[
2
(
d2

2

)
+ 4

(
d2

1

)(
n3 − d2

1

)]
) f (d3 + 1, d3 + 1)

+

k∑
j=4

n j( j − 3) f (d3 + 1, d j + 1)

+ (k − 2)nk+1 f (d3 + 1, 1)

+ (d2 − 1)
[ k∑

j=4

n j( j − 1) f (d3 + 1, d j + 1)

+ knk+1 f (d3 + 1, 1)
]

+ (n3 − d2)
[ k∑

j=4

n j( j + 1) f (d3 + 1, d j + 1)

+ nk+1(k + 2) f (d3 + 1, 1)
]
.

By calculating similarly to the above, for any 2 ≤ l ≤ k,
we have

Al =
[
2
(
dl−1

2

)
+ 4

(
dl−1

1

)(
dl−1dl−2 − dl−1

1

)
+ · · ·

+ 2(l − 1)
(
dl−1 · · · d2

1

)(
nl − dl−1 · · · d2

1

)]
f (dl + 1, dl + 1)

+

k∑
j=l+1

n j( j − l) f (dl + 1, d j + 1)

+ (k − l + 1)nk+1 f (dl + 1, 1)

+ (dl−1 − 1)
[ k∑

j=l+1

n j( j − l + 2) f (dl + 1, d j + 1)

+ (k − l + 3)nk+1 f (dl + 1, 1)
]

+ (dl−1dl−2 − dl−1)
[ k∑

j=l+1

n j( j − l + 4) f (dl + 1, d j + 1)

+ (k − l + 5)nk+1 f (dl + 1, 1)
]
+ · · ·

+ (nl − dl−1 · · · d2)
[ k∑

j=l+1

n j( j + l − 2) f (dl + 1, d j + 1)

+ (k + l − 1)nk+1 f (dl + 1, 1)
]
.
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In particular, we have

Ak+1 = f (1, 1)
[
2
(
dk

2

)
+ 4

(
dk

1

)(
dkdk−1 − dk

1

)
+ · · ·

+ 2k
(
dk · · · d2

1

)(
nk+1 − dk · · · d2

1

)]
.

This completes the proof. □

Corollary 3.2. The degree-weighted Wiener index of a

Bethe tree Bk,d is

DWW(Bk,d) =
k∑

l=1

Al,

where

A1 =

k−1∑
j=2

d(d + 1) j−2( j − 1) f (d, d + 1) + (k − 1)d(d + 1)k−2 f (d, 1),

Al =
[
2
(
d + 1

2

)
+ 4

(
d + 1

1

)(
(d + 1)2 − (d + 1)

1

)
+ · · ·

+ 2(l − 1)
(
dl−2

1

)(
nl − dl−2

1

)]
f (d + 1, d + 1)

+

k−1∑
j=l+1

n j( j − l) f (d + 1, d + 1) + (k − l)nk f (d + 1, 1)

+ (dl−1 − 1)
[ k−1∑

j=l+1

f (d + 1, d + 1)n j( j − l + 2)

+ (k − l + 2)nk f (d + 1, 1)
]

+ (dl−1dl−2 − dl−1)
[ k−1∑

j=l+1

n j( j − l + 4) f (d + 1, d + 1)

+ (k − l + 4)nk f (d + 1, 1)
]
+ · · ·

+ (nl − dl−1 · · · d2)
[ k−1∑

j=l+1

n j( j + l − 2) f (d + 1, d + 1)

+ (k + l − 2)nk f (d + 1, 1)
]
,

Ak = f (1, 1)
[
2
(
d
2

)
+ 4

(
d
1

)(
d(d − 1)

1

)
+ · · ·

+ 2(k − 1)
(
dk−2

1

)(
(d − 1)dk−2

1

)]
.

Corollary 3.3. The degree-weighted Wiener index of a

regular dendrimer tree Tk,d is

DWW(Tk,d) =
k+1∑
l=1

Al,

where

A1 =

k∑
j=2

n j( j − 1) f (d, d) + kd(d − 1)k−1 f (d, 1),

Al =
[
2
(
d − 1

2

)
+ 4

(
d − 1

1

)(
(d − 1)(d − 2)

1

)
+ · · ·

+ 2(l − 1)
(
(d − 1)l−2

1

)(
nl − (d − 1)l−2

1

)]
f (d, d)

+

k∑
j=l+1

n j( j − l) f (d, d) + (k − l + 1)nk+1 f (d, 1)

+ (d − 2)
[ k∑

j=l+1

n j( j − l + 2) f (d, d)

+ (k − l + 3)nk+1 f (d, 1)
]

+ (d − 1)(d − 2)
[ k∑

j=l+1

n j( j − l + 4) f (d, d)

+ (k − l + 5)nk+1 f (d, 1)
]
+ · · ·

+ (nl − (d − 1)l−2)
[ k∑

j=l+1

n j( j + l − 2) f (d, d)

+ (k + l − 1)nk+1 f (d, 1)
]
,

Ak+1 = f (1, 1)
[
2
(
d − 1

2

)
+ 4

(
d − 1

1

)(
(d − 1)(d − 2)

1

)
+ · · ·

+ 2k
(
(d − 1)k−1

1

)(
(d − 1)k

1

)]
.

4. Applications of SW indices to the acentric factor of
octane isomers

In this section, the chemical applicability of the SW
index is investigated. The acentric factor (AcenFac) is a
measure of the non-sphericity of molecules. We consider
the correlation between acentric factors of octane isomers
and the respective SW indices. The experimental values
of acentric factors of octane isomers were taken from
http://www.moleculardescriptors.eu/dataset/dataset.htm.

Using the data from Table 1, we find the correlation of
AcenFac with the value of SW index for octane isomers;
see Figure 1. The following equations give the regression
models for the SW index:

AcenFac = 0.00198 × S W + 0.008141.

Thus, the SW index can also help to predict the properties
of octane isomers.
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Figure 1. Scatter plot between acentric factor of Octane isomers and their SW index.

Table 1. Experimental values of AcenFac and SW
index for octane isomers.

Molecule AcenFac SW

Octane 0.397898 202.8093
2-methyl-heptane 0.377916 191.2453
3-methyl-heptane 0.371002 182.2057
4-methyl-heptane 0.371504 179.1925
3-ethyl-hexane 0.362472 170.5225
2,2-dimethyl-hexane 0.339426 170.4970
2,3-dimethyl-hexane 0.348247 166.8181
2,4-dimethyl-hexane 0.344223 169.9447
2,5-dimethyl-hexane 0.35683 179.0977
3,3-dimethyl-hexane 0.322596 158.2653
3,4-dimethyl-hexane 0.340345 160.7917
2-methyl-3-ethyl-pentane 0.332433 157.9633
3-methyl-3-ethyl-pentane 0.306899 149.3210
2,2,3-trimethyl-pentane 0.300816 148.2544
2,2,4-trimethyl-pentane 0.30537 157.5862
2,3,3-trimethyl-pentane 0.293177 145.1517
2,3,4-trimethyl-pentane 0.317422 153.9314
2,2,3,3-tetramethylbutane 0.255294 135.0271

5. Conclusions

In this paper, we propose the SW index, and establish
some mathematical relations between the Harary-Sombor
index and other classic topological indices. Morover, we
obtain the calculation formula of degree-weighted Wiener
index for generalized Bethe trees. In addition, some
numerical results are discussed. We calculate the SW
index of octane isomers. The regression models show that
the AcenFac and SW index of octane isomers are highly
correlated.

In 1993, Klein and Randić [12] introduced the notion
of resistance distance. Naturally, from the perspective
of distance, we similarly propose the degree-weighted
resistance-distance index of a graph G and define it as

DWR(G) =
∑

{u,v}⊆V(G)

f (du, dv)r(u, v),

where r(u, v) is the resistance distance between u and v. It
would be interesting to explore chemical and mathematical
properties and possible predictive potential of this index.
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