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Abstract: Bacterial meningitis, which is considered a major concern by the World Health Organization, is a medical emergency that
lingers as a terrifying infection in sub-Saharan Africa and other countries in the “meningitis belt” due to the frequent occurrence of
the infection and its debilitating effects among survivors, even after treatment. This study presents a novel two-strain compartmental
bacterial meningitis model. The disease-free equilibrium was established to be locally and globally asymtotically stable. Numerical
simulations were performed to visualize the effects of various model parameters on each compartment. Sensitivity analysis was also
performed and it was established that the most sensitive parameter for both strains 1 and 2 is the transmission probability, β. It was
ascertained that bacterial meningitis will not spread in the population if at least 25% of the population are immune to the disease.
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1. Introduction

Meningitis is a disease of the central nervous system
that leads to soreness of the lining around the brain and
spinal cord. It is an acute inflammation of the defensive
membranes covering the brain and spinal cord, collectively
known as the meninges. This occurs when fluid surrounding
the meninges is infected. Meningitis may be fatal because
of the severe nature of inflammation of the brain and spinal
cord, so the illness is treated as a medical emergency [1]. If
not treated immediately, it can lead to permanent disability,
coma, brain swelling, or even death. It is mainly detected
by a lumbar puncture where a needle is used to extract a
sample of cerebrospinal fluid from the spinal canal. It can
also be diagnosed by brain imaging such as computerized
tomography scan or magnetic resonance imaging, swab of
fluid from the nose or throat, and blood and urine testing [2].

Meningitis infections can be caused by different

pathogens, but most of these infections are attributed to
virus, which is the least serious type with the next common
cause being bacteria, fungi and parasites [3]. Bacterial
meningitis is the most severe and epidemic-prone disease,
affecting a significant part of the world’s population. The
bacteria are present worldwide, although in Africa, the
disease is endemic to the meningitis belt. The meningitis
belt spans from the Atlantic Ocean to the Red Sea, semi-arid
area of sub-Saharan Africa. There is also a high tendency for
outbreaks to spread across countries due to the insecure state
of African borders. Other sub-Saharan African countries
have also recorded large outbreaks [4].

Case fatality rates, which are often between 1 and 2
days after the onset of symptoms, may be as high as 50–
80% when not treated and approximately 8–15% when
treated [5]. The northern part of Ghana, namely, the
Northern, North East, Savannah, Upper East and Upper
West regions, lies completely in the meningitis belt and has
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experienced recurrent outbreaks, often during dry weather
seasons characterized by low humidity, high temperatures
and abundance of dust. The Brong Ahafo, Bono East and
upper parts of the Volta region have also recorded sporadic
cases [6].

Figure 1 shows the geographic distribution of meningitis
in West African affected countries.

Figure 1. Areas of Africa with frequent epidemics
of meningitis [7].

Bacterial meningitis was initially transmitted from an
animal to a human being but has since become a
person-to-person transmission through infected air droplets,
saliva, respiratory secretions and direct contact with
contaminated surfaces. The infection spreads easily when
an infected person comes into close proximity or has
long-term contact with others. Staying in overcrowded
housing, attending sports or cultural events, sharing utensils,
coughing, sneezing and kissing can all contribute to disease
outbreaks [8].

Bacterial meningitis is caused by some strains of bacteria
such as Streptococcus pneumoniae (pneumococcus),
Neisseria meningitidis (meningococcus), Haemophilus
influenzae (Haemophilus) and Listeria monocytogenes
(Listeria). Neisseria meningitidis, Streptococcus
pneumoniae and Haemophilus influenzae type B were
the most common bacteria, accounting for over 80%
of all bacterial meningitis cases. Meningitis caused
by Haemophilus influenzae type B is much less
common, now that the Haemophilus influenzae type B
vaccine is administered to all children as part of routine
immunization [1].

Most patients recover well after prompt treatment;

however, several patients experience severe health
complications even after prompt treatment. These
complications include hearing impairments, neurological
disabilities and loss of limb function [9]. The estimated risk
of at least one complication after recovery is nearly 4 out of
every 10 patients, with a median risk of approximately 20%
in such patients [10].

The awareness of bacterial meningitis as a vaccine-
preventable disease is commendable, but a number of people
may not know that these vaccines are strain specific. Several
previous researchers have used mathematical models to
analyze the transmission and control dynamics of bacterial
meningitis [11–14]. For models that consider vaccination,
there is a common assumption that the vaccine does
not confer immunity to all recipients, and is used as a
means of treatment for infected people. However, this
assumption must be lifted, as it is nowhere close to the real-
life situation where the available vaccines confer varying
degrees of duration of immunity against the specified
strain. Furthermore, these specific vaccines are used
for prevention (routine immunization) and in response
to outbreaks (prompt reactive vaccination) but not for
treatment [15].

The dynamics of cerebrospinal meningitis in the Jirapa
district of the Upper West region of Ghana was presented
via mathematical modeling by [13]. The existence of a
solution to the model and its stability were examined. It was
discovered that early treatment, adherance to cerebrospinal
meningitis protocols, and the combined efforts of medical
personnel and traditional healers could help control the
disease.

In [16, 17], an age-structured mathematical model of
meningitis A (MenA) transmission, colonization and disease
in the African meningitis belt was formulated and used
to investigate the effects of various vaccination strategies.
The validity of the model was assessed by comparing the
simulated incidence of invasive MenA and the prevalence
of MenA carriage with the observed incidence and carriage
data. The model was able to reproduce the observed
dynamics of MenA epidemics in the African meningitis
belt, including seasonal increases in incidence, with large
epidemics occurring every 8–12 years. It was established
that the most effective modeled vaccination strategy is to
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conduct mass vaccination campaigns every 5 years for
children aged 1–5 years.

Research [18] also used mathematical models to identify
the crucial factors determining the dynamics of meningitis.
Their simulated results suggest that temporal population
immunity plays a key role and should be considered
during disease monitoring and assessment of the efficiency
of the vaccines deployed. A deterministic model for
meningococcal meningitis transmission dynamics with
variable total population size was presented in [19]. It
was shown analytically and numerically that the disease
can be eradicated using effective control measures. Their
simulation suggested control measures that can reduce the
disease transmission rate and immunity waning rate, as well
as boost the vaccination and treatment rates.

A discrete mathematical model for the spread of
meningococcal meningitis using cellular automata on graphs
was presented in [20]. The discrete nature of the
mathematical objects used in the algorithm renders model
implementation simple and efficient. It was concluded that
both the individual and global behaviours of the disease
could be determined.

Research [21] presented a nonlinear deterministic model
on the dynamics of bacterial meningitis by incorporating
time-dependent controls. Their results showed that carriers
had a more significant effect on disease transmission than
did the infectious class. This can be attributed to the fact that
symptomatic patients are often admitted during the acute
phase of the infection. This model was formulated as an
optimal control problem to determine the optimal strategies
for disease control. It was ascertained that vaccination
played a key role in curtailing the spread of the disease.
Hence, stakeholders are admonished for pushing for existing
or new vaccines and antibiotics to be disbursed in the most
affected areas.

To study the dynamics of the 2017 meningitis outbreak in
Nigeria, [22] presented a deterministic model for meningitis
caused by Neisseria meningitidis. This model was used to
investigate the optimal strategy for curtailing the disease
spread. The results indicated that combining the two control
variables is the most cost-effective strategy because it averts
more infections at low costs.

Because the after-effects of meningitis are not always

pleasant, [23] presented a susceptible-vaccinated-carrier-
infected-recovered-susceptible model to study the dynamics
of meningitis. They distinguished between those who
recovered with disabilities and those who did not. Their
model suggests that a high vaccine uptake rate could control
the disease. As an extension of the model for incorporating
the treated population, an susceptible-vaccinated-carrier-
infected-recovered deterministic compartmental model of
the transmission dynamics of bacterial meningitis was
presented in [24]. The numerical simulation results
demonstrated the effects of the model parameters on each
compartment, and established that efficient and effective
vaccination and treatment are crucial for disease control.

Even with the availability of drugs and vaccines in the
management of meningitis outbreaks, case fatality rate
in Ghana remain high ranging between 36–50% [25]. In
this study, a novel two-strain deterministic model based
on the susceptible-vaccinated-carrier-infected-recovered is
developed with new model parameters to obtain a more
realistic model.

2. Model formulation

To formulate the model, a wide range of parameters
was used to incorporate the coexistence of two bacterial
meningitis strains: Streptococcus pneumoniae and Neisseria
meningitidis. It is evident that the available vaccines are
strain-specific [26], making the risk of contracting an
infection from a strain one has not been vaccinated against
great concern. In the proposed model, the total population
at time t, denoted by N(t), is divided into nine mutually
exclusive epidemiological classes: the susceptible class
S (t) that can contract strains 1 and 2, vaccinated classes
V1(t),V2(t), carrier classes C1(t),C2(t), infected classes
I1(t), I2(t), and two recovered classes R1(t) and R2(t). Thus,
N(t) is given by

N(t) =S (t) + V1(t) + V2(t) +C1(t) +C2(t)

+ I1(t) + I2(t) + R1(t) + R2(t). (2.1)

The susceptible class is a population that has not yet
been infected and has not received any vaccine against
the disease. This is generated by the birth or recruitment
rate α and the loss of immunity acquired through previous
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vaccinations at waning rates ω1, ω2. The susceptible
population is reduced by infection through effective contact
with infected individuals at rates λ1 and λ2, which are
defined as

λ1 =
β[ηC1(t) + I1(t)]

N(t)
, (2.2)

λ2 =
β[ηC2(t) + I2(t)]

N(t)
, (2.3)

where β is the effective transmission probability per contact
and 0 < η ≤ 1 is a modification parameter indicating
the infectiousness of individuals in the carrier class. The
population is also reduced by the natural death rate µ and
the vaccination rates θ1, θ2. Hence, the rate of change of
the susceptible population is represented by the ordinary
differential equation (ODE):

dS
dt
= α + ω1V1 + ω2V2 − (λ1 + λ2 + θ1 + θ2 + µ)S . (2.4)

The vaccinated class was divided into two based on the
vaccines available against the two strains considered. The
vaccinated population with immunity to strain 1 received
pneumococcal conjugate vaccines as a form of protection
against disease. This population is increased by the
vaccination of susceptible individuals at rate θ1. On average,
pneumococcal conjugate vaccines take 2 weeks to fully kick
in and should protect up to 5 years. As this vaccine does not
confer immunity to all strains of bacteria causing meningitis,
vaccinated individuals of strain 1 may be infected by another
strain, but at a lower rate than unvaccinated individuals. This
population is decreased by exposure to the disease or by
vaccine waning and natural death. Therefore, the rate of
change in the vaccinated population with immunity to strain
1 is represented as

dV1

dt
= θ1S − (1 − ϵ1)λ1V1 − (λ2 + ω1 + µ)V1, (2.5)

where 0 ≤ ϵ1 ≤ 1 is the level of efficacy of the pneumococcal
conjugate vaccine.

The vaccinated population with immunity to strain 2 is
the population of individuals who received meningococcal
conjugate vaccines as a form of protection from the
disease. This population is increased by vaccination of
susceptible individuals to this specific strain at a rate of
θ2. Individuals often develop immunity within 2 weeks
of receiving meningococcal conjugate vaccines and should

protect them for 3–5 years. Because this vaccine does not
confer immunity to all strains of bacteria causing meningitis,
vaccinated individuals of strain 2 may be infected with
strain 1 at an effective contact rate λ1, but at a lower rate than
unvaccinated individuals. This population is decreased by
exposure to infection (1−ϵ1)λ1 or by vaccine waning ω2 and
natural death µ. Thus, the rate of change of the vaccinated
population with immunity to strain 2 is given as

dV2

dt
= θ2S − (1 − ϵ2)λ2V2 − (λ1 + ω2 + µ)V2, (2.6)

where 0 ≤ ϵ2 ≤ 1 is the level of efficacy of the
meningococcal conjugate vaccine.

The carrier population of strain 1 is made up of a
population infected with Streptococcus pneumoniae but
does not show any signs or symptoms even though they are
infectious. This is generated by the effective contact rate
λ1 and decreased as a result of the population becoming
symptomatic at rate σ1. This population is decreased by the
recovery rate γC1 and natural death rate µ. Consequently,
the rate of change in the carrier population of strain 1 is
expressed as

dC1

dt
= λ1(1−τ1)S + (1− ϵ1)λ1V1 − (σ1 +γC1+µ)C1, (2.7)

where τ1 is the proportion moving to the infected class of
strain 1 without first passing through here.

The carrier population of strain 2 is composed of a
population infected with Neisseria meningitidis, but do
not show any signs or symptoms even though they are
infectious. This is generated by the effective contact rate λ2,
and decreased as a result of the progression of individuals to
the infected population of strain 2 at rateσ2. This population
is also decreased by the recovery rate γC2 and natural death
rate µ. Therefore, the rate of change in the carrier population
of strain 2 can be described by the following differential
equation

dC2

dt
= λ2(1−τ2)S + (1− ϵ2)λ2V2 − (σ2 +γC2+µ)C2, (2.8)

where τ2 is the proportion that moves to the infected class of
strain 2 without first passing through the carrier population.

The infected population of strain 1 is a population with
a fully blown infection of Streptococcus pneumoniae and
shows signs and symptoms. This population is said to have
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survived an average incubation period of 1–3 days. This is
also generated by the effective contact rate λ1 and carrier
progression at rate σ1. The population is decreased by the
recovery rate γI1, disease-induced death rate δ, and natural
death rate µ. Hence, the ODE governing the dynamics of the
infected population of strain 1 is given by

dI1

dt
= σ1C1 + λ1τ1S + λ1V2 − (γI1 + δ + µ)I1. (2.9)

The infected population of strain 2 is a population with
a fully blown infection from Neisseria meningitidis that
exhibits signs and symptoms of infection. This population
is said to have survived an average incubation period of 4
days. This is also generated by the force of infection λ2 and
the progression of the carrier at the rate σ2. The population
is decreased by the recovery rate γI2, disease-induced death
rate δ, and natural death rate µ. It follows that the rate of
change of the infected population of strain 2 is described by
the ODE, given as

dI2

dt
= σ2C2 + λ2τ2S + λ2V1 − (γI2 + δ + µ)I2. (2.10)

The first recovered class, R1(t), is the population of
individuals who have fully recovered from infection by
either strain. This population increases because of the
recovery of carriers at rates γC1, γC2 and infections at rates
γI1, γI2. They are decreased by the complication rate after
a period ∧ and the natural death rate µ. Thus, the rate of
change of the fully recovered population is expressed as

dR1

dt
= γC1C1+γC2C2+γI1ρ1I1+γI2ρ2I2−(∧+µ)R1. (2.11)

The second recovered class, R2(t), is the number of
individuals who recovered from infection by either strain
with complications owing to the sequelae of the delibitating
effects among survivors, even after recovery. This
population is also increased by the recovery rates of the
infected populations γI1, γI2, and the complication rate ∧
and decrease because of the natural death rate µ. Hence, the
rate of change of the recovered with complication population
is described by the ODE, given by

dR2

dt
= γI1(1 − ρ1)I1 + γI2(1 − ρ2)I2 + ∧R1 − µR2. (2.12)

We note that all parameters are assumed to be nonnegative
in an epidemiological sense.

The model parameters and model state variables are
shown in Tables 1 and 2.

Table 1. Description of model parameters [22,23].

Parameters Description

α Birth or recruitment rate into susceptible
population

β Transmission probability
δ Disease-induced death rate
µ Natural death rate
σ1 Rate of progression from carrier of strain 1

to infected population of strain 1
σ2 Rate of progression from carrier of strain 2

to infected population of strain 2
γC1 Recovery rate of carriers of strain 1
γC2 Recovery rate of carriers of strain 2
γI1 Recovery rate of infected with strain 1
γI2 Recovery rate of infected with strain 2
θ1 Strain 1 vaccine uptake rate
θ2 Strain 2 vaccine uptake rate
ϵ1 Strain 1 vaccine efficacy
ϵ2 Strain 2 Vaccine efficacy
ω1 Vaccine waning of strain 1
ω2 Vaccine waning of strain 2
τ1 Proportion moving to I1 without first

passing through C1

τ2 Proportion moving to I2 without first
passing through C2

∧ Complication rate after a period of time
ρ1 Proportion moving to R1(t) from strain 1

without first passing through R2(t)
ρ2 Proportion moving to R1(t) from strain 2

without first passing through R2(t)

Table 2. Description of the model state variables
[22, 23].

Variables Description

S (t) Susceptible population who can
contract both strains 1 and 2

V1(t) Vaccinated population with immunity
to strain 1

V2(t) Vaccinated population with immunity
to strain 2

C1(t) Carrier population of strain 1
C2(t) Carrier population of strain 2
I1(t) Infected population of strain 1
I2(t) Infected population of strain 2
R1(t) Fully recovered population from both

strains 1 and 2
R2(t) Recovered with complications from

both strains 1 and 2
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2.1. Model assumptions

(1) Only two strains of bacterial meningitis were
considered in this study.

(2) Every individual in the studied population is
susceptible to one of the two strains at a given
time.

(3) Individuals cannot be infected by more than one
bacteria strain at the same time.

(4) The vaccines are only administered to the susceptible
population.

(5) A vaccinated individual who loses immunity will return
to the susceptible class with no vaccine protection.

(6) There is permanent immunity after full recovery.

2.2. Model equations

Following the descriptions given in Eqs (2.4)–(2.12) and
the flow diagram of the two-strain bacterial meningitis
model presented in Figure 2, the model governing the system
of nine mutually exclusive ODEs for bacterial meningitis
population dynamics is expressed as

dS
dt = α + ω1V1 + ω2V2 − (λ1 + λ2 + θ1 + θ2 + µ)S ,

dV1
dt = θ1S − (1 − ϵ1)λ1V1 − (λ2 + ω1 + µ)V1,

dV2
dt = θ2S − (1 − ϵ2)λ2V2 − (λ1 + ω2 + µ)V2,

dC1
dt = λ1(1 − τ1)S + (1 − ϵ1)λ1V1 − (σ1 + γC1 + µ)C1,

dC2
dt = λ2(1 − τ2)S + (1 − ϵ2)λ2V2 − (σ2 + γC2 + µ)C2,

dI1
dt = σ1C1 + λ1τ1S + λ1V2 − (γI1 + δ + µ)I1,

dI2
dt = σ2C2 + λ2τ2S + λ2V1 − (γI2 + δ + µ)I2,

dR1
dt = γC1C1 + γC2C2 + γI1ρ1I1 + γI2ρ2I2 − (∧ + µ)R1,

dR2
dt = γI1(1 − ρ1)I1 + γI2(1 − ρ2)I2 + ∧R1 − µR2,

(2.13)
subject to the initial conditions:

S (0) = S 0, V1(0) = V01, V2(0) = V02,

C1(0) = C01, C2(0) = C02, I1(0) = I01,

I2(0) = I02, R1(0) = R01, R2(0) = R02. (2.14)

Figure 2. The schematic flow diagram of the
transmission of two-strain bacterial meningitis.

3. The model analysis

3.1. Invariant region and positivity of solutions

Definition 3.1. A region within which the solutions to the
model are uniformly bounded is defined as Ω ∈ ℜ9

+.

From the total population in Eq (2.1), we have

dN(t)
dt

=
dS (t)

dt
+

dV1(t)
dt

+
dV2(t)

dt
+

dC1(t)
dt

+
dC2(t)

dt

+
dI1(t)

dt
+

dI2(t)
dtx

+
dR1(t)

dt
+

dR2(t)
dt

. (3.1)

Substituting (2.13) into (3.1) and simplifying yields

dN(t)
dt

= α − µN − δI1 − δI2, (3.2)

dN(t)
dt

≤ α − µN(t). (3.3)

Integrating both sides of Eq (3.3), we have

−
1
µ

ln(α − µN) ≤ t + c, (3.4)

where c is the constant of integration. Thus,

ln(α − µN) ≥ −(µt + c), (3.5)

(α − µN) ≥ ke−µt, (3.6)

where k is ec.
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Let N(0) = N0, this implies

(α − µN0) ≥ k. (3.7)

From (3.6) and (3.7), we get

(α − µN) ≥ (α − µN0)e−µt, (3.8)

N(t) ≤
α

µ
−

(α − µN0)
µ

e−µt, (3.9)

So,

N(t) →
α

µ
as t → ∞, (3.10)

implies N(t) ∈ [0, α
µ

].
Therefore, the feasible set of solutions of the model

equations enter and remain in the invariant region

Ω = {(S ,V1,V2,C1,C2, I1, I2,R1,R2) ∈ ℜ9
+ : N(t) ≤

α

µ
}. (3.11)

Therefore, N(t) is bounded; thus, the model is
mathematically and epidemiologically well-posed because
region Ω is positively invariant and attractive. Hence, it is
sufficient to study the dynamics of model (2.13) in Ω.

Theorem 3.1. The positivity theorem: Let

Ω ={(S ,V1,V2,C1,C2, I1, I2,R1,R2) ∈ ℜ9
+ : S 0 > 0,

V01 > 0,V02 > 0,C01 > 0,C02 > 0, I01 > 0,

I02 > 0,R01 > 0,R02 > 0},

then, the solutions (S ,V1,V2,C1,C2, I1, I2,R1,R2) are

positive for t ≥ 0.

Proof. Considering the first equation of the model

dS
dt

= α + ω1V1 + ω2V2 − (λ1 + λ2 + θ1 + θ2 + µ)S ,

dS
dt

≥ −(λ1 + λ2 + θ1 + θ2 + µ)S ,∫
dS
S

≥ −

∫
(λ1 + λ2 + θ1 + θ2 + µ)dt,

ln S (t) ≥ − f (t) + c,

where
f (t) =

∫
(λ1 + λ2 + θ1 + θ2 + µ)dt

and c is the constant of integration. Hence,

S (t) ≥ e(− f (t)+c) = A1e− f (t), (3.12)

where A1 = ec.

From Theorem 3.1, at t = 0, S 0 > 0 which implies A1 =

ec ≥ 0 since S (0) ≥ A1. Consequently,

S (t) ≥ S 0e− f (t) ≥ 0, ∀t ≥ 0.

Similarly, it can be shown that

V1(t) ≥ V01e−g(t) ≥ 0, ∀t ≥ 0,
V2(t) ≥ V02e−h(t) ≥ 0, ∀t ≥ 0,
C1(t) ≥ C01e−k1t ≥ 0, ∀t ≥ 0,
C2(t) ≥ C02e−k2t ≥ 0, ∀t ≥ 0,
I1(t) ≥ I01e−k3t ≥ 0, ∀t ≥ 0,
I2(t) ≥ I02e−k4t ≥ 0, ∀t ≥ 0,
R1(t) ≥ R01e−k5t ≥ 0, ∀t ≥ 0,
R2(t) ≥ R02e−µt ≥ 0, ∀t ≥ 0,

(3.13)

where

g(t) =
∫

[(1 − ϵ1)λ1 + λ2 + ω1 + µ]dt,

h(t) =
∫

[(1 − ϵ2)λ2 + λ1 + ω2 + µ]dt,

k1 = (σ1 + γC1 + µ), k2 = (σ2 + +γC2 + µ),

k3 = (γI1 + δ + µ), k4 = (γI2 + δ + µ), k5 = (∧ + µ).

This completes the proof of the theorem. □

3.2. Existence of equilibria

For the developed model, four equilibrium points are
identified when each compartment is in steady state. These
are the disease-free equilibrium (DFE), endemic equilibrium
and the boundary equilibrium points.

3.2.1. The DFE point

The DFE of the model is defined as
(S ∗(t),V∗1 (t),V∗2 (t), 0, 0, 0, 0, 0, 0) satisfying

dS (t)
dt
=

dV1(t)
dt

=
dV2(t)

dt
=

dC1(t)
dt

=
dC2(t)

dt

=
dI1(t)

dt
=

dI2(t)
dt
=

dR1(t)
dt

=
dR2(t)

dt
= 0.

Equating the system of equations in (2.13) to 0 and
substituting

C1 = C2 = I1 = I2 = R1 = R2 = 0,
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the DFE is obtained as

E0 =

(
(ω1 + µ)(ω2 + µ)α

χµ
,

(ω2 + µ)θ1α

χµ
,

(ω1 + µ)θ2α

χµ
, 0, 0, 0, 0, 0, 0

)
,

(3.14)
where

χ =
(
µ2 + µω1 + µω2 + µ θ1 + µ θ2 + ω1ω2 + ω1θ2 + ω2θ1

)
.

(3.15)

3.2.2. Endemic equilibrium point

The edemic equilibrium point of the model is defined as

(S ∗(t),V∗1 (t),V∗2 (t),C∗1(t),C∗2(t), I∗1(t), I∗2(t),R∗1(t),R∗2(t))

satisfying

dS (t)
dt
=

dV1(t)
dt

=
dV2(t)

dt
=

dC1(t)
dt

=
dC2(t)

dt

=
dI1(t)

dt
=

dI2(t)
dt
=

dR1(t)
dt

=
dR2(t)

dt
= 0.

3.2.3. Boundary equilibrium points

Two boundary equilibrium points denoted by E1 and E2

are defined by

E1 = (S ∗(t),V∗1 (t),V∗2 (t),C∗1(t), 0, I∗1(t), 0,R∗1(t),R∗2(t)), (3.16)

where only strain 1 survives, and

E2 = (S ∗(t),V∗1 (t),V∗2 (t), 0,C∗2(t), 0, I∗2(t),R∗1(t),R∗2(t)), (3.17)

where only strain 2 survives.
Solving the system of equations for E1 results in

S ∗ = (λ1+b7)[(1−ϵ1)λ1+b4]α
(1−ϵ1)λ1

3+G2λ1
2+G1λ1+µχ

,

V∗1 = θ1S ∗
(1−ϵ1)λ1+b4

,

V∗2 = θ2S ∗

λ1+b7
,

C∗1 =
λ1S ∗[θ1(1−ϵ1)+(1−τ1)((1−ϵ1)λ1+b4)]

a2((1−ϵ1)λ1+b4) ,

I∗1 =
λ1τ1S ∗+σ1C∗1+λ1V∗2

a1
,

R∗1 =
γI1ρ1I∗1+γc1C∗1

∧+µ
,

R∗2 =
γI1[(1−ρ1)µ+∧]I∗1+γC1∧C∗1

µ (∧+µ) ,

(3.18)

where

a1 = γI1+δ+µ, a2 = σ1+γC1+µ, b4 = ω1+µ, b7 = ω2+µ,

G1 =
[
χ − ω1 (b7 + θ2)

]
(1 − ϵ1) + µ b4 − ω2θ1 + χ,

G2 = (1 − ϵ1) (b7 + θ1 + θ2 + µ) + b4.

Substituting the state solutions in Eq (3.18) into the force of
infection in Eq (2.2) yields the following cubic polynomial
after some computation

K1λ
∗3
1 + K2λ

∗2
1 + K3λ

∗
1 + K4 = 0, (3.19)

where

K1 = (1 − ϵ1) [(1 − τ1) ((µ + γI1)σ1 + (µ + γc1) a1) + a2 (µ + γI1) τ1],

K2 = (1 − τ1) [(1 − ϵ1) b7 + b4][σ1 (µ + γI1) + a1 (µ + γc1)]

+ a1θ1 (1 − ϵ1) (µ + γc1) + (1 − ϵ1) (µ + γI1) [a2 (τ1b7

+θ2) + σ1θ1] − β µ (1 − ϵ1) (1 − τ1) (η a1 + σ1)

+ a2b4τ1 (µ + γI1) − µ a2 (1 − ϵ1) (β τ1 − a1) ,

K3 = b7σ1 (µ + γI1) [(1 − τ1) b4 + (1 − ϵ1) θ1]

+ a1b7[(1 − τ1) b4 + (1 − ϵ1) θ1] (µ + γc1)

+ a2 (b7τ1 + θ2) [b4 (µ + γI1) − µ β (1 − ϵ1)]

+ µ a1a2 (1 − ϵ1) (θ2 + b7) + µ a1a2 (θ1 + b4)

− β µ a2b4τ1 − µ β (η a1 + σ1) ((1 − τ1) (1 − ϵ1) b7

+ (1 − τ1) b4 + (1 − ϵ1) θ1),

K4 = − β µ (−b4b7 (−1 + τ1) (η a1 + σ1) + b7θ1 (1 − ϵ1) (η a1 + σ1)

+ b4 (b7τ1 + θ2) a2) + µ a1a2χ,

= − β µ (b7 (η a1 + σ1) ((1 − τ1) b4 + (1 − ϵ1) θ1) + b4 (b7τ1 + θ2) a2)

+ µ a1a2χ,

=

(
1 −

β (b7 (η a1 + σ1) ((1 − τ1) b4 + (1 − ϵ1) θ1) + b4(b7τ1 + θ2)a2)
a1a2χ

)
· µ a1a2χ

=µa1a2χ (1 − R01) ,

and R01 is the basic reproduction number related to strain 1
as later defined in Eq (3.29).

Solving the system of equations for E2 results in

S ∗ = (λ2+b4)[(1−ϵ2)λ2+b7]α
(1−ϵ2)λ2

3+G4λ2
2+G3λ2+µχ

,

V∗1 =
θ1S ∗

λ2+b4
,

V∗2 =
θ2S ∗

(1−ϵ2)λ2+b7
,

C∗2 =
λ2S ∗[θ2(1−ϵ2)+(1−τ2)((1−ϵ2)λ2+b7)]

a4((1−ϵ2)λ2+b7) ,

I∗2 =
λ2τ2S ∗+σ2C∗2+λ2V∗1

a3
,

R∗1 =
γI2ρ2I∗2+γc2C∗2

∧+µ
,

R∗2 =
γI2[(1−ρ2)µ+∧]I∗2+γC2∧C∗2

µ (∧+µ) ,

(3.20)

where
a3 = γI2 + δ + µ, a4 = σ2 + γC2 + µ,

Mathematical Modelling and Control Volume 3, Issue 4, 416–434.



424

G3 =
[
χ − ω2 (b4 + θ1)

]
(1 − ϵ2) + µ b7 − ω1θ2 + χ,

G4 = (1 − ϵ2) (b4 + θ1 + θ2 + µ) + b7.

Substituting the state solutions in Eq (3.20) into the force
of infection in Eq (2.3) also yields the following cubic
polynomial after some computations

K5λ
∗3
2 + K6λ

∗2
2 + K7λ

∗
2 + K8 = 0, (3.21)

where

K5 = (1 − ϵ2) [(1 − τ2) ((µ + γI2)σ2 + (µ + γc2) a3) + a4 (µ + γI2) τ2],

K6 = (1 − τ2) [(1 − ϵ2) b4 + b7][σ2 (µ + γI2) + a3 (µ + γc2)]

+ a3θ2 (1 − ϵ2) (µ + γc2) + (1 − ϵ2) (µ + γI2) [a4 (τ2b4 + θ1) + σ2θ2]

− β µ (1 − ϵ2) (1 − τ2) (η a3 + σ1)

− µ a4 (1 − ϵ2) (βτ2 − a3) + a4b7τ2 (µ + γI2) ,

K7 =b4σ2 (µ + γI2) [(1 − τ2) b7 + (1 − ϵ2) θ2] + a3b4[(1 − τ2) b7

+ (1 − ϵ2) θ2] (µ + γc2) + a4 (b4τ2 + θ1)
[
b7 (µ + γI2) − µ β (1 − ϵ2)

]
+ µ a3a4 (1 − ϵ2) (θ1 + b4) + µ a3a4 (θ2 + b7) − β µ a4b7τ2

− µ β (η a3 + σ2) ((1 − τ2) (1 − ϵ2) b4 + (1 − τ2) b7 + (1 − ϵ2) θ2) ,

K8 = − β µ (−b4b7 (−1 + τ2) (η a3 + σ2) + b7θ2 (1 − ϵ2) (η a3 + σ2)

+ b7 (b4τ2 + θ1) a4) + µ a3a4χ,

= − β µ (b4 (η a3 + σ2) ((1 − τ2) b7 + (1 − ϵ2) θ2)

+ b7 (b4τ2 + θ1) a4) + µ a3a4χ

=µa3a4χ (1 − R02) ,

and R02 is the basic reproduction number relating to strain 2
as later defined in Eq (3.30).

3.3. Stability analysis of the DFE

3.3.1. The basic reproduction number

The basic reproduction number is defined as the average
number of secondary infections caused by a single infectious
individual in a completely susceptible population. It helps
forecast the transmission potential of a disease. According
to the principle of the next generation matrix, the basic
reproduction number is the spectral radius of the next
generation matrix FV−1 in model (2.13). Following [27,28],
the basic reproduction number associated with model (2.13)
is derived as follows 

dC1
dt
dI1
dt

dC2
dt
dI2
dt

 = fi − vi,

with

fi =


λ1(1 − τ1)S + (1 − ϵ1)λ1V1

λ1τ1S + λ1V2

λ2(1 − τ2)S + (1 − ϵ2)λ2V2

λ2τ2S + λ2V1

 (3.22)

and

vi =


(σ1 + γC1 + µ)C1

(γI1 + δ + µ)I1 − σ1C1

(σ2 + γC2 + µ)C2

(γI2 + δ + µ)I2 − σ2C2

 , (3.23)

where, fi is the rate of appearance of new infection(s)
in compartment i, vi represents the rate of transfer of
individuals into compartment i, with i ∈ [1, 2].
The Jacobian of fi at E0 is given as

F =



η β b7[θ1(1−ϵ1)+(1−τ1)b4]
χ

β b7[θ1(1−ϵ1)+(1−τ1)b4]
χ

0 0

η β b4(b7τ1+θ2)
χ

β b4(b7τ1+θ2)
χ

0 0

0 0 η β b4[θ2(1−ϵ2)+(1−τ2)b7]
χ

β b4[θ2(1−ϵ2)+(1−τ2)b7]
χ

0 0 η β b7(b4τ2+θ1)
χ

β b7(b4τ2+θ1)
χ


(3.24)

and that of vi at E0 is given as

V =


σ1 + γC1 + µ 0 0 0
−σ1 γI1 + δ + µ 0 0

0 0 σ2 + γC2 + µ 0
0 0 −σ2 γI2 + δ + µ


(3.25)

with

V−1 =


1

σ1+γC1+µ
0 0 0

σ1
(σ1+γC1+µ)(γI1+δ+µ)

1
γI1+δ+µ

0 0

0 0 1
σ2+γC2+µ

0

0 0 σ2
(σ2+γC2+µ)(γI2+δ+µ)

1
γI2+δ+µ

 .
(3.26)

Thus, the next generation matrix is calculated as

G = FV−1

=



η β b7b1(η a1+σ1)
χ a1a2

β b7b1
χ a1

0 0

η β b4(b7τ1+θ2)(η a1+σ1)
χ a1a2

β b4(b7τ1+θ2)
χ a1

0 0

0 0 β b4b2(η a3+σ2)
χ a3a4

β b4b2
χ a3

0 0 β b7(b4τ2+θ1)(η a3+σ2)
χ a3a4

β b7(b4τ2+θ1)
χ a3


,

(3.27)
where,

b1 = θ1(1 − ϵ1) + (1 − τ1)b4, b2 = θ2(1 − ϵ2) + (1 − τ2)b7.
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The eigenvalues of the matrix G in Eq (3.27) are

λT =


0
0

β [b7(η a1+σ1)(b4(1−τ1)+θ1(1−ϵ1))+a2b4(b7τ1+θ2)]
a1a2χ

β [b4(η a3+σ2)(b7(1−τ2)+θ2(1−ϵ2))+a4b7(b4τ2+θ1)]
a3a4χ

 . (3.28)

Consequently, the basic reproduction number, which is the
spectral radius of G is given as R0 = max{R01,R02}, with

R01 =
β [b7 (η a1 + σ1) (b4 (1 − τ1) + θ1 (1 − ϵ1)) + a2b4 (b7τ1 + θ2)]

a1a2χ
, (3.29)

R02 =
β [b4 (η a3 + σ2) (b7 (1 − τ2) + θ2 (1 − ϵ2)) + a4b7 (b4τ2 + θ1)]

a3a4χ
, (3.30)

representing the basic reproduction numbers related to
strain 1 and 2, respectively.

The expression R01 in Eq (3.29) provides the expected
number of newly infected individuals that would arise as
a result of introducing a single case of strain 1 into a
completely susceptible population [29]. Similarly, R02,
given by Eq (3.30), yields the expected number of newly
infected individuals that would arise if a single case
of strain 2 is introduced into a completely susceptible
population.

3.3.2. Local stability of the DFE

Theorem 3.2. The DFE is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Using Theorem 3.2, the result in Lemma 3.1 follows
immediately based on the expressions of R01,R02.

Lemma 3.1. The DFE of the two-strain bacterial meningitis

model in (2.13) is locally asymptotically stable if both

R01,R02 < 1 and unstable if R01,R02 > 1.

Definition 3.2. The DFE of model (2.13) is said to be locally
stable if each eigenvalue of the associated Jacobian matrix is
negative.

Following Definition 3.2, the Jacobian matrix, J evaluated

at E0 is given as

J =



−b3 ω1 ω2 −
β η b4b7

χ
−
β η b4b7

χ
−
β b4b7
χ

−
β b4b7
χ

0 0

θ1 −b4 0 − β η θ1(1−ϵ1)b7
χ

−
β η b7θ1

χ
−
β θ1(1−ϵ1)b7

χ
−
β b7θ1
χ

0 0

θ2 0 −b7 −
β η b4θ2

χ
−
β η θ2(1−ϵ2)b4

χ
−
β b4θ2
χ

−
β θ2(1−ϵ2)b4

χ
0 0

0 0 0 β η b1b7
χ
− a2 0 β b1b7

χ
0 0 0

0 0 0 0 β η b2b4
χ
− a4 0 β b2b4

χ
0 0

0 0 0 β η b4b6
χ
+ σ1 0 β b4b6

χ
− a1 0 0 0

0 0 0 0 β η b7b5
χ
+ σ2 0 β b7b5

χ
− a3 0 0

0 0 0 γC1 γC2 γI1ρ1 γI2ρ2 −(∧ + µ) 0
0 0 0 0 0 γI1(1 − ρ1)γI2(1 − ρ2) ∧ −µ


(3.31)

where

b3 = θ1 + θ2 + µ, b5 = b4τ2 + θ1, b6 = b7τ1 + θ2.

The eigenvalues of the Jacobian matrix, J are

λ1,2 = −
(a1 + a2)χ − β η b1b7 − β b4b6 ±

√
W1

2χ
,

λ3,4 = −
(a3 + a4)χ − β η b2b4 − β b5b7 ±

√
W2

2χ
,

λ5 = − µ, λ6 = −(∧ + µ),

where

W1 =β
2(η b1b7 + b4b6)2 + 2χβ η b1b7(a1 − a2)

− 2χβ b4b6(a1 − a2) + 4χβ b1b7σ1 + χ
2(a1 − a2)2

and

W2 =β
2(η b2b4 + b5b7)2 + 2χβ η b2b4(a3 − a4)

− 2χβ b5b7(a3 − a4) + 4χβ b2b4σ2 + χ
2(a3 − a4)2.

The remaining three eigenvalues of J are obtained as the
roots of the following polynomial

c1λ
3 + c2λ

2 + c3λ + c4 (3.32)

where,
c1 = 1,
c2 = b3 + b4 + b7,

c3 = b4b7 + b3(b4 + b7)−ω1θ1 −ω2θ2 = χ+µ(b3 + b4 +ω2),
c4 = b3b4b7 − b4ω2θ2 − b7ω1θ1 = χµ.

Applying the Routh-Hurwitz criteria to cubic polynomial
in Eq (3.32).

Because all the parameters of model (2.13) are positive,
it is clear that the condition of stability is established with
c1 > 0, c2 > 0, c3 > 0 and c4 > 0.
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3.3.3. Global asymptotic stability of the DFE

The global asymptotic stability of the model in (2.13) is
investigated by following [29, 30]. The model is denoted by

dX
dt = F(X,Y),
dY
dt = G(X,Y),

(3.33)

where X = (S ,V1,V2,R1,R2) denotes the right-hand side of
the uninfected population with C1 = C2 = I1 = I2 = 0
and Y = (C1,C2, I1, I2) denotes the right-hand side of the
infected population.

Theorem 3.3. The DFE is said to be globally asymptotically

stable in Ω if R01,R02 < 1 and the following two conditions

hold:

C1: For dX
dt = F(X, 0), E0 is globally asymptotically stable.

C2: G(X,Y) = J [G(X∗, 0)] Y − Ĝ(X,Y),
Ĝ(X,Y) ≥ 0, ∀ (X,Y) ∈ Ω,

where

(X∗, 0) = E0 =

(
αb4b7

µχ
,
αθ1b7

µχ
,
αθ2b4

µχ
, 0, 0, 0, 0, 0, 0

)
,

J [G(X∗, 0)] is the Jacobian of G(X,Y) obtained with respect

to (C1, C2, I1, I2) and evaluated at (X∗, 0).

Proof. C1: From the model, it follows that

F(X, 0) =



α + ω1V1 + ω2V2 − (θ1 + θ2 + µ)S
θ1S − b4V1

θ2S − b7V2

−(∧ + µ)R1

∧R1 − µR2


. (3.34)

From Eq (3.34), it is clear that

E0 = (S ,V1,V2,C1,C2, I1, I2,R1,R2)

=

(
αb4b7

µχ
,
αθ1b7

µχ
,
αθ2b4

µχ
, 0, 0, 0, 0, 0, 0

)
.

This can be verified using the method of integrating
factors. From Eq (3.34), we have

dV1

dt
+ b4V1 = θ1S . (3.35)

The integrating factor is given as

e
∫

b4dt = eb4t.

Multiplying Eq (3.35) through by the integrating factor
yields

eb4t
(

dV1

dt
+ b4V1

)
= (θ1S ) eb4t,∫

d
dt

(
V1eb4t

)
dt =θ1

∫
S eb4tdt.

Let
I =

∫
S eb4tdt.

Integrating by parts, we have

u = S =⇒ du = S ′dt

and

dv = eb4t =⇒ v =
eb4t

b4
.

So,

I =
S eb4t

b4
−

1
b4

∫
S ′eb4tdt

implying that

V1eb4t = θ1

[
S eb4t

b4
−

1
b4

∫
S ′eb4tdt

]
.

Therefore,

V1 =
θ1S
b4
−

θ1

b4eb4t

∫
S ′eb4tdt. (3.36)

From Eq (3.36), V1 →
θ1S
b4

as t → ∞.
Similarly, we can deduce from Eq (3.34) that, V2 →

θ2S
b7

as t → ∞. Furthermore, from Eq (3.34), we have

dS
dt
= α + ω1V1 + ω2V2 − (θ1 + θ2 + µ)S . (3.37)

Since V1 →
θ1S
b4

and V2 →
θ2S
b7

, Eq (3.37) is rewritten as

dS
dt
= α +

ω1θ1S
b4

+
ω2θ2S

b7
− (θ1 + θ2 + µ)S , (3.38)

dS
dt
+

µχ

b4b7
S = α. (3.39)

The integrating factor of Eq (3.39) is given as

e
∫

µχ
b4b7

dt
= e

µχ
b4b7

t
.

Multiplying Eq (3.39) through by the integrating factor gives

e
µχ

b4b7
t
(

dS
dt
+

µχ

b4b7
S
)
=αe

µχ
b4b7

t
,
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d
dt

(
S e

µχ
b4b7

t
)

dt =
∫

αe
µχ

b4b7
tdt,

S e
µχ

b4b7
t
=
αb4b7

µχ
e

µχ
b4b7

t
+ c,

where c is the constant of integration. Therefore,

S =
αb4b7

µχ
+Ce−

µχ
b4b7

t
. (3.40)

From Eq (3.40), S → αb4b7
µχ

as t → ∞; and this implies the
global convergence of Eq (3.34) in Ω.

C2: G(X,Y) is given as

G(X,Y) =



λ1(1 − τ1)S + (1 − ϵ1)λ1V1 − a2C1

λ2(1 − τ2)S + (1 − ϵ2)λ2V2 − a4C2

σ1C1 + λ1τ1S + λ1V2 − a1I1

σ2C2 + λ2τ2S + λ2V1 − a3I2


, (3.41)

where λ1 and λ2 are the forces of infection defined in
Eqs (2.2) and (2.3).

By the condition in C2 with Eqs (3.41) and (3.43), Ĝ(X,Y)
is given by

β(ηC1+I1)[(1−ϵ1)V∗1+(1−τ1)S ∗]
N∗

(
1 − (1−ϵ1)V1+(1−τ1)S

N
N∗

(1−ϵ1)V∗1+(1−τ1)S ∗

)
β(ηC2+I2)[(1−ϵ2)V∗2+(1−τ2)S ∗]

N∗

(
1 − (1−ϵ2)V2+(1−τ2)S

N
N∗

(1−ϵ2)V∗2+(1−τ2)S ∗

)
β(ηC1+I1)(τ1S ∗+V∗2)

N∗

(
1 − (τ1S+V2)

N
N∗

(τ1S ∗+V∗2 )

)
β(ηC2+I2)(τ2S ∗+V∗1)

N∗

(
1 − (τ2S+V1)

N
N∗

(τ2S ∗+V∗1 )

)


.

(3.42)
The Jacobian matrix of G(X,Y), J [G(X∗, 0)] is given as



β η [(1−ϵ1)V∗1+(1−τ1)S ∗]−a2N∗

N∗ 0 β [(1−ϵ1)V∗1+(1−τ1)S ∗]
N∗ 0

0 β η [(1−ϵ2)V∗2+(1−τ2)S ∗]−a4N∗

N∗ 0 β [(1−ϵ2)V∗2+(1−τ2)S ∗]
N∗

β η (τ1S ∗+V∗2)+σ1N∗

N∗ 0 β (τ1S ∗+V∗2)−a1N∗

N∗ 0

0 β η (τ2S ∗+V∗1)+σ2N∗

N∗ 0 β (τ2S ∗+V∗1)−a3N∗

N∗


.

(3.43)
Since

S ∗ =
αb4b7

µχ
, V∗1 =

αθ1b7

µχ
, V∗2 =

αθ2b4

µχ
and N∗ =

α

µ
,

we have that S ≤ S ∗, V1 ≤ V∗1 and V2 ≤ V∗2 . Thus, it follows
that S ≤ N, V1 ≤ N and V2 ≤ N in Ω. Therefore, if the total
population is at the equilibrium level, we have(

1 −
(1 − ϵ1)V1 + (1 − τ1)S

N
N∗

(1 − ϵ1) V∗1 + (1 − τ1)S ∗

)
> 0,

(
1 −

(1 − ϵ2)V2 + (1 − τ2)S
N

N∗

(1 − ϵ2) V∗2 + (1 − τ2)S ∗

)
> 0,(

1 −
(τ1S + V2)

N
N∗

(τ1S ∗ + V∗2 )

)
> 0

and (
1 −

(τ2S + V1)
N

N∗

(τ2S ∗ + V∗1 )

)
> 0;

thus, Ĝ(X,Y) ≥ 0. Hence, it follows from Theorem 3.3 that
the DFE, E0 = (X∗, 0) is globally asymptotically stable. □

3.4. Model parameter estimation and initial conditions

3.4.1. Initial conditions

The base year used in the simulations is 2017. As
the disease is endemic to the northern part of Ghana,
the total population of the northern part as of 2017,
was 4953293 [31]; thus, the initial total population,
N(0) = 4953293. Since the outbreak that year was due
to the Neisseria meningitidis strain, the initially infected
individuals of strain 2 were considered, I2(0) = 69, which is
the same number reported in data. We assumed I1(0) = 153.
According to a literature review, Streptococcus pneumoniae
is found in the nose and throat of 20–40% of people,
whereas Neisseria meningitidis is found in 1–10% of these
people without causing any symptoms of illness. Thus,
taking 140% and 110% of I1(0) and I2(0), respectively gives
C1(0) = 214 and C2(0) = 76. We assumed

V1(0) = V2(0) = R1(0) = R2(0) = 0,

so the initial susceptible is

S (0) = N(0) − V1(0) − V2(0) −C1(0) −C2(0)

−I1(0) − I2(0) − R1(0) − R2(0)

= 4952781.

3.4.2. Parameter values

(1) Natural death rate (µ): The average lifespan in Ghana
is 64.17 years. Therefore,

µ =
1

64.17 × 365
= 4.269 × 10−5

per day.
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(2) Birth or recruitment rate (α): The limiting total human
population in the absence of the disease is assumed to
be α

µ
= 4953293, so α = 211 per day.

(3) Disease-induced death rate (δ): The mortality rate due
to bacterial meningitis disease in Ghana is 36–50%. By
taking the average of 43%, we obtain that δ = 0.43.

(4) Progression rates (σ1, σ2): The average incubation
period for Streptococcus pneumonaie is 1–3 days while
Neisseria meningitidis is 4 days. Thus,

σ1 =
1
2
= 0.5 and σ2 =

1
4
= 0.25

(5) Vaccine waning rates (ω1, ω2): It takes 5 years for the
pneumococcal conjugate vaccines to wane while that
of the meningococcal conjugate vaccines is 3–5 years.
Therefore,

ω1 =
1

5 × 365
= 5.47 × 10−4

per day and

ω2 =
1

4 × 365
= 6.8 × 10−4

per day.
(6) Recovery rates (γC1, γI1): The period of infection of

the disease is 1-2 weeks with hospitalization and right
treatment, so taking the average, we have 8 days. Thus,

γI1 =
1
8
= 0.125.

For individuals exposed to the disease, prophylaxis is
administered and it has been shown to be effective
for 1-2 weeks of follow-up [32]. Thus,

γC1 =
1
7
= 0.143.

(7) Complication rate (∧): Even with appropriate
treatment, 10–20% of survivors have serious
complications or long-term sequelae. Therefore,

∧ =
15

100
= 0.15.

The summary of the estimated model parameter values
and the relative sources is given in Table 3.

Table 3. Model parameter values.

Parameter Value Source

α 211 Estimated
µ 0.000043 Estimated
ω1 0.000547 Estimated
ω2 0.00068 Estimated
β 0.88 [21]
γC1 0.143 Estimated
γC2 0.3 [13]
γI1 0.125 Estimated
γI2 0.1 [13]
η 0.75 Assumed
δ 0.43 Estimated
ϵ1 0.85 [1]
ϵ2 0.90 [1]
σ1 0.5 Estimated
σ2 0.25 Estimated
τ1 0.3 [23]
τ2 0.5 Assumed
θ1 0.2 Assumed
θ2 0.5 [13]
ρ1 0.85 [23]
ρ2 0.9 Assumed
∧ 0.15 Estimated

3.5. Estimated R0 value and herd immunity

Using the model parameter values given in Table 3, the
estimated value of R01 is approximately 1.3409, while that
of R02 is 0.4853. Therefore,

R0 = max{R01,R02} = max{1.3409, 0.4853} = 1.3409.

From a biological perspective, this threshold value indicates
that bacterial meningitis has high potential to invade a
population if no control efforts are implemented to curtail
the transmission and spread of the disease. Therefore, it
is important to determine the proportion of the population
that needs to be immunized to prevent large outbreaks
of bacterial meningitis in Ghana. When a large-scale
population is immunized against a contagious infectious
disease (either by vaccination or recovery from the
infection), indirect protection is provided to the remaining
population, which is not immune to the disease. This
type of protection is referred to as herd immunity [33, 34].
Herd immunity plays a major role in epidemic control by
providing a better understanding of the effectiveness of
vaccination without reaching 100% population coverage.

Therefore, the critical level of population immunity,
denoted by p̂, is calculated with respect to the estimated R0
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value for Ghana’s bacterial meningitis outbreaks as

p̂ = 1 −
1
R0
= 0.25. (3.44)

This finding implies that bacterial meningitis will not
spread if at least 25% of the population is immune
to the disease. Hence, successful vaccination of
approximately 25% of the entire population of both strains
may lead to eradication of the disease in Ghana.

3.6. Sensitivity analysis

In the mathematical modeling of infectious diseases,
it is pertinent to determine the major model parameters
that affect disease transmission. Sensitivity analysis aids
in identifying parameters that have a high impact on the
basic reproduction number, thereby providing insight into
the parameters to be considered for control strategies.
Following [29], the standardized forward sensitivity index
was employed to carry out a sensitivity analysis of
model (2.13). The standardized forward sensitivity index
of R0 with respect to parameter ψ is the proportion of
the relative change in ψ. Therefore, Table 4 provides all
the model parameters that are partially differentiable with
respect to R01 and R02, their values, and the sensitivity
indices with respect to each strain.

Table 4. Sensitivity indices (SI) of each model
parameter on R01 and R02.

Parameter Value SI for strain 1 SI for strain 2

µ 0.000043 +1.93 × 10−3 −6.28 × 10−3

ω1 0.000547 +0.1362 −0.4413
ω2 0.00068 −0.1376 +0.4507
β 0.88 +1 +1
γC1 0.143 −1.14 × 10−2 · · ·

γC2 0.3 · · · −0.1775
γI1 0.125 −0.2200 · · ·

γI2 0.1 · · · −0.1510
η 0.75 +0.0232 +0.1998
δ 0.43 −0.7567 −0.6492
ϵ1 0.85 −0.2816 · · ·

ϵ2 0.90 · · · −2.9077
σ1 0.5 −1.18 × 10−2 · · ·

σ2 0.25 · · · −2.23 × 10−2

τ1 0.3 −1.75 × 10−4 · · ·

τ2 0.5 · · · −3.52 × 10−4

θ1 0.1 −0.1469 +0.4760
θ2 0.5 +0.1463 −0.4791

3.6.1. Description of the sensitivity indices on R01 and R02

The sensitivity indices for strain 1 show that when the
parameters µ, ω1, β, η and θ2 are increased, keeping all
other parameters constant, the value of R01 is increased,
thereby increasing the endemicity of the disease, as they
have positive indices. In contrast, the parameters ω2, γC1,
γI1, δ, ϵ1, σ1, τ1 and θ1 decrease the value of R01 when
increased, with all other parameters held constant, resulting
in a decrease in the endemicity of the disease as they have
negative indices. Similarly, for strain 2, when parameters
ω2, β, η and θ1 are increased, keeping all other parameters
constant, the value of R02 is increased, resulting in an
increase in the endemicity of the disease, as they have
positive indices. The parameters µ, ω1, γC2, γI2, δ, ϵ2, σ2,
τ2 and θ2, on the other hand, decrease the value of R02

when increased, with all other parameters held constant,
thereby decreasing the endemicity of the disease as they
have negative indices. For instance, increasing the vaccine
waning rate of strain 1, ω1, by 10% will lead to a 1.362%
increase in R01, whereas increasing the recovery rate of the
carriers of strain 2, γC2, by 10% will result in a reduction
of 1.775% on R02.

4. Numerical simulation of the model

The numerical solution of model (2.13) is obtained
using the MATLAB ODE 45 algorithm for solving non-
stiff system of ordinary differential equations with initial
conditions and parameter values, as shown in Table 3.
The graphs of each model compartment against time are
presented, with time ranging from 0 to 30 days.

Figure 3 indicates that the susceptible population starts
to decrease after 11 days due to the forces of infection for
strains 1 and 2. It can be observed from this compartment
that an increase in the vaccine uptake rates for both strains,
θ1, θ2, leads to a rapid decrease in the population. Hence,
the awareness of the affected population to be vaccinated
decreases susceptibility. Figure 4 shows the vaccinated
population of strains 1 and 2 at vaccine uptake rates of
θ1, θ2 = 0. This presents a steady-state solution for both
compartments. In Figure 5, the population increased at
a faster rate within 15 days owing to inflow from the
susceptible compartment. Thereafter, an equilibrium point
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was reached, and the population began to decrease due to
the progression of the carriers to the infected population, as
the average incubation period of strain 1 infection is 2 days.
This decrease can also be due to the recovery of carriers from
the infection, because an increase in the recovery rate of
carriers of strain 1, γC1, leads to a decrease in the population.

Figure 3. Evolution of susceptible population
varying θ1, θ2.

(a) Evolution of V1(t). (b) Evolution of V2(t).

Figure 4. Vaccinated populations of strain 1 and
2 against time.

Figure 6 also shows an increase in population as a
result of susceptible becoming a carrier. The population
achieves stationarity momentarily and begins to decrease as
the carriers progress to the infected population, since the
average incubation period of strain 2 infection is 4 days.
The population also decreased owing to the recovery of the
carriers. It can be seen that an increase in the recovery rate of
carriers of strain 2, γC2, drastically reduces the population.

Figure 5. Evolution of carrier population of strain
1.

Figure 6. Evolution of carrier population of strain
2.

Figure 7 shows an increase in the infected population
of strain 1 as a result of the movement of its susceptible
and carrier population. However, population size decreased
after this period. This decrease can be ascribed to the
availability of treatment for infected compartments since
they are symptomatic and can be easily diagnosed. It
also decreases due to recovery from infection and disease-
induced death. It can be observed that an increase in the
recovery rate of infected population of strain 1, γI1 decreases
the population. The infected population of strain 2 in
Figure 8 increased because of inflow from the susceptible
and carrier populations. The population achieves stationarity
momentarily and begins to decrease owing to recovery from
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infection and disease-induced death. This decrease can also
be attributed to the population receiving urgent treatment
since the disease is considered a medical emergency. In
addition, an increase in the recovery rate of infected with
strain 2, γI2, rapidly decreases the population.

Figure 7. Evolution of infected population of
strain 1.

Figure 8. Evolution of infected population of
strain 2.

In Figure 9, the fully recovered population maintained
a stable state for the first 10 days, then began to increase
afterwards. This is because at the onset of the disease, there
were no recovered individuals, so as they became infected
and recovered, the population increased. Thereafter, we
observed a small decrease in the population, which can
be attributed to those who recovered from the acute phase
of the disease and only found that they experienced some
difficulties/complications. The recovered population with
complications in Figure 10 also showed a stable state for
the first 12 days and a sharp increase over time. It can be

observed that an increase in the recovery rates of strains 1
and 2, γI1, γI2, leads to a decrease in the population.

Figure 9. Evolution of fully recovered population
from both strains.

Figure 10. Evolution of recovered with
complications from both strains.

4.1. Effects of varying the vaccine uptake rates θ1 and θ2

Varying θ1 to the vaccinated population with immunity to
strain 1 resulted in a sharp increase in the population within
the first 3 days, as shown in Figure 11(a). This result is
in agreement with those of [22, 23]. Moreover, a stable
state was achieved in the following days as the population
became immune to the specific strain. However, by varying
θ1, the carrier population of strain 1 decreases, indicating
that increasing the number of vaccinated individuals reduced
the number of carriers. Varying θ1 on the infected population
of strain 1 shows a rapid decrease in the population, which
reveals that the more people receive the vaccine, the lower is
the infection. The variation in θ1 in the recovered population
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with complications also showed a dramatic decrease in
the population. This can be attributed to the immune
response of the human body to recognize and fight bacteria
after vaccination. The variation in θ2 in the vaccinated

(a) Effects of varying θ1 on
V1(t).

(b) Effects of varying θ1 on
C1(t).

(c) Effects of varying θ1 on
I1(t).

(d) Effects of varying θ1 on
R2(t).

Figure 11. Effects of varying θ1 on V1(t), C1(t),
I1(t) and R2(t) compartments.

population with immunity to strain 2 displays a surge in the
population within the first 3 days and achieves stability as
the population becomes immune to the specified strain, as
shown in Figure 12(a). Varying θ2 on the carrier population
of strain 2 decreases the population as the vaccine uptake
rate increased. As θ2 varies with the infected population
of strain 2, a sharp decrease is observed, indicating the
impact of vaccination on curtailing infection. Varying θ2 on
the recovered population with complications shows a rapid
decrease in the population, which means that the more we
get vaccinated, the fewer are the complications after an acute
infection.

5. Conclusions

This study proposes a novel deterministic model of
a coupled system of nine ordinary differential equations
for the transmission dynamics of two-strain bacterial

(a) Effects of varying θ2 on
V2(t).

(b) Effects of varying θ2 on
C2(t).

(c) Effects of varying θ2 on
I2(t).

(d) Effects of varying θ2 on
R2(t).

Figure 12. Effects of varying θ2 on V2(t), C2(t),
I2(t) and R2(t) compartments.

meningitis. The introduction of vaccination populations
against strains 1 and 2 accounts for most of the total
population, thereby curbing the spread of infections.
Positivity analysis of the two-strain model showed that it
is epidemiologically feasible and represents what can be
obtainable in real life. The mathematical analysis of the
model shows that the model has a DFE that is locally
and globally asymptotically stable if R01,R02 < 1, and
unstable if R01,R02 > 1. The basic reproduction number
indicates that with herd immunity of 25%, the disease can be
eradicated over a certain period of time, as represented in the
numerical simulation results. The robustness of the model
predictions to the parameter values was examined via a
sensitivity analysis, which established that the transmission
probability, β is an effective contributor to R0, which is
essential for the spread and control of the disease.
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