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Abstract: This paper mainly studied the problem of solving interval type-2 fuzzy relation equations Ã ◦ X̃ = B̃. First, to solve the
interval type-2 fuzzy relation equations, we extend the semi-tensor product of matrices to interval matrices and give its specific definition.
Second, the interval type-2 fuzzy relation equation was divided into two parts: primary fuzzy matrix equation Ãµ ◦ X̃µ=B̃µ and secondary
fuzzy matrix equation Ã f ◦ X̃ f = B̃ f . Since all elements of X̃ f equal to one, only the principal fuzzy matrix equation needs to be
considered. Furthermore, it was proved that all solutions can be obtained from the parameter set solutions if the primary fuzzy matrix
equation is solvable. Finally,with semi-tensor product of interval matrices, the primary fuzzy matrix equation was transformed into an
algebraic equation and the specific algorithm for solving an interval type-2 fuzzy relation equation was proposed.
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1. Introduction

The concept of type-2 fuzzy sets (T2 FSs) was first
proposed by Zadeh [1] and a detailed introduction was given
in [2]. T2 FSs are an extension of the type-1 fuzzy set
(T1 FS) and further considers the fuzziness of the fuzzy set.
Since the definition of T2 FSs was proposed, most scholars
have mainly studied the operations and properties of T2
FSs [3, 4]. Until the 1990s, Prof. Mendel redefined T2 FSs
and proposed the type-2 fuzzy logic system (T2 FLS) [5, 6].

As an extension of T1 FSs, T2 FSs overcome the
limitations of T1 FSs in dealing with the uncertainties
of actual objects. However the definition of T2 FSs is
complicated, and the corresponding graph must be a spatial
graph. Due to the complexity of the expression of T2 FSs,
Mendel introduces the definition of interval T2 FSs (IT2
FSs) as a special case of T2 FSs. The secondary membership

grade of IT2 FSs is constant one, which is more simpler than
T2 FSs. In general, IT2 fuzzy logic system (IT2 FLS) are
used in most theories and applications [7, 8].

In the field of fuzzy control, solving fuzzy relation
equations (FREs) plays an important role in the design of
fuzzy controller and fuzzy logic reasoning. Most algorithms
for solving FREs can obtain some specific solutions, such
as the minimum or maximum solution [9], or can describe
the solution theoretically [10]. In the existing methods, most
of them are used for solving type-1 fuzzy relation equations
(T1 FREs), while few methods are used for solving interval
type-2 fuzzy relation equations (IT2 FREs). The main work
of this paper is to propose a new method to obtain the entire
solution set of IT2 FREs.

On the other hand, Prof. Cheng proposed a new matrix
product-semi-tensor product (STP) of matrices, which is
the generalization of the conventional matrix product and
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retains almost all the main properties of the conventional
matrix product. As a novel mathematical technique for
handling logical operations, STP has been successfully
applied to logical systems [11–14] and, based on this, a
new algorithm for solving FREs has been devised. For
example, in T1 FREs, the STP is used to solve fuzzy
relation equalities and fuzzy relation inequalities [15–18].
In type-2 fuzzy relational equations (T2 FREs), only
some simple algorithms have been proposed to study the
solution of type-2 single-valued fuzzy relation equations and
type-2 symmetry-valued fuzzy relation equations [19, 20].
However, the ordinary STP cannot be used directly to solve
IT2 FREs. Therefore, we extend the STP to interval matrices
and propose the STP of interval matrices, then discuss the
solutions of IT2 FREs.

In the rest of this paper, section two introduces the basic
concepts of the STP of interval matrices. Section three
mainly gives the relevant definitions of interval-valued logic
and gives its matrix representation. Section four discusses
the solvability of IT2 FREs and designs an algorithm to
solve IT2 FREs. Section five explains the viability of the
proposed algorithm with a numerical example. Section six
gives a brief summary of the paper.

2. Preliminaries

2.1. Basic concept

First, in order to express conveniently, we introduce some
notations used throughout the paper.
•

I [0, 1] :=
{[
α, α
]
|0 ≤ α ≤ α ≤ 1

}
,

where α, α ∈ R. If α = [α, α] (or α = [α, α]), this is a
point interval and α degenerates into a real number.
•

I ([0, 1]m) :=
{[

A, A
]
|A ≤ A

}
.

A =
(
αi

)
m

and A = (αi)m are two m-dimensional

vectors and
[
ai, ai

]
∈ I[0, 1], i = 1 · · ·m.

•

I
(
[0, 1]m×n) :=

{[
A, A
]
|A ≤ A

}
.

A =
(
αi j

)
m×n

and A =
(
αi j

)
m×n

are two m × n

dimensional matrices and
[
αi j, αi j

]
∈ I [0, 1] , i =

1 · · ·m, j = 1 · · · n.

• δir : the ith column of unit matrix In.

•
[
δir, δ

j
r

]
: a bounded closed interval, where δin represents

its lower bound and δ j
n represents its upper bound,

abbreviated as δr
[
i, j
]
.

• Coli(M): the ith column of interval matrix M.
• Row j(M): the jth row of interval matrix M.

Next, we define ∧,∨ and ¬ in I [0, 1].

Definition 2.1. [21] (1) Let

α = [α, α], β = [β, β] ∈ I [0, 1] ,

then,

α ∨ β =
[
max
(
α, β
)
,max

(
α, β
)]
, (2.1)

α ∧ β =
[
min
(
α, β
)
,min

(
α, β
)]
. (2.2)

(2) Let

A =
[
ai j, ai j

]
∈ I
(
[0, 1]m×n) ,

B =
[
b jk, b jk

]
∈ I
(
[0, 1]n×p) ,

then their max-min composition operation is defined as

A ◦ B = C =
[
cik, cik

]
∈ I
(
[0, 1]m×p) , (2.3)

where[
cik, cik

]
=
([

ai1, ai1

]
∧
[
b1k, b1k

])
∨
([

ai2, ai2

]
∧
[
b2k, b2k

])
∨ · · · ∨

([
ain, ain

]
∧
[
bnk, bnk

])
,

where i = 1, · · · ,m, j = 1, · · · , k.

Definition 2.2. [22] Let

A =
[
ai j, ai j

]
,

B =
[
bi j, bi j

]
∈ I
(
[0, 1]m×n) ,

then the partial order ≥,≤ and = are defined as

(1) If ai j ≥ bi j, ai j ≥ bi j, we say A ≥ B.

(2) If ai j ≤ bi j, ai j ≤ bi j, we say A ≤ B.

(3) If ai j=bi j, ai j=bi j, we say A=B.

Property 2.1. [15] Let

A =
[
ai j, ai j

]
, B =

[
bi j, bi j

]
∈ I
(
[0, 1]m×n) ,

C =
[
c jk, c jk

]
, D =

[
d jk, d jk

]
∈ I
(
[0, 1]n×p) .

Assume A ≤ B and C ≤ D, then

A ◦C ≤ B ◦ D.
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Definition 2.3. [22] (1) Let

α = [α, α], β = [β, β] ∈ I [0, 1] ,

then the four operations of intervals α and β are as follows.

1) Addition operation

α + β = [α, α] + [β, β] =
[
α+β, α + β

]
. (2.4)

2) Subtraction operation

α − β = [α, α] − [β, β] =
[
α − β, α − β

]
. (2.5)

3) Multiplication operation

α × β = [α, α] × [β, β]=[αβ, αβ]. (2.6)

4) Division operation

α/β =[α, α]/[β, β] =
[
min
(
α/β, α/β, α/β,

α/β
)
,max

(
α/β, α/β, α/β, α/β

)]
.

(2.7)

Note that 0 < β = [β, β].
(2) If

α = [α, α] ∈ I [0, 1] ,

A = [ai j, ai j]m×n ∈ I
(
[0, 1]m×n) ,

then the product of interval α and interval matrix A is

α × A :=
(
[α, α] ×

[
ai j, ai j

])
m×n
. (2.8)

(3) If

A =
[
ai j, ai j

]
m×n
∈ I
(
[0, 1]m×n) ,

B =
[
b jk, b jk

]
n×p
∈ I
(
[0, 1]n×p) ,

then the product of interval matrices A and B is

A × B = C =
[
cik, cik

]
n×p

=


[
c11, c11

]
· · ·

[
c1p, c1p

]
...

. . .
...[

cn1, cn1

]
· · ·

[
cnp, cnp

]
 ,

(2.9)

where[
cik, cik

]
=

m∑
j=1

[
ai j, ai j

]
×
[
b jk, b jk

]
=
[
ai1, ai1

]
×
[
b1k, b1k

]
+
[
ai2, ai2

]
×
[
b2k, b2k

]
+ · · · +

[
aim, aim

]
×
[
bmk, bmk

]
.

Based on Definition 2.3, we give the relevant definition of
the STP of interval matrices.

Definition 2.4. (1) If

A =
[
ai j, ai j

]
m×n
∈ I
(
[0, 1]m×n) ,

B =
[
bkl, bkl

]
p×q
∈ I
(
[0, 1]p×q) ,

then the kronecker product of interval matrices A and B is

A ⊗ B =


a11 × B · · · a1n × B
...

. . .
...

am1 × B · · · amn × B

 . (2.10)

(2) If

A =
[
ai j, ai j

]
m×n
∈ I
(
[0, 1]m×n) ,

B =
[
bkl, bkl

]
p×q
∈ I
(
[0, 1]p×q) ,

then the STP of interval matrices A and B is

A ⋉ B =
(
A ⊗ I t

n

)
×
(
B ⊗ I t

p

)
, (2.11)

where t = lcm (n, p) is the least common multiple of n and p.

(3) If

A =
[
ai j, ai j

]
m×n
∈ I
(
[0, 1]m×n) ,

B =
[
bkl, bkl

]
p×n
∈ I
(
[0, 1]p×n) ,

then the khatri-rao product of interval matrices A and B is

A ∗ B =[Col1 (A) ⋉Col1 (B) Col2 (A) ⋉Col2 (B)

· · ·Coln (A) ⋉Coln (B)].
(2.12)

Remark 2.1. In Definition 2.4, if n = p, then the STP of

interval matrices degenerates to the ordinary interval matrix

multiplication. Therefore, the STP of interval matrices is

a generalization of interval matrices multiplication. In the

context, the STP of interval matrices is ⋉, which is omitted

by default.

Example 2.1. Given the interval matrices A and B,

A =

 [0.2, 0.4] [0.4, 0.5]
[0.6, 1.0] [0.8, 0.9]

 , B =


[0, 1]

[0.2, 0.3]
[0.4, 0.6]
[0.6, 0.7]

[0.8, 0.9]
[1, 1]

[0.7, 0.9]
[0.3, 0.4]

 .
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The kronecker product of the interval matrix A and the

unit interval matrix I2 is

A⊗I2 =


[0.2, 0.4] [0, 0] [0.4, 0.5] [0, 0]

[0, 0] [0.2, 0.4] [0, 0] [0.4, 0.5]
[0.6, 1.0] [0, 0] [0.8, 0.9] [0, 0]

[0, 0] [0.6, 1.0] [0, 0] [0.8, 0.9]

 .

The STP of interval matrices A and B is

A⋉B ∆
= (A⊗I2)×B

=


[0.16, 0.70]
[0.28, 0.47]
[0.32, 1.54]
[0.60, 0.93]

[0.44, 0.81]
[0.32, 0.60]
[1.04, 1.71]
[0.84, 1.36]

 .

The khatri-rao product of interval matrices A and B is

A ∗ B =
[

Col1 (A) ×Col1 (B) Col2 (A) ×Col2 (B)
]

=

 [0.00, 0.40] [0.04, 0.12] [0.08, 0.24] [0.12, 0.28]
[0.32, 0.45] [0.40, 0.50] [0.28, 0.45] [0.12, 0.20]

[0.00, 1.00] [0.12, 0.30] [0.24, 0.60] [0.36, 0.70]
[0.64, 0.81] [0.80, 0.90] [0.56, 0.81] [0.24, 0.32]

T .
According to the definition of STP of interval matrices,

we can get the following properties.

Property 2.2. (1) Let A, B ∈ I
(
[0, 1]m×n) ,C ∈ I

(
[0, 1]p×q),

then

(A + B) ⋉C = A ⋉C + B ⋉C,

C ⋉ (A + B) = C ⋉ A +C ⋉ B.
(2.13)

(2) Let A ∈ I
(
[0, 1]m×n) , B ∈ I

(
[0, 1]p×q) and C ∈

I
(
[0, 1]r×s), then

(A ⋉ B) ⋉C = A ⋉ (B ⋉C) . (2.14)

(3) Let A ∈ I
(
[0, 1]m×n), C ∈ I ([0, 1]s) and R ∈ I ([0, 1]s)

are column and row interval vectors, respectively, then

C ⋉ A = (Is ⊗ A) ⋉C,

R ⋉ A = (A ⊗ Is) ⋉ R.
(2.15)

2.2. Problem formulation

Let the interval type-2 fuzzy relation R̃ ∈ F(V×W), where
the domain V = {v1, v2, · · · , vn} and W =

{
w1,w2, · · · ,wp

}
,

then the matrix form of interval type-2 fuzzy relation R̃ can
be defined as

MR̃ =


fR̃(v1,w1)
µR̃(v1,w1) · · ·

fR̃(v1,wp)
µR̃(v1,wp)

...
. . .

...
fR̃(vn,w1)
µR̃(vn,w1) · · ·

fR̃(vn,wp)
µR̃(vn,wp)

 . (2.16)

µR̃ (vi,wk) and fR̃ (vi,wk) represent the primary
membership grade and secondary membership grade
of IT2 FSs, respectively. For primary membership grade,
it is composed of upper membership grade and lower
membership grade; that is,

µR̃ (vi,wk)=
[
µ

R̃
(vi,wk) , µR̃ (vi,wk)

]
.

The secondary membership grade of IT2 FSs equals one;
that is, fR̃ (vi,wk)=1, then the matrix form of interval type-2
fuzzy relation R̃ can be further described as

MR̃ =


1[

µ
R̃

(v1,w1),µR̃(v1,w1)
] · · · 1[

µ
R̃

(v1,ws),µR̃(v1,wp)
]

...
. . .

...
1[

µ
R̃

(vn,w1),µR̃(vn,w1)
] · · · 1[

µ
R̃

(vn,ws),µR̃(vn,wp)
]

.(2.17)

Two common types of FREs exist in practical
application [20]. One type is that the fuzzy relation
is unknown, which is commonly used for designing
fuzzy controllers. The other type is that the fuzzy input
is unknown, which is commonly used for diagnosing
diseases based on the symptom similarity. In terms of the
aforementioned situations, it can be assumed that there are
similar two types of IT2 FREs, as shown in Figures 1 and 2.

𝐴̃𝐴 �𝑋𝑋? �𝐵𝐵

Figure 1. Interval type-2 fuzzy relation unknown.

�𝑋𝑋? �𝐵𝐵�𝑅𝑅

Figure 2. Interval type-2 fuzzy input unknown.
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Type 1: assume Ã ∈ F(U × V), B̃ ∈ F(U × W). We seek
an interval type-2 fuzzy relation X̃ ∈ F(V ×W) such that it
satisfies

Ã ◦ X̃ = B̃. (2.18)

Type 2: assume R̃ ∈ F(V ×W), B̃ ∈ F(U×W). We seek an
interval type-2 fuzzy input X̃ ∈ F(U×V) such that it satisfies

X̃ ◦ R̃ = B̃. (2.19)

Remark 2.2. Take a transpose of both sides of (2.19) to get

R̃T ◦ X̃T = B̃T . (2.19) is equivalent to (2.18), so we only need to

consider the solvability of (2.18).

3. Interval-valued logic and its matrix representation

Definition 3.1. (1)

I f = {
[
α, α
]
|0 ≤ α ≤ α ≤ 1}

is called the domain of interval-valued fuzzy logic, and

the interval-valued fuzzy logic variable is P ∈ I f . When

α = [0, 0] (or α = [1, 1]), α degenerates into a classical

logic variable.

(2)

Ik =
{[
α1, α1

]
,
[
α2, α2

]
, · · · ,

[
αk, αk

]}
,
[
αi, αi

]
∈ I f ,

i = 1, · · · , k, then Ik is called the domain of k-valued

interval-valued fuzzy logic.

(3) Mapping

f : Ik × Ik × · · · × Ik︸              ︷︷              ︸
r

→ Ik

is called r-ary k-valued interval-valued logic function.

If
Ik =
{[
α1, α1

]
,
[
α2, α2

]
, · · · ,

[
αk, αk

]}
,

put the different upper and lower bounds of all interval-
valued fuzzy logic variables in Ik into the ordered set Θ. If
Θ does not contain zero and one, it needs to add zero or one:

Θ = {ap|p = 1, · · · , s; 0 ≤ a1 < a2 < · · · < as ≤ 1}.

In order to facilitate matrix calculation, each variable
in Ik is represented as an interval vector. If αi=am

(1 ≤ m ≤ s,m ∈ Z+) and αi = an (1 ≤ n ≤ s, n ∈ Z+), then
the lower bound αi can be represented by vector δms and the
upper bound αi can be represented by vector δns . Therefore,[

αi, αi

]
∼
[
δms , δ

n
s
]
= δs[m, n].

Similar to the proof of theorem in paper [23], we can
obtain Theorem 3.1.

Theorem 3.1. f is a r-ary k-valued interval-valued logic

function, then there exists a unique structural matrix M f ,

whose algebraic form is

f (x1, x2, · · · , xr) = M f ⋉
r
i=1

[
xi, xi

]
. (3.1)

Remark 3.1. Structure matrix is also a special interval

matrix that can be used to replace ∧,∨ and ¬ for algebraic

operations.

In the following, we give the structure matrix of ∧,∨
and ¬.

Let

Ik =
{[
α1, α1

]
,
[
α2, α2

]
, · · · ,

[
αk, αk

]}
.

The ordered set Θ generated by Ik contains s different
elements. To simply represent the structure matrix of ∧,∨
and ¬, we introduce a set of s-dimensional vectors

Uv =

1 2 · · · v − 1 v · · · v︸︷︷︸
s−v+1

 ,
Vv =

v · · · v︸︷︷︸
v

v + 1 v + 2 · · · s

 , v = 1, · · · , s.

(1) The structure matrix of ∨:

Ms
d =
[
Ms

d,M
s
d

]
, Ms

d=M
s
d = δs [U1U2 · · ·Us] .

When s = 3, we have

M3
d = δ3

[
[1, 1] [1, 1] [1, 1] [1, 1] [2, 2]

[2, 2] [1, 1] [2, 2] [3, 3]
]
.

(2) The structure matrix of ∧:

Ms
c =
[
Ms

c,M
s
c

]
, Ms

c=M
s
c = δs [U1U2 · · ·Us] .

When s = 3, we have

M3
c = δ3

[
[1, 1] [2, 2] [3, 3] [2, 2] [2, 2]

[3, 3] [3, 3] [3, 3] [3, 3]
]
.
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4. Main results

4.1. Decomposition of IT2 FRE

Definition 4.1. [20] In (2.17), the matrix constructed by

the primary membership grade µR̃

(
v j,wk

)
is called primary

fuzzy matrix of interval type-2 fuzzy relation, denoted as

R̃µ
(
µR̃

(
v j,wk

))
and abbreviated as R̃µ:

R̃µ=


[
µ

R̃
(v1,w1), µR̃(v1,w1)

]
· · ·

[
µ

R̃
(v1,wp), µR̃(v1,wp)

]
...

. . .
...[

µ
R̃
(vn,w1), µR̃(vn,w1)

]
· · ·

[
µ

R̃
(vn,wp), µR̃(vn,wp)

]
.

Similarly, in (2.17), the matrix constructed by the

secondary membership grade fR̃
(
v j,wk

)
is called secondary

fuzzy matrix of interval type-2 fuzzy relation, denoted as

R̃ f

(
fR̃
(
v j,wk

))
and abbreviated as R̃ f :

R̃ f=


1 · · · 1
...
. . .

...

1 · · · 1

 .
Clearly, (2.18) is composed of the primary fuzzy matrix

equation and secondary fuzzy matrix equation.

Definition 4.2. The IT2 FRE (2.18) can be divided into two

parts: primary fuzzy matrix equation and secondary fuzzy

matrix equation.

(1) The primary fuzzy matrix equation is

Ãµ ◦ X̃µ=B̃µ, (4.1)

where Ãµ ∈ I
(
[0, 1]m×n), B̃µ ∈ I

(
[0, 1]m×p), X̃µ ∈

I
(
[0, 1]n×p) and X̃µ is unknown.

If

X̃µ =
[
Xµ, Xµ

]
∈ I
(
[0, 1]n×p)

satisfies (4.1), then we call that X̃µ is the solution of (4.1).

Xµ, Xµ are lower and upper bound matrices of X̃µ,

respectively.

If

H̃µ =
[
Hµ,Hµ

]
is a solution of (4.1), and for any solution X̃µ of (4.1), there

is X̃µ ≤ H̃µ, then H̃µ is called the maximum solution of (4.1).

If

J̃µ =
[
Jµ, Jµ

]

is a solution of (4.1), and for any solution X̃µ of (4.1), there

is X̃µ ≥ J̃µ, then J̃µ is called the minimal solution of (4.1).

If

Q̃µ =
[
Q
µ
,Qµ
]

is a solution of (4.1), and for any solution X̃µ of (4.1), as

long as X̃µ ≤ Q̃µ is satisfied, there is X̃µ = Q̃µ, then Q̃µ is

called the minimum solution of (4.1).

(2) The secondary fuzzy matrix equation is

Ã f ◦ X̃ f = B̃ f , (4.2)

where Ã f ∈ Mm×n, B̃ f ∈ Mm×p, X̃ f ∈ Mn×p and X̃ f is

unknown.

The matrix X̃ f satisfying (4.2) is called the solution of this

equation. In (4.2), the elements of Ã f and B̃ f are all one,

then the elements of X̃ f are all one.

4.2. Solvability of primary fuzzy matrix equation

The primary fuzzy matrix Eq (4.1) is equivalent to
Aµ ◦ Xµ = Bµ,

Aµ ◦ Xµ = Bµ,

Xµ ≤ Xµ.

(4.3)

The conditions for the establishment of (4.3) are relatively
difficult, so we first need to determine whether (4.1) has
solutions.

Lemma 4.1. [24] Let

A =
(
ai j

)
m×n
, B = (bik)m×p.

The T1 FRE A◦X = B has solutions if, and only if, ATαB is a

solution of this equation and ATαB is the maximum solution

of this equation. The α composition operation between fuzzy

matrices is

ATαB = ∧n
i=1

(
a ji

)
α (bik) ,

where (aki)α(bi j) =

 bi j, aki > bi j,

1, aki ≤ bi j.

Theorem 4.1. If the primary fuzzy matrix Eq (4.1) has

solutions then

H̃µ =
[
hik, hik

]
n×p
=


[
Hµ,Hµ

]
, ∀ hik ≤ hik,[

Hµ
′,Hµ
]
, ∃ hik > hik.

(4.4)
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is a solution of this equation and H̃µ is the maximum solution

of this equation.

In (4.4),

H = ATαB =
(
hik

)
n×p
, H = A

T
αB =

(
hik

)
n×p
,

when

∀ hik ≤ hik, H =
(
hik

)
n×p
, H =

(
hik

)
n×p
.

When ∃ hik > hik, we replace all elements of H that do not

satisfy hik ≤ hik with hik; thus, generating a new lower bound

matrix Hµ
′.

Proof. The primary fuzzy matrix Eq (4.1) has solutions,
then T1 FREs

Aµ ◦ Xµ = Bµ and Aµ ◦ Xµ = Bµ

must have solutions. Lemma 4.1 implies that Hµ and Hµ are
solutions of T1 FREs

Aµ ◦ Xµ = Bµ and Aµ ◦ Xµ = Bµ,

respectively. Hµ and Hµ must exist in either of the following
two cases.

(1) For ∀ hi j ≤ hi j, we known that Hµ ≤ Hµ. Hµ and Hµ

are solutions of T1 FREs

Aµ ◦ Xµ = Bµ and Aµ ◦ Xµ = Bµ,

respectively. Hence,

H̃µ =
[
Hµ,Hµ

]
satisfies (4.3) and H̃µ is a solution of the primary fuzzy
matrix equation.

From Lemma 4.1, it follows that Hµ and Hµ are maximum
solutions of T1 FREs

Aµ ◦ Xµ = Bµ and Aµ ◦ Xµ = Bµ,

respectively. Clearly, Xµ ≤ Hµ and Xµ ≤ Hµ, so

H̃µ =
[
Hµ,Hµ

]
is the maximum solution of the primary fuzzy matrix
equation.

(2) For ∃ hi j > hi j, we know that the newly generated
matrix is Hµ

′ and the matrix satisfies

Ãµ ◦ Hµ
′ = B̃µ and Hµ

′ ≤ Hµ.

According to
Ãµ ◦ Hµ

′ = B̃µ,

Hµ
′ is a solution of T1 FRE

Aµ ◦ Xµ = Bµ.

From Lemma 4.1, it follows that Hµ is a solution of T1 FRE
Aµ ◦ Xµ = Bµ, respectively. Hence,

H̃µ =
[
Hµ
′,Hµ
]

satisfies (4.3) and H̃µ is a solution of the primary fuzzy
matrix equation.

From Lemma 4.1, it is known that Hµ and Hµ are,
respectively, maximum solutions of T1 FREs

Aµ ◦ Xµ = Bµ and Aµ ◦ Xµ = Bµ.

According to the requirement that Xµ ≤ Xµ, we construct a
new matrix Hµ

′ based on Hµ. Clearly, Xµ ≤ Hµ
′ and Xµ ≤

Hµ, so
H̃µ =

[
Hµ
′,Hµ
]

is the maximum solution of the primary fuzzy matrix
equation.

In summary, H̃µ is a solution of the primary fuzzy matrix
Eq (4.1) and is the maximum solution of this equation. □

If the primary fuzzy matrix Eq (4.1) has solutions, the next
step is to explore how to construct parameter set solutions
I∗
(
X̃µ
)

and I∗
(
X̃µ
)

of this equation.
First, take all the elements in Ãµand B̃µ and place the

different upper and lower bounds of these elements in the
the ordered set Θ:

Θ= {ξi|i = 1, · · · , r; 0=ξ1 < ξ2 < · · · < ξr=1} .

Construct an ordered interval-valued setΨ by the ordered set
Θ, defined as

Ψ=
{[
ξ1, ξ1

]
,
[
ξ1, ξ2

]
, · · · ,

[
ξ1, ξr

]
;
[
ξ2, ξ2

]
,[

ξ2, ξ3
]
, · · · ,

[
ξ2, ξr

]
; · · · ;

[
ξr, ξr
]}
.
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Next, according to the order interval-valued set Ψ, we
define two mappings necessary to construct the parameter
set solution I∗

(
X̃µ
)

and I∗
(
X̃µ
)

of primary fuzzy matrix
Eq (4.1).

Definition 4.3. Assuming x ∈ I f ,
[
ξi, ξ j

]
∈ Ψ.

(1) I∗:
[
x, x
]
→ Ψ is

I∗ (x) = I∗
([

x, x
])

= max
{[
ξi, ξ j

]
∈ Ψ| ξi ≤ x, ξ j ≤ x

}
.

(4.5)

(2) I∗:
[
x, x
]
→ Ψ is

I∗ (x) = I∗
([

x, x
])

= min
{[
ξi, ξ j

]
∈ Ψ| ξi ≥ x, ξ j ≥ x

}
.

(4.6)

Note that 1) When x=ξi ∈ Ξ, x=ξ j ∈ Ξ,

I∗(x) = I∗(x) =
[
ξi, ξ j

]
.

2) When x < Ξ, x=ξ j ∈ Ξ, there exists a unique i such
that ξi < x < ξi+1, then

I∗(x) =
[
ξi, ξ j

]
, I∗(x) =

[
ξi+1, ξ j

]
.

3) When x=ξi ∈ Ξ, x < Ξ, there exists a unique j such
that ξ j < x < ξ j+1, then

I∗(x) =
[
ξi, ξ j

]
, I∗(x) =

[
ξi, ξ j+1

]
.

4) When x < Ξ, x < Ξ, there exists a unique i and j such
that ξi < x < ξi+1, ξ j < x < ξ j+1, then

I∗(x) =
[
ξi, ξ j

]
, I∗(x) =

[
ξi+1, ξ j+1

]
.

By Definition 4.3, it is not difficult to derive the following
properties.

Property 4.1. Let

Ãµ =
[
ai j, ai j

]
∈ I
(
[0, 1]m×n) ,

B̃µ =
[
bik, bik

]
∈ I
(
[0, 1]m×p) ,

then,

(1) I∗(ai j) = I∗(ai j) = ai j; I∗(bik) = I∗(bik) = bik.

(2) I∗(Ãµ) = I∗(Ãµ = Ãµ; I∗(B̃µ) = I∗(B̃µ) = B̃µ.

(3) I∗(Ãµ ◦ X̃µ) = I∗(B̃µ) = B̃µ; I∗(Ãµ ◦ X̃µ) = I∗(B̃µ) = B̃µ.

(4) X̃µ ≤ I∗(X̃µ), I∗(X̃µ) ≤ X̃µ.

Property 4.2. Let x, y ∈ I f , xi, yi ∈ I f , i = 1, · · · , n, then

(1) I∗ (x) ∨ I∗ (y) = I∗ (x ∨ y) ; I∗ (x) ∨ I∗ (y) = I∗ (x ∨ y) .

(2) I∗ (x) ∧ I∗ (y) = I∗ (x ∧ y) ; I∗ (x) ∧ I∗ (y) = I∗ (x ∧ y) .

(3)
n
∨
i=1

[
I∗ (xi) ∧ I∗ (yi)

]
= I∗
[

n
∨
i=1

(xi ∧ yi)
]
.

(4)
n
∨
i=1

[
I∗ (xi) ∧ I∗ (yi)

]
= I∗
[

n
∨
i=1

(xi ∧ yi)
]
.

Property 4.3. Let

Ãµ =
[
ai j, ai j

]
∈ I
(
[0, 1]m×n) ,

X̃µ =
[
x jk, x jk

]
∈ I
(
[0, 1]n×p) ,

then,

(1) I∗(Ãµ ◦ X̃µ) = I∗(Ãµ) ◦ I∗(X̃µ).

(2) I∗(Ãµ ◦ X̃µ) = I∗(Ãµ) ◦ I∗(X̃µ).

Theorem 4.2. X̃µ is a solution of the primary fuzzy matrix

Eq (4.1) if, and only if, I∗
(
X̃µ
)

is a solution of the primary

fuzzy matrix equation.

Proof. (Necessity) Assuming that X̃µ is a solution of the
primary fuzzy matrix equation, it is clear that Ãµ ◦ X̃µ=B̃µ.
By Property 4.1, it follows that

I∗
(
Ãµ ◦ X̃µ

)
= I∗
(
B̃µ
)
=B̃µ. (4.7)

According to the Property 4.3, we know that

I∗
(
Ãµ ◦ X̃µ

)
= I∗
(
Ãµ
)
◦ I∗
(
X̃µ
)
.

From (4.7) we have

I∗
(
Ãµ
)
◦ I∗
(
X̃µ
)
=B̃µ. (4.8)

By the Property 4.1, it is not difficult to obtain
I∗
(
Ãµ
)
=Ãµ. From (4.8) we have

Ãµ ◦ I∗
(
X̃µ
)
=B̃µ. (4.9)

Formula (4.9) shows that I∗
(
X̃µ
)

is a solution of the primary
fuzzy matrix equation.

(Sufficiency) Assuming that I∗
(
X̃µ
)

is a solution of
the primary fuzzy matrix equation, it is clear that Ãµ ◦

I∗
(
X̃µ
)
=B̃µ. By Property 4.1, it follows that

X̃µ ≤ I∗(X̃µ). (4.10)
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Using Property 2.1, we can get

B̃µ ≤ Ãµ ◦ X̃µ ≤ Ãµ ◦ I∗(X̃µ). (4.11)

Formula (4.11) shows that X̃µ is a solution of the primary
fuzzy matrix equation.

Therefore, the conclusion is correct. □

Similarly, X̃µ is a solution of the primary fuzzy matrix
Eq (4.1) if, and only if, I∗

(
X̃µ
)

is a solution of the primary
fuzzy matrix equation.

By Theorem 4.2, we can obtain the following corollary.

Corollary 4.1. (1) The interval matrix H̃µ is the maximum

solution of primary fuzzy matrix Eq (4.1) if, and only if,

I∗
(
H̃µ
)

is the maximum solution of this equation.

(2) The interval matrix J̃µ is the minimum solution of

primary fuzzy matrix Eq (4.1) if, and only if, I∗
(
J̃µ
)

is the

minimum solution of this equation.

(3) The interval matrix Q̃µ is the minimal solution of

primary fuzzy matrix Eq (4.1) if, and only if, I∗
(
Q̃µ
)

is the

minimal solution of this equation.

If the primary fuzzy matrix Eq (4.1) has solutions, we
next explore how to obtain parameter set solutions of this
equation. By Theorem 4.2, the ordered interval-valued set Ψ
is sufficient to inscribe the entire parameter set solutions of
the primary fuzzy matrix equation.

First, the primary fuzzy matrix equation can be
rewritten to

Ãµ ◦Colk(X̃µ) = Colk(B̃µ), (4.12)

where k = 1, · · · , p.

In (4.12), the kth equality is equivalent to

([
ai1, ai1

]
∧
[
x1k, x1k

])
∨
([

ai2, ai2

]
∧
[
x2k, x2k

])
∨ · · · ∨

([
ain, ain

]
∧
[
xnk, xnk

])
=
[
bik, bik

]
,

(4.13)

where i = 1, · · · ,m.

Second, the logical form of the primary fuzzy matrix
equation is converted to algebraic form.

For simplicity of presentation, let

ai j =
[
ai j, ai j

]
, x jk =

[
x jk, x jk

]
, j = 1, · · · , n.

With the help of Theorem 3.1, the left hand side (LHS)
of (4.13) can be expressed in algebraic form:

LHS =
(
Ms

d

)n−1 [(
Ms

cai1x1k
) (

Ms
cai2x2k

)
· · ·
(
Ms

cainxnk
)
],

(4.14)

where i = 1, · · · ,m.
By Property 2.2, we know that

x1k
(
Ms

cai2x2k
)
=
(
Is ⊗ Ms

cai2
)

x1k x2k. (4.15)

According to (4.15), (4.14) is simplified to

LHS=
(
Ms

d

)n−1 [(
Ms

cai1
) (

Is ⊗ Ms
cai2
)

x1k x2k(
Ms

cai3x3k
)
· · ·
(
Ms

cainxnk
)]
.

(4.16)

From Property 2.2, it follows that

x1k x2k
(
Ms

cai3x3k
)
=
(
Is2 ⊗ Ms

cai3
)

x1k x2k x3k. (4.17)

According to (4.17), (4.16) is further simplified to

LHS=
(
Ms

d

)n−1 [(
Ms

cai1
) (

Is ⊗ Ms
cai2
)

(
Is2 ⊗ Ms

cai2
)

x1k x2k x3k · · ·
(
Ms

cainxnk
)]
.

(4.18)

Repeating the process of (4.15)–(4.18), (4.14) is finally
expressed as

LHS =
(
Ms

d

)n−1 [(
Ms

cai1
) (

Is ⊗ Ms
cai2
) (

Is2 ⊗ Ms
cai2
)

· · ·
(
Isn−1 ⊗ Ms

cain
)
⋉n

j=1 x jk

]
=
(
Ms

d

)n−1 [(
Ms

c

[
ai1, ai1

]) (
Is ⊗ Ms

c

[
ai2, ai2

])
· · ·
(
Isn−1 ⊗ Ms

c

[
ain, ain

])]
⋉n

j=1

[
x jk, x jk

]
:=Li[xk, xk],

(4.19)

where i = 1, · · · ,m, and

Li =
(
Ms

d

)n−1
Ms

c

[
ai1, ai1

] (
Is ⊗ Ms

c

[
ai2, ai2

])
· · ·
(
Isn−1 ⊗ Ms

c [ain, ain]
)
⋉n

j=1

[
x jk, x jk

]
,

[xk, xk] = ⋉n
j=1

[
x jk, x jk

]
,

then (4.19) can be simplified to

Li[xk, xk] = [bik, bik], (4.20)

where i = 1, · · · ,m.

Mathematical Modelling and Control Volume 3, Issue 4, 331–344.



340

Equation (4.20) is equivalent to

L[xk, xk] = [bk, bk], (4.21)

where
L = L1 ∗ L2 ∗ · · · ∗ Lm,

[bk, bk] = ⋉m
i=1[bik, bik],

where “*” denotes the khatri-rao product of interval
matrices.

According to the above procedure, the value of the kth
row of X̃µ can be determined. Let k = 1, 2, · · · , p, and we
can obtain the parameter set solutions of the primary fuzzy
matrix equation.

A specific algorithm for solving all solutions of IT2
FRE (2.18) is given in the following.

Algorithm 4.1. The following steps are used to solve the

solution set of IT2 FRE (2.18).

Step 1. Decompose IT2 FRE (2.18) to construct the primary

fuzzy matrix Eq (4.1).

Step 2. Use Theorem 4.1 to determine if there are solutions

to the primary fuzzy matrix equation. If the primary fuzzy

matrix equation has solutions, then proceed as follows;

otherwise, IT2 FRE (equ:IT2 FRE(a)) has no solution.

Step 3. Construct an ordered set Θ from Ãµ and B̃µ

Θ= {ξi|i = 1, · · · , r; 0=ξ1 < ξ2 < · · · < ξr=1} .

We specify

ξi ∼ δ
i
r, ξ j ∼ δ

j
r ,
[
ξi, ξ j

]
= δr
[
i, j
]
.

The elements in Ãµ and B̃µ can be represented as vectors to

facilitate algebraic operations.

Step 4. Construct (4.12) and convert it into the form

of (4.21) to solve for the parameter set solutions of

Colk
(
X̃µ
)
.

Step 5. Let k = 1, 2, · · · , p, and we can get all parameter

set solutions of
(
X̃µ
)
. Determine the maximum and minimum

(or minimal) solutions of the primary fuzzy matrix equation.

Step 6. Finally, based on the solution set of the primary

fuzzy matrix equation and secondary fuzzy matrix equation,

the solution set X̃ of IT2 FRE is constructed.

5. Application

Consider the following IT2 FRE,

X̃ ◦ R̃ = B̃, (5.1)

where

X̃ =

 1
[x11,x11]

1
[x12,x12]

1
[x21,x21]

1
[x22,x22]

 , R̃ =

 1
[0.3,0.7]

1
[0.2,0.3]

1
[0.1,0.5]

1
[0.5,0.7]

 ,
B̃ =

 1
[0.1,0.5]

1
[0.1,0.3]

1
[0.2,0.5]

1
[0.5,0.7]

 .
First, taking a transpose on both sides of (5.1), we get

R̃T ◦ X̃T = B̃T . (5.2)

By decomposing IT2 FRE (5.2), we can obtain the primary
fuzzy matrix equation and the secondary fuzzy matrix
equation. From Definition 4.1, we only need to solve the
primary fuzzy matrix equation to obtain the solution set of
IT2 FRE. The primary fuzzy matrix equation of (5.2) can be
expressed as

R̃T
µ ◦ X̃T

µ = B̃T
µ , (5.3)

where

R̃T
µ =

 [0.3, 0.7] [0.1, 0.5
[0.2, 0.3] [0.5, 0.7]

 , X̃T
µ =


[
x11, x11

] [
x21, x21

][
x12, x12

] [
x22, x22

]  ,
B̃T
µ =

 [0.1, 0.5] [0.2, 0.5]
[0.1, 0.3] [0.5, 0.7]

 .
Next, use Theorem 4.1 to determine if (5.3) has solutions.

Hµ =
(
Aµ

T
)T
α
(
Bµ

T
)

=

 0.3 0.1
0.2 0.5

Tα  0.1 0.2
0.1 0.5

 =  0.1 0.2
0.1 1

 ,
Hµ =

(
Aµ

T
)T
α
(
Bµ

T
)

=

 0.7 0.5
0.3 0.7

Tα  0.5 0.5
0.3 0.7

 =  0.5 0.5
0.3 1

 ,
H̃µ =

 [0.1, 0.5] [0.2, 0.5]
[0.1, 0.3] [1, 1]

 ,
R̃T
µ ◦ H̃µ =

 [0.1, 0.5] [0.2, 0.5]
[0.1, 0.3] [0.5, 0.7]

 = B̃T
µ .
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According to the above calculation, Hµ ≤ Hµ, H̃µ is a
solution of (5.3) and H̃µ is the maximum solution of this
equation.

Let

Col1
(
X̃T
µ

)
=
[
[x11, x11] [x21, x21]

]T
,

which needs to satisfy the following logical equation.


(
[0.3, 0.7] ∧

[
x11, x11

])
∨
(
[0.1, 0.5] ∧

[
x21, x21

])
= [0.1, 0.5] ,(

[0.2, 0.3] ∧
[
x11, x11

])
∨
(
[0.5, 0.7] ∧

[
x21, x21

])
= [0.1, 0.3] .

(5.4)

However, solving (5.4) directly is relatively difficult, so it
needs to be converted into algebraic form.

Construct the ordered set Θ based on Ãµ and B̃µ:

Θ= {0, 0.1, 0.2, 0.3, 0.5, 1} .

Represent the elements in Θ as vectors

1 ∼ δ17; 0.7 ∼ δ27; 0.5 ∼ δ37; 0.3 ∼ δ47;
0.2 ∼ δ57; 0.1 ∼ δ67; 0 ∼ δ77.

Convert (5.4) into an algebraic equation

 M7
d

(
M7

cδ7 [4, 2]
[
x11, x11

]) (
M7

cδ7 [6, 3]
[
x21, x21

])
= δ7 [6, 3] ,

M7
d

(
M7

cδ7 [5, 4]
[
x11, x11

]) (
M7

cδ7 [3, 2]
[
x21, x21

])
= δ7 [6, 4] .

Let [
x1, x1

]
=
[
x11, x11

]
⋉
[
x21, x21

]
,

which is equivalent to

 M7
d M7

cδ7 [4, 2]
(
I7 ⊗ M7

cδ7 [6, 3]
) [

x1, x1

]
= δ7 [6, 3] ,

M7
d M7

cδ7 [5, 4]
(
I7 ⊗ M7

cδ7 [3, 2]
) [

x1, x1

]
= δ7 [6, 4] .

Let

L1 = M7
d M7

c

[
δ47, δ

2
7

] (
I7 ⊗ M7

c

[
δ67, δ

3
7

])
,

L2 = M7
d M7

c

[
δ57, δ

4
7

] (
I7 ⊗ M7

c

[
δ37, δ

2
7

])
.

This leads to

L ⋉ [x1, x1] = [b1, b1]. (5.5)

The MATLAB program provided in the literature [15] is
improved so that it can calculate the STP of the interval

matrix. (5.5) is calculated as

L =L1 ∗ L2

=δ49 [[24, 9][24, 9][24, 10][25, 11][26, 11][26, 11][26, 11]

[24, 9][24, 9][24, 10][25, 11][26, 11][26, 11][26, 11]

[24, 16][24, 16][24, 17][25, 18][26, 18][26, 18][26, 18]

[24, 16][24, 16][24, 17][25, 25][26, 25][26, 25][26, 25]

[31, 16][31, 16][31, 17][32, 25][33, 33][33, 33][33, 33]

[38, 16][38, 16][38, 17][39, 25][40, 33][41, 41][41, 41]

[38, 16][38, 16][38, 17][39, 25][40, 33][41, 41][49, 49]],

[b1, b1] =
[
δ67, δ

3
7

]
⋉
[
δ67, δ

4
7

]
=
[
δ41

49, δ
18
49

]
.

Solving for (5.5), we get

[x1, x1] = [δi49, δ
j
49],

where i = 41, 42, 48, j = 18, 19, 20, 21.
From the values of [x1, x1], there are 3×4 = 12 parameter

set solutions for Col1
(
X̃T
µ

)
, two of which do not satisfy xi1 ≤

xi1 (i = 1, 2); then(
X̃T
µ

)1
1
= δ7[[6, 3] [6, 4]]T ∼ [[0.1, 0.5][0.1, 0.3]]T ;(

X̃T
µ

)2
1
= δ7[[6, 3] [6, 5]]T ∼ [[0.1, 0.5][0.1, 0.2]]T ;(

X̃T
µ

)3
1
= δ7[[6, 3] [6, 6]]T ∼ [[0.1, 0.5][0.1, 0.1]]T ;(

X̃T
µ

)4
1
= δ7[[6, 3] [7, 4]]T ∼ [[0.1, 0.5][0, 0.3]]T ;(

X̃T
µ

)5
1
= δ7[[6, 3] [7, 5]]T ∼ [[0.1, 0.5][0, 0.2]]T ;(

X̃T
µ

)6
1
= δ7[[6, 3] [7, 6]]T ∼ [[0.1, 0.5][0, 0.1]]T ;(

X̃T
µ

)7
1
= δ7[[6, 3] [7, 7]]T ∼ [[0.1, 0.5][0, 0.0]]T ;(

X̃T
µ

)8
1
= δ7[[7, 3] [6, 4]]T ∼ [[0, 0.5][0.1, 0.3]]T ;(

X̃T
µ

)9
1
= δ7[[7, 3] [6, 5]]T ∼ [[0, 0.5][0.1, 0.2]]T ;(

X̃T
µ

)10

1
= δ7[[7, 3] [6, 6]]T ∼ [[0, 0.5][0.1, 0.1]]T .

Assuming

Col2
(
X̃T
µ

)
=
[
[x12, x12] [x22, x22]

]T
,

we have

L ⋉ [x2, x2] = [b2, b2], (5.6)

where the value of L has been obtained in (5.5),

[b2, b2] = δ7 [5, 3] ⋉ δ7 [3, 2] = δ49 [31, 16] .
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Solving for (5.6), we get

[x2, x2] = [δi49, δ
j
49],

where i = 29, 30, 31, j = 15, 16, 22, 23, 29, 30, 36.
Depending on the value of [x2, x2], it follows that

Col2
(
X̃T
µ

)
has 3 × 7 = 21 parameter set solutions, six of

which do not satisfy xi2 ≤ xi2 (i = 1, 2); then(
X̃T
µ

)1
2
= δ7[[5, 3] [1, 1]]T ∼ [[0.2, 0.5][1, 1]]T ;(

X̃T
µ

)2
2
= δ7[[5, 4] [1, 1]]T ∼ [[0.2, 0.3][1, 1]]T ;(

X̃T
µ

)3
2
= δ7[[5, 5] [1, 1]]T ∼ [[0.2, 0.2][1, 1]]T ;(

X̃T
µ

)4
2
= δ7[[5, 3] [2, 1]]T ∼ [[0.2, 0.5][0.7, 1]]T ;(

X̃T
µ

)5
2
= δ7[[5, 3] [2, 2]]T ∼ [[0.2, 0.5][0.7, 0.7]]T ;(

X̃T
µ

)6
2
= δ7[[5, 4] [2, 1]]T ∼ [[0.2, 0.3][0.7, 1]]T ;(

X̃T
µ

)7
2
= δ7[[5, 4] [2, 2]]T ∼ [[0.2, 0.3][0.7, 0.7]]T ;(

X̃T
µ

)8
2
= δ7[[5, 5] [2, 1]]T ∼ [[0.2, 0.2][0.7, 1]]T ;(

X̃T
µ

)9
2
= δ7[[5, 5] [2, 2]]T ∼ [[0.2, 0.2][0.7, 0.7]]T ;(

X̃T
µ

)10

2
= δ7[[5, 3] [3, 1]]T ∼ [[0.2, 0.5][0.5, 1]]T ;(

X̃T
µ

)11

2
= δ7[[5, 3] [3, 2]]T ∼ [[0.2, 0.5][0.5, 0.7]]T ;(

X̃T
µ

)12

2
= δ7[[5, 4] [3, 1]]T ∼ [[0.2, 0.3][0.5, 1]]T ;(

X̃T
µ

)13

2
= δ7[[5, 4] [3, 2]]T ∼ [[0.2, 0.3][0.5, 0.7]]T ;(

X̃T
µ

)14

2
= δ7[[5, 5] [3, 1]]T ∼ [[0.2, 0.2][0.5, 1]]T ;(

X̃T
µ

)15

2
= δ7[[5, 5] [3, 2]]T ∼ [[0.2, 0.2][0.5, 0.7]]T .

In summary, we can conclude that:
(1) The primary fuzzy matrix Eq (5.3) has a total of 10 ×

15 = 150 parameter set solutions.
(2) The maximum solution of this equation is

H̃µ =
[(

X̃T
µ

)1
1
,
(
X̃T
µ

)1
2

]
=

 [0.1, 0.5] [0.2, 0.5]
[0.1, 0.3] [1, 1]

 .
(3) The equation has no minimum solution and only two

minimal solutions,

(
Q̃µ
)

1
=

[(
XT
µ

)7
1
,
(
XT
µ

)15

2

]
=

 [0.1, 0.5] [0.2, 0.2]
[0, 0] [0.5, 0.7]

 ,
(
Q̃µ
)

2
=

[(
XT
µ

)10

1
,
(
XT
µ

)15

2

]
=

 [0, 0.5] [0.2, 0.2]
[0.1, 0.1] [0.5, 0.7]

 .

(4) Based on the maximum and minimal solutions of
the primary fuzzy matrix equation, we can work out all
the parameter set solutions of the primary fuzzy matrix
equation.

(
X̃T
µ

)
1
=

 [0.1, 0.5]
[
0.2, 0.2 ≤ x12 ≤ 0.5

][
0 ≤ x21 ≤ 0.1, 0 ≤ x21 ≤ 0.3

] [
0.5 ≤ x22 ≤ 1, 0.7 ≤ x22 ≤ 1

]  ,
(
X̃T
µ

)
2
=

 [0 ≤ x11 ≤ 0.1, 0.5]
[
0.2, 0.2 ≤ x12 ≤ 0.5

][
0.1, 0.1 ≤ x21 ≤ 0.3

] [
0.5 ≤ x22 ≤ 1, 0.7 ≤ x22 ≤ 1

]  .
(5) The solution set of IT2 FRE is

(X̃T
µ )1 =

 1
[0.1,0.5]

1
[0≤x21≤0.1,0≤x21≤0.3]

1
[0.2,0.2≤x12≤0.5]

1
[0.5≤x22≤1,0.7≤x22≤1]

 ,
(X̃T
µ )2 =

 1
[0≤x11≤0.1,0.5]

1
[0.1,0.1≤x21≤0.3]

1
[0.2,0.2≤x12≤0.5]

1
[0.5≤x22≤1,0.7≤x22≤1]

 .
6. Conclusions

This paper focused on the solution of IT2 FRE Ã ◦ X̃ = B̃.
First, the STP of interval matrices and its properties were
introduced, and the matrix representation of the interval-
valued logic was given. Then, the IT2 FRE was considered
as the primary fuzzy matrix equation and secondary fuzzy
matrix equation. The solution of secondary fuzzy matrix
is known, so only the primary fuzzy matrix equation needs
to be solved. Moreover, the solvability of the primary
matrix equation was studied, and a specific algorithm for
solving IT2 FREs based on the STP of interval matrices was
given. Finally, a numerical example was given to verify the
effectiveness of the proposed method.
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