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Abstract: Based on fuzzy semi-tensor product (STP) algorithms and fuzzy relation matrix (FRM) models, the design of an adaptive
fuzzy controller was proposed in this paper for the multivariable nonlinear systems with uncertainty. The controlled multi-input-and-
multi-output (MIMO) plants were expressed and processed first by FRM models and fuzzy STP operations, and then the indirect adaptive
fuzzy control laws were designed. The tracking property of the FRM models was proved for the control objective of MIMO systems.
The effectiveness of the novel matrix expression was verified by simulations of the tracking control on a two-link rigid robot manipulator.
Results in simulation tests show that the proposed design of adaptive FRM control is efficient for nonlinear multivariables. Therefore,
the proposed indirect fuzzy adaptive controllers can be extended to general matrix expression for MIMO nonlinear systems with fuzzy
STP algorithms and FRM models and online approximate unknown parameters, according to required accuracy.
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1. Introduction

Generally, it is difficult to control and identify MIMO
nonlinear systems as there exists some complex structures,
coupling variables, unknown parameters and uncertainty
in the dynamical processes [1]. At the same time,
most techniques related to advanced control analysis and
synthesis are studied based on the accurate modeling
of complex systems [2]. Therefore, the construction
of precise mathematical models for MIMO systems is
always an open problem in engineering theories and
applications [3]. Fortunately, in order to relieve this
conflict, the adaptive controller is a suitable identification
and control strategy to estimate unknown parameters
in MIMO nonlinear systems [4, 5]. Specifically, the
adaptive fuzzy control systems have recently been more

applied to complex multivariable systems with uncertain
parameters [6, 7]. The control structures of fuzzy logic
models are more suitable to the practical systems with
uncertainty and unknown parameters as a fuzzy logic
reasoning model can make good advantage of operating
experience and knowledge from human beings, while
linguistic knowledge cannot be sufficiently considered in
traditional adaptive control systems [8–10]. Moreover, the
neural networks are employed to approximate unknown
functions or terms [11, 12]. However, in most existing
fuzzy adaptive control systems, the traditional rules-based
fuzzy systems are mainly employed to design controllers for
multi-input-and-single-output (MISO) or single-input-and-
single-output (SISO) fuzzy systems [13–15]. Meanwhile, as
the conventional fuzzy models are constructed on uncertain
knowledge representation related to fuzzy set and fuzzy
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inference, it is challenging to describe the entire closed-loop
control system by global digital expression, especially for
MIMO controlled systems.

With the increasing development of big data and digital
technology, it is necessary to find suitable mathematical
tools to describe the traditional fuzzy logic rules and
reasoning process digitally. In order to construct the
matrix expression of multivariable fuzzy language logic and
reasoning, a STP algorithm for conventional matrices was
introduced to general MIMO fuzzy variables and reasoning
operations [16, 17]. Because of its special properties [18],
the STP operation has been imported to the related
research of engineering fields, to convert a multi-valued
logic and reasoning relationship into different applications,
such as standard finite dynamic algebra operators [19, 20],
logic analysis [21, 22], Boolean control networks [23–25],
variety of system analysis [26], systems synthesis [27–30],
algebraic state space theory [31] and so on.

The first author and her research group have worked on
applying the STP theory to the fuzzy logic inference systems
since 2012. Our target is the matrix representation of
conventional fuzzy logic systems and some valuable creative
results have been obtained, such as both fuzzy sets and fuzzy
reasoning processes expressed by FRM. The traditional
fuzzy logic system can be represented by the matrices and
STP algorithms, but in previous research [16, 17, 32, 33],
only an original FRM model was constructed as the matrix
description of general multivariable fuzzy systems without
considering the design of the fuzzy controller for practical
applications. These related results provide theoretical
foundations for possible applications of the MIMO FRM
models. However, FRM models lack parameter optimization
and adaptive capability in applications as a fuzzy controller.
Hence, in this manuscript the authors tried to extend our
related theoretical results to further possible applications of
the MIMO FRM models so that FRM models are used to
realize the parameter optimization and adaptive capability
in applications as a fuzzy controller.

To implement matrix expression of traditional adaptive
fuzzy control systems and online optimization of parameters
of FRM models, in this work the objective is to propose the
MIMO adaptive FRM control models based on the fuzzy
STP algorithms. The major contributions are as follows:

1) The matrix description of general multivariable fuzzy
systems is extended to the conventional multiple-variables
adaptive fuzzy control systems.

2) FRMs and fuzzy STP are realized for both local
and global fuzzy models in the traditional fuzzy adaptive
systems. The unknown parameters in MIMO FRM models
are identified by the online adaptive FRM laws for the fuzzy
systems with varying and uncertain variables.

3) The entire design process of general fuzzy adaptive
control systems are reconstructed in the perspective of
matrix and STP as the theoretical extension and the
applications of multivariable FRMs, and then the control
performance can be online analyzed.

The rest is organized in this paper as follows. First,
the preliminaries are introduced with the relevant FRM and
fuzzy STP algorithms in Section 2. Second, Section 3
gives some descriptions of FRM models for MIMO adaptive
fuzzy control systems and universal approximation. Third,
the detailed modeling process of indirect adaptive FRM
controller is given in Section 4 for continuous nonlinear
MIMO systems, and the adaptive FRM control design and
convergence of tracking errors are investigated. Finally, in
Section 5, the effectiveness is investigated for the proposed
adaptive FRM control strategies by some simulations.

2. Preliminaries

Some related notational descriptions will be introduced
for multiple-variable fuzzy relation models in this section,
and then the fuzzy theoretical extension will be obtained
based on the STP of matrices. In the remainder of this paper,
the scalars in the STP and FRM models will be represented
inR, the space with the n×1 real vector or the m×n matrix,
without considering the complex space.

Definition 2.1. [18] Given two arbitrary real matrices A =

(ai, j) ∈ Rm×n and B = (bi, j) ∈ Rp×q, the STP of A and B is

defined as

A ▷ B = (A ⊗ It/n)(B ⊗ It/p) ∈ Rmt/n×qt/p, (2.1)

where t is the least common multiple (LCM) of n and p, It/n

and It/p are identity matrices and ⊗ is the Kronecker product.

Consider R(X,Y) as a multivariable fuzzy relation on
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a universe of discourse (UOD)
n∏

i=1
Ei ×

m∏
j=1

F j among

multiple continuous fuzzy variables X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , ym). The continuous multivariable fuzzy
relationship between X and Y has been defined by authors
in [32] as the following (N1× . . . ,Nn)×(M1× . . . ,Mm) FRM:

MFRM(X,Y) =
γ11...1

11...1 γ11...1
11...2 . . . γ11...1

11...Mm
. . . γ11...1

M1 M2...Mm

γ11...2
11...1 γ11...2

11...2 . . . γ11...2
11...Mm

. . . γ11...,2
M1 M2...,Mm

...
...

...
...

...
...

γN1N2...Nn
11...1 γN1N2...Nn

11...2 . . . γN1N2...Nn
11...Mm

. . . γN1N2...Nn
M1 M2...Mm


. (2.2)

In raditional fuzzy theory, for continuous fuzzy variables
it is difficult to describe their fuzzy relationship using
a matrix. However, the FRM models in Eq (2.2) are
implemented for general continuous multivariable fuzzy
equation relations when each pair of variables (X,Y) is
considered as a sampling data pair at any moment t.
Correspondingly, it also can be extended in a similar way
to the construction of continuous fuzzy MIMO systems on
basic conventional fuzzy relations.

In general, the conventional fuzzy logical operators
include AND, OR, IMPLICATION, etc., which are defined
by algebraic functions T -norm or S -norm. Each of the T -
norm and S -norm has some unique properties and operators.
In order to formulate a general matrix description of a
fuzzy reasoning operation, the STP of algebra matrices is
employed to extend the fuzzy implication by introducing
the fuzzy logical operators into the STP. For the original
STP in Definition 2.1, if A and B are two arbitrary FRMs
instead of two common matrices, the algebraic addition and
algebraic product can be replaced by the S -norm and T -
norm operators, respectively. Therefore, the fuzzy STP can
be defined for the universal implication operator of general
MIMO fuzzy systems as follows.

Definition 2.2. (Fuzzy STP of FRMs) Given two arbitrary

FRMs A = (ai, j) ∈ Rm×n and B = (bi, j) ∈ Rp×q, the fuzzy

STP between A and B is defined as

A ▷ B = (A ⊗ It/n)(B ⊗ It/p) ∈ Rmt/n×qt/p, (2.3)

where t is the LCM of n and p and It/n and It/p are

identity matrices. The algebraic addition and product

in conventional matrices are substituted by fuzzy logic

operators, respectively, in Eq (2.3), so the fuzzy logic

reasoning can be realized digitally through the fuzzy STP

operations between FRM models.

3. Description of FRM models for MIMO systems

Let’s consider a fuzzy n-inputs-m-outputs system based
on FRM models. Assume the complete fuzzy rule base is

Rl : IF (x1 is Ap1
1 ) AND · · · AND (xn is Apn

n ),

T HEN (y1 is Bl
1) AND · · · AND (ym is Bl

m), (3.1)

where the i-th input is xi and the k-th output is

yk, i = 1, 2, · · · , n, k = 1, 2, · · · ,m,

A1
i , · · · , A

Ni
i and B1

k , · · · , B
M
k represent the fuzzy input and

output variables’ sets, respectively,

pi ∈ {1, 2, · · · ,Ni}, l = 1, 2, · · · ,M, M =
n∏

i=1

Ni,

Bl
k := Bp1,p2,··· ,pn

k ∈ {B1
k , · · · , B

M
k }.

Generally, Eq (3.1) can be equivalent to a group of m

MISO fuzzy systems. Without loss of generality, consider
one following FRM model

Rl
k : IF (x1 is Ap1

1 ) AND · · · AND (xn is Apn
n ),

T HEN (yk is Bl
k), k = 1, 2, · · · ,m. (3.2)

Suppose that in each fuzzy rule Eq (3.2), membership
functions (MFs) of the output

µBl
k
(yk), l = 1, 2, · · · ,M

are symmetrical and normal. Assume on each fuzzy set Bl
k,

parameters cl
k are the MF centers of yk. The center points of

the fuzzy sets for output variables in the FRM model can be
represented as

Ck = (c1
k , · · · , c

M
k )T . (3.3)

Given an input value

x0 = (x10, · · · , xn0)

with fuzzy sets

Exi = {A
1
i , · · · , A

Ni
i }, i = 1, · · · , n

similar to the operation of fuzzification, the input vector can
be described as

VE(x0) = VE(x10, · · · , xn0)
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= VE1 (x10) ▷ VE2 (x20) ▷ · · · ▷ VEn (xn0), (3.4)

where

VEi (xi0) = (µA1
i
(xi0), · · · , µANi

i
(xi0))T , i = 1, 2, · · · , n.

Assume the FRM with parameters cl
k, l = 1, · · · ,M can be

estimated by

MR(x1, x2, · · · , xn; yk) = VF(y) ▷ VT
E (x1, x2, · · · , xn), (3.5)

then the estimated output vector can be obtained from
Eqs (3.4) and (3.5), such as

VF(ŷ0) = VFk (ŷk0)

= MR(x1, x2, · · · , xn; yk) ▷ VE(x0) ∈ RM×1. (3.6)

According to the definition of VFk (ŷk0), Eq (3.6) can also be
expressed as

RE(x0) = VFk (ŷk0)

= (µB1
k
(ŷk0), · · · , µBM

k
(ŷk0))T

= (γ1
k , γ

2
k , · · · , γ

M
k )T , γl

k

= µBl
k
(ŷk0), (3.7)

where the vector VFk of the estimated output can be
determined by the real-valued FRM MR with the input

x0 = (x10, · · · , xn0).

Based on Eq (3.7), the output ŷk0 can be estimated by
the FRM model in Eq (3.5) and can be obtained through
defuzzification.

Assume that each output set is a singleton. Since B1
k , · · · ,

BM
k are normalized fuzzy sets with the centers

cl
k, l = 1, · · · ,M,

using the center-average defuzzifier and VFk (ŷk0) in Eqs (3.6)
and (3.7), we can obtain the real value of ŷk0

ŷk0 =
RT

E(x0)Ck

H1×MRE(x0)
=

∑M
l=1 γ

l
kcl

k∑M
l=1 γ

l
k

=
γ1

k · c
1
k + · · · + γ

M
k · c

M
k

γ1
k + · · · + γ

M
k

, (3.8)

where

H1×M = (1 1 · · · 1) ∈ R1×M . (3.9)

Denote

Rx0 =
RT

E(x0)
H1×MRE(x0)

∈ R1×M

and
Ck = (c1

k , · · · , c
M
k )T ∈ RM×1,

then,

ŷk0 = Rx0Ck, (3.10)

where Ck is a constant vector and Rx0 is the function of input
variable x0.

It is seen from Eq (3.10) that ŷk0 can be estimated by the
FRM MR, input variable x0 and the output parameters Ck.

If for each input variable xi, through FRM fuzzification
on

Exi = {A
1
i , · · · , A

Ni
i }, i = 1, · · · , n

based on its MFs, the vector expression of xi can be
determined by

VEi (xi) = (µA1
i
(xi), · · · , µANi

i
(xi))T , i = 1, 2, · · · , n,

then the fuzzy input vector can be obtained by the formula

RX = VE1 (x1) ▷ VE2 (x2) ▷ · · · ▷ VEn (xn).

As the set Bl
k in Eq (3.2) is a fuzzy number with cl

k as its
center, let

H1×M = (1, 1, · · · , 1) ∈ R1×M .

Using an appropriation fuzzy STP algorithm and a central
defuzzifier, the output from the FRM model for the system
Eq (3.2) is

fFRM(X) = RXCk, (3.11)

where

RX =
RT

X

H1×MRX
and Ck = (c1

k , · · · , c
M
k )T .

Similarly, in the matrix representation of MIMO FRM in
Eq (3.1), if Bl

k is normal and its center is denoted by

cl
k, k = 1, 2, · · · ,m, l = 1, 2, · · · ,M,

the FRM output can be obtained with max-min operator and
the central defuzzification

(y1, · · · , ym)T = ( f 1
FRM(X), · · · , f m

FRM(X))T = RXC, (3.12)

where
C = (CT

1 ,C
T
2 , · · · ,C

T
m)T .

Mathematical Modelling and Control Volume 3, Issue 4, 316–330.



320

Remark 3.1. In order to guarantee the feasibility of

adaptive FRM controllers, the approximation analysis

results of MISO and MIMO FRM systems are employed

from our previous research in [33]. This paper focuses

on continuous fuzzy variables even though the proofs of

approximation theorems always exist for both FRM models

on continuous and discrete UOD.

Remark 3.2. In the fuzzy systems based on FRM

models, there are no specific limitations for fuzzification,

defuzzification, T-norm and S -norm reasoning operators

and MFs of all fuzzy variables [29]. The processing

structure of a common FRM is demonstrated in Figure 1 for

multivariable fuzzy systems.

Figure 1. The structure of a fuzzy model based on
FRM and fuzzy STP.

In this paper, both the structure and the basic parameters
are supposed to be specified properly in advance, i.e., the
designers’ decision is needed to determine relevant inputs,
MFs parameters, numbers of MFs and rules for the fuzzy
system. On the other hand, the consequent parameters, i.e.,
θ need to be obtained by some parameter training algorithms.

4. Construction of MIMO adaptive FRM controllers

4.1. The structure and classification of MIMO adaptive

FRM control systems

The structure to track outputs is shown for a MIMO
adaptive FRM output tracking system in Figure 2.
Compared with the conventional fuzzy adaptive control
systems, the biggest difference of the adaptive FRM
controller is to be designed based on FRM models and fuzzy
STP operations, which can implement the matrix expression
of multivariable adaptive fuzzy control systems. As we
know, the general control system is composed of at least
a plant and a controller. In order to construct the matrix

Figure 2. The basic configuration of adaptive
FRM control systems.

expression of human experience, FRM models in a control
system can be categorized to two types: control experience
and plant knowledge. Therefore, based on the structure of
the fuzzy logic controller, the adaptive FRM control strategy
is classified into the three categories as follows.

(i) Indirect adaptive FRM controller: The FRM model
comprises some fuzzy systems constructed initially from
plant knowledge.

In this work, the basics of indirect adaptive fuzzy control
schemes will be developed for nonlinear MIMO FRM
systems based on the fuzzy STP algorithms.

(ii) Direct adaptive FRM controller: The FRM control
model is a single fuzzy controller constructed initially based
on control experience.

(iii) Hybrid FRM controller: The FRM control model is
a combined system of the indirect and direct adaptive FRM
controllers.

4.2. Problem formulation

Suppose one MIMO nonlinear dynamical system is
described by a set of one-order equations as follows:



y(r1)
1 = f1(x1, x2, · · · , xn) +

p∑
j=1

g1 j(x)u j,

...

y(rp)
p = fp(x1, x2, · · · , xn) +

p∑
j=1

gp j(x)u j,

(4.1)
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where

n =
p∑

i=1

ri, u j ∈ R, y j ∈ R, j = 1, 2, · · · , p,

denotes

x = (y1, ẏ1, · · · , y
(r1−1)
1 , y2, ẏ2, · · · , y

(r2−1)
2 , · · · , yp, ẏp, · · · , y

(rp−1)
p )T

= (x1, x2, · · · , xr1 , xr1+1, xr1+2, · · · , xr1+r2 , · · · , xn)T ∈ Dx ⊂ R
n

as the state vector, which is supposed to be measureable;

u = (u1, u2, · · · , up)T ∈ Rp

and
y = (y1, y2, · · · , yp)T ∈ Rp

are the input and output vectors of the plant, respectively.
Here, Dx is a compact set as the UOD of the state variables,
and

fi(x), gi j(x), i, j = 1, 2, · · · , p

are smooth unknown nonlinear multivariable functions.
Denote

y(r) = (y(r1)
1 , · · · , y

(rp)
p )T ∈ Rp,

F(x) = ( f1, f2, · · · , fp)T ∈ Rp,

G(x) =


g11(x) · · · g1p(x)
...

. . .
...

gp1(x) · · · gpp(x)

 ∈ Rp×p, (4.2)

and the plant Eq (4.1) is able to be rewritten as

y(r) = F(x) +G(x)u. (4.3)

Assume that G(x) is not zero for any x ∈ Dx to keep
the plant controllable. In this paper, G(x) is assumed
nonsingular and

gi j(x) > 0, i, j = 1, 2, · · · , p.

The control objective is to design an adaptive FRM
feedback controller u = u (x | θ) on the fuzzy STP operation
and an adaptation law to real-time to adjust the parameter θ,
such that:

(1) All internal variables in the closed-loop fuzzy control
system x(t), θ(t) and u = u (x | θ) are uniformly two-norm
bounded, i.e.,∥∥∥∥x(t)

∥∥∥∥ ≤ Mx < ∞,
∥∥∥∥θ(t)∥∥∥∥ ≤ Mθ < ∞

and ∥∥∥∥u (x | θ)
∥∥∥∥ ≤ Mu < ∞

for all t ≥ 0, where Mx, Mθ and Mu are parameters
depending on the controlled plants.

(2) The plant output y follows the ideal trajectory

yd(t) = (yd1(t), · · · , ydp(t))T ,

which its time derivatives are known and bounded.
Since F(x) and G(x) are nonlinear and unknown in the

plant, we are dealing with a quite general MIMO nonlinear
control problem. Consequently, the control objective y is
only required to track yd as close as possible instead of
asymptotical convergence. Throughout the whole paper,
in order to design adaptive FRM controllers, the following
assumptions are supposed.

A1: [34] G(x) is a positive definite matrix, then it exists
σ0 > 0, σ0 ∈ R such that G(x) ≥ σ0Ip, Ip ∈ R

p×p is an
identity matrix. It is obvious that A1 is a sufficient condition
to ensure G(x) is always regular, then Eq (4.3) is feedback
linearizable.

A2: [34] The ideal trajectory yd(t) and the derivatives of
each

ydi(t), i = 1, 2, · · · , p

are always known bounded, and each ydi(t) is assumed to be
ri-times differentiable.

Next, let us define the following tracking errors

e(t) = yd(t) − y(t) = (e1(t), · · · , ep(t))T ,

ei(t) = ydi(t) − yi(t), i = 1, 2, · · · , p, (4.4)

and the filtered tracking errors

s(t) = (s1(t), s2(t), · · · , sp(t))T ,

si(t) =
(

d
dt
+ λi

)ri−1

ei(t), λi > 0, (4.5)

where i = 1, 2, · · · , p. From Eq (4.5), when si(t) → 0,
ei(t) → 0 asymptotically. Now, the objective is to design
a controller to satisfy si(t)→ 0, i = 1, 2, · · · , p.

The time derivatives of the filtered errors can be written
as

ṡi = vi − fi(x) −
p∑

j=1

gi j(x)u j, i = 1, 2, · · · , p, (4.6)
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where vi are given as:

v(t) = (v1(t), v2(t), · · · , vp(t))T ,

vi = y(ri)
di + βi,ri−1e(ri−1)

i + · · · + βi,1ėi, (4.7)

where i = 1, 2, · · · , p,

βi, j =
(ri − 1)!

(ri − j)!( j − 1)!
λ

ri− j
i , j = 1, 2, · · · , ri − 1.

From Eqs (4.6) and (4.7), the time derivatives of the
filtered errors can become

ṡ = v − F(x) −G(x)u. (4.8)

If both F(x) and G(x) are known, we can design the
following nonlinear control law as

u∗ = G−1(x)(−F(x) + v + K0s), (4.9)

where
K0 = diag[k01, · · · , k0p]

with k0i > 0 for i = 1, · · · , p. Substitute Eq (4.9) in Eq (4.8)
and we can obtain

ṡ(t) = −K0s(t) (4.10)

or

ṡi(t) = −k0isi(t), i = 1, 2, · · · , p, (4.11)

which implies that si(t) → 0 as t → ∞. Hence, ei(t) and all
of its derivatives converge to zero, t → ∞ , which means the
output y converges to the ideal value yd asymptotically [35].

As F(x) and G(x) are considered to be unknown in
this paper, the above design technique cannot be realized.
That is, the ideal controller u∗ in Eq (4.9) cannot be
implemented. However, we can employ the multiple-
variable FRM systems to approximate the nonlinear function
matrix F(x) and G(x).

4.3. Design of adaptive FRM control systems

In order to realize the adaptive control based FRM models
for the plant in Eq (4.3), in this subsection, two steps are
taken to express and approximate matrix functions F(x) and
G(x) by MIMO FRM models. First, for each entry of matrix

F(x) and G(x), a set of MISO fuzzy systems as the local
FRM models, respectively, R fi and Rgi j are constructed to
approximate fi and gi j, i, j = 1, 2, · · · , p. Then, for F(x)
and G(x), the global MIMO FRM models RF and RG are
obtained by the combination of R fi and Rgi j , respectively.
Finally, in order to obtain the corresponding objectives,
these two global fuzzy matrices as approximators [32] are
developed to a well-defined adaptive controller with its
adaptive laws.

Assume nonlinear functions fi and gi j, i, j = 1, 2, · · · , p
can be approximated by the complete fuzzy rule sets.

Construct the local FRM models f̂i
(
x
∣∣∣ θ fi

)
from the

n∏
k=1

pk

rules

IF x1 is Al1
1 and · · · and xn is Aln

n ,

T HEN f̂i
(
x
∣∣∣ θ fi

)
is El1l2···łn

i , (4.12)

where
lk = 1, 2, · · · , pk, k = 1, 2, · · · , n.

Similarly, construct the local FRM models ĝi j

(
x
∣∣∣ θgi j

)
from

the
n∏

k=1
qk rules:

IF x1 is Bl1
1 and · · · and xn is Bln

n ,

T HEN ĝi j

(
x
∣∣∣ θgi j

)
is Hl1l2···łn

i j , (4.13)

where
lk = 1, 2, · · · , qk, k = 1, 2, · · · , n.

Specifically, using the fuzzy STP operation, singleton
fuzzification and central defuzzifier, the corresponding FRM
estimation models of fuzzy systems in Eqs (4.12) and (4.13)
are as follows:

f̂i
(
x
∣∣∣ θ fi

)
= R fi =

∑p1
l1=1 · · ·

∑pn
ln=1 yl1···ln

fi

(∏n
k=1 µAlk

k
(xk)

)
∑p1

l1=1 · · ·
∑pn

ln=1

(∏n
k=1 µAlk

k
(xk)

)
=

(
y1···1

fi , · · · , y
p1···pn
fi

) (
ξ1···1fi , · · · , ξ

p1···pn
fi

)T

= θTfiξ fi (x), (4.14)

ĝi j

(
x
∣∣∣ θgi j

)
= Rgi j =

∑q1
l1=1 · · ·

∑qn
ln=1 yl1···ln

gi j

(∏n
k=1 µBlk

k
(xk)

)
∑q1

l1=1 · · ·
∑qn

ln=1

(∏n
k=1 µBlk

k
(xk)

)
=

(
y1···1

gi j
, · · · , yq1···qn

gi j

) (
η1···1

gi j
, · · · , η

q1···qn
gi j

)T

= θTgi j
ηgi j (x). (4.15)
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Here, yl1···ln
fi

and yl1···ln
gi j

are the center points of each El1···ln
i and

Hl1···ln
i j , respectively. In order to realize online optimization

and adaptive control, let yl1···ln
fi

and yl1···ln
gi j

be the free
parameters. Denote

θ fi =
(
y1···1

fi , · · · , y
p1···pn
fi

)T
∈ R

∏n
k=1 pk

and
θgi j =

(
y1···1

gi j
, · · · , yq1···qn

gi j

)T
∈ R

∏n
k=1 qk ,

and then ξ fi (x) and ηgi j (x) are the following
∏n

k=1 pk-
dimensional and

∏n
k=1 qk-dimensional vectors with its

l1 · · · ln-th element, respectively

ξ fi (x) =
(
ξ1···1fi , · · · , ξ

p1···pn
fi

)T
∈ R

∏n
k=1 pk ,

ξl1···lnfi
(x) =

∏n
k=1 µAlk

k
(xk)∑p1

l1=1 · · ·
∑pn

ln=1

(∏n
k=1 µAlk

k
(xk)

) ,
ηgi j (x) =

(
η1···1

gi j
, · · · , η

q1···qn
gi j

)T
∈ R

∏n
k=1 qk ,

ηl1···ln
gi j

(x) =

∏n
k=1 µBlk

k
(xk)∑q1

l1=1 · · ·
∑qn

ln=1

(∏n
k=1 µBlk

k
(xk)

) .
Denote

F̂ (x | θF) =
(

f̂1
(
x
∣∣∣ θ f1

)
, · · · , f̂p

(
x
∣∣∣ θ fp

))
,

θF(x) =
(
θ f1 (x), · · · , θ fp (x)

)T
,

ξF(x) =
(
ξ f1 (x), · · · , ξ fp (x)

)T
∈ Rp,

Ĝ (x | θG) =


ĝ11

(
x
∣∣∣ θg11

)
· · · ĝ1p

(
x
∣∣∣ θg1p

)
...

. . .
...

ĝp1

(
x
∣∣∣ θgp1

)
· · · ĝpp

(
x
∣∣∣ θgpp

)
 ,

θG(x) =


θg11 (x) · · · θg1p (x)
...

. . .
...

θgp1 (x) · · · θgpp (x)

 ,

ηG(x) =


ηg11 (x) · · · ηg1p (x)
...

. . .
...

ηgp1 (x) · · · ηgpp (x)

 ∈ Rp×p,

then the approximation matrices of F(x) and G(x) are

F̂ (x | θF) = θF T (x) · ξF(x), (4.16)

Ĝ (x | θG) = θGT (x) · ηG(x). (4.17)

Since the matrix parameters θF and θG change along with
online operation, only the initial parameters are set for both

local and global FRM models. Therefore, the following task
is to construct a global adaptation law for θF and θG, such
that e(t) is minimized.

Define the following optimal parameters for θF(x) and
θG(x) ( θ fi and θgi j ) as

θ∗F(x) =
(
θ∗f1 (x), · · · , θ∗fp

(x)
)T
,

θ∗fi = arg min
θ fi
∈R

∏n
k=1 pk

[
sup
x∈Dx

∣∣∣∣ f̂i (x ∣∣∣ θ fi

)
− fi(x)

∣∣∣∣] , (4.18)

θ∗G(x) =


θ∗g11

(x) · · · θ∗g1p
(x)

...
. . .

...

θ∗gp1
(x) · · · θ∗gpp

(x)

 ,
θ∗gi j
= arg min

θgi j ∈R
∏n

k=1 qk

[
sup
x∈Dx

∣∣∣∣ĝi j

(
x
∣∣∣ θgi j

)
− gi j(x)

∣∣∣∣] , (4.19)

where i, j = 1, 2, · · · , p, Dx is a compact set and the
nonlinear functions fi(x) and gi j(x) are approximated by
fuzzy systems Eqs (4.16) and (4.17) over Dx. Notice that θ∗fi
and θ∗gi j

in θF(x) and θG(x) are artificial constant quantities
only in the analytical meaning.

Define parameter estimation errors as:

θ̃F = θ
∗
F − θF , θ̃G = θ

∗
G − θG, (4.20)

because of

θ̃ fi = θ
∗
fi − θ fi , θ̃gi j = θ

∗
gi j
− θgi j

and minimum fuzzy approximation errors as

ϑF = F(x) − F̂
(
x
∣∣∣ θ∗F) , ϑG = G(x) − Ĝ

(
x
∣∣∣ θ∗G)

, (4.21)

because of

ϑ fi (x) = fi(x) − f̂i
(
x
∣∣∣ θ∗fi)

and

ϑgi j (x) = gi j(x) − ĝi j

(
x
∣∣∣∣ θ∗gi j

)
,

which are corresponding to the parameters in Eq (4.20).

In this case, since Dx is a compact set, assume that Dx is
large enough to remain state variables in Dx. Accordingly, it
is reasonable for each minimum approximation error bound
for each x ∈ Dx as follows:∣∣∣∣ϑ fi (x)

∣∣∣∣ ≤ ϑ fi ,
∣∣∣∣ϑgi j (x)

∣∣∣∣ ≤ ϑgi j (x), (4.22)
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∀x ∈ Dx, i, j = 1, 2, · · · , p,

where ϑ fi and ϑgi j are known constants as bounds.
Denote

ϑF(x) = (ϑ f1 (x), · · · , ϑ fp (x))T ∈ Rp,

ϑF = (ϑ f1 , · · · , ϑ fp )T ∈ Rp,

ϑG(x) =


ϑg11 (x) · · · ϑg1p (x)
...

. . .
...

ϑgp1 (x) · · · ϑgpp (x)

 ∈ Rp×p,

ϑG =


ϑ11 · · · ϑ1p
...
. . .

...

ϑp1 · · · ϑpp

 ∈ Rp×p,

then we obtain

F(x) − F̂ (x | θF) = F̂
(
x
∣∣∣ θ∗F) − F̂ (x | θF) + ϑF(x), (4.23)

G(x) − Ĝ (x | θG) = Ĝ
(
x
∣∣∣ θ∗G)

− Ĝ (x | θG) + ϑG(x). (4.24)

Next, by using the FRM approximation models F̂ (x | θF)

and Ĝ (x | θG) in Eq (4.9), respectively, the global FRM
model of the fuzzy controller is obtained

u = uc (x | θF , θG)

= Ĝ−1 (x | θG)
[
−F̂ (x | θF) + v + K0s

]
. (4.25)

Generally, it should guarantee that Ĝ (x | θG) is always
nonsingular because when Ĝ (x | θG) is singular the certainty
equivalent controller (4.25) is not well defined. As Ĝ (x | θG)

is defined by the online estimation parameter θG, suitable
matrix parameters θG have to be chosen in a feasible region
to guarantee that Ĝ (x | θG) is regular and nonsingular to
implement this controller. For solving this problem, the
design of the certainty controllers in Eq (4.25) is modified
as follows:

uc =ĜT (x | θG))
[
ϑ0Ip + Ĝ (x | θG) ĜT (x | θG)

]−1[
−F̂ (x | θF) + v + K0s

]
, (4.26)

where the compensation parameter ϑ0 is a small positive
real number. Correspondingly, the regularized inverse of
Ĝ−1 (x | θG) defined as

ĜT (x | θG))
[
ϑ0Ip + Ĝ (x | θG) ĜT (x | θG)

]−1
. (4.27)

Hence, even though Ĝ (x | θG) is singular, Eq (4.27) is
defined well and, therefore, the control signal in Eq (4.26)
guarantees to be always well defined.

Factually, in the closed-loop system, the stability cannot
be guaranteed even though Eq (4.26) is always defined
well. It is due to both the approximation of Ĝ (x | θG) by
the regularized inverse and the reconstruction errors of the
unknown functions F(x) and G(x). Hence, in order to cancel
these approximation errors, an appending control term ur is
considered in Eq (4.26) as follows:

u = uc + ur. (4.28)

The controller in Eq (4.26) can be the summation of both
control parts: a modified certainty equivalent control signal
uc in Eq (4.26) and an adjusting control term ur, where

ur =

s
∣∣∣∣sT

∣∣∣∣ (ϑF + ϑG

∣∣∣∣uc

∣∣∣∣ + ∣∣∣∣u0

∣∣∣∣)
σ0

∥∥∥∥s
∥∥∥∥2
+ δ

, (4.29)

where u0 can be obtained by

u0 =ϑ0

[
ϑ0Ip + Ĝ (x|θG) ĜT (x|θG)

]−1[
−F̂ (x|θF) + v + K0s

]
, (4.30)

and δ is a time-varying parameter defined below.

Eventually, to minimize the tracking error e(t) and the
parameter estimation errors θ̃F and θ̃G, according to the
Lyapunov synthesis approach [6], the adaptive parameters
θ fi , θgi j and the design parameter δ are updated by the
adaptive laws as follows:

θ̇ fi = −ζ fiξ fi (x)si,

θ̇gi j = −ζgi jηgi j (x)siuc j ,

δ̇ = −ζ0

∣∣∣∣sT
∣∣∣∣ (ϑF + ϑG

∣∣∣∣uc

∣∣∣∣ + ∣∣∣∣u0

∣∣∣∣)
σ0

∥∥∥∥s
∥∥∥∥2
+ δ

, (4.31)

where

i, j = 1, 2, · · · , p, ζ fi > 0, ζgi j > 0, ζ0 > 0

and δ(0) > 0.
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4.4. Lyapunov analysis of adaptive FRM controllers

On basis of the analysis process above, the following
theorem can be obtained.

Theorem 4.1. Suppose that A1 and A2 are satisfied for

Eq (4.1) as two assumptions. The control law Eq (4.28)

together with adaptation laws in Eq (4.31) guarantees the

properties:

(1) All signals are bounded in the closed-loop system.

(2) The tracking errors and its derivatives decrease to zero

asymptotically.

Proof. The time derivatives of the filtered errors can be
written as follows by substituting Eq (4.28) into Eq (4.8),

ṡ =v − F(x) −
(
G(x) − Ĝ (x | θG)

)
uc

− Ĝ (x | θG) uc −G(x)ur. (4.32)

Using the control term Eqs (4.26)–(4.29), we obtain

ṡ = −K0s −
(
F(x) − F̂ (x | θF)

)
−

(
G(x) − Ĝ (x | θG)

)
uc + u0 −G(x)ur. (4.33)

Here, we have used the fact that

Ĝ (x | θG) ĜT (x | θG)
[
ϑ0Ip + Ĝ (x | θG) ĜT (x | θG)

]−1

= Ip − ϑ0

[
ϑ0Ip + Ĝ (x | θG) ĜT (x | θG)

]−1
. (4.34)

From Eqs (4.23) and (4.24), one can write Eq (4.33) as

ṡ = − K0s −
(
F̂

(
x
∣∣∣ θ∗F) − F̂ (x | θF)

)
−

(
Ĝ

(
x
∣∣∣ θ∗G)

− Ĝ (x | θG)
)

uc

−G(x)ur + u0 − ϑF(x) − ϑG(x)uc. (4.35)

Left multiply sT to Eq (4.35) to obtain

sT ṡ = − sT K0s −
p∑

i=1

ξTfi (x)θ̃ fi si −

p∑
i=1

p∑
j=1

ηT
gi j

(x)θ̃gi j siuc j

− sT G(x)ur + sT u0 − sTϑ fi (x) − sTϑgi j (x)uc. (4.36)

The target for an adaptation law is to adjust both θF and
θG so that e(t), θF −θ∗F and θG −θ∗G are minimized. Now, let’s
consider the following Lyapunov function

V =
1
2

sT s +
1
2

p∑
i=1

1
ζ fi
θ̃Tfi θ̃ fi

+
1
2

p∑
i=1

p∑
j=1

1
ζgi j

θ̃Tgi j
θ̃gi j +

1
2ζ0
δ2, (4.37)

whose time derivative can be given by

V̇ = sT ṡ −
p∑

i=1

1
ζ fi
θ̃Tfi θ̇ fi −

p∑
i=1

p∑
j=1

1
ζgi j

θ̃Tgi j
θ̇gi j +

1
ζ0
δδ̇, (4.38)

which can be expressed with Eq (4.36) as

V̇ = −sT K0s + V̇1 + V̇2, (4.39)

where

V̇1 = −

p∑
i=1

θ̃Tfi

(
ξ fi (x)si +

1
ζ fi
θ̇ fi

)

−

p∑
i=1

p∑
j=1

θ̃Tgi j

(
ηgi j (x)siuc j +

1
ζgi j

θ̇gi j

)
, (4.40)

V̇2 = −sT G(x)ur + sT u0 − sTϑF(x)

−sTϑG(x)uc +
1
ζ0
δδ̇. (4.41)

Substitute Eqs (4.21) and (4.22) into Eq (4.31), then

V̇1 = 0. (4.42)

Using Eqs (4.22) and (4.29), we can obtain

sT G(x)ur ≥

∣∣∣∣sT
∣∣∣∣ (ϑF + ϑG

∣∣∣∣uc

∣∣∣∣ + ∣∣∣∣u0

∣∣∣∣)

−

δ
∣∣∣∣sT

∣∣∣∣ (ϑF + ϑG

∣∣∣∣uc

∣∣∣∣ + ∣∣∣∣u0

∣∣∣∣)
σ0

∥∥∥∥s
∥∥∥∥2
+ δ

(4.43)

as the following inequality is used,

sT G(x)s ≥ σ0

∥∥∥∥s
∥∥∥∥2
, (4.44)

which is from assumption A1, i.e., G(x) is assumed to be a
positive definite and satisfies G(x) ≥ σ0Ip.

Therefore,

V̇2 ≤ −sT G(x)ur +
∣∣∣∣sT

∣∣∣∣ (ϑF + ϑG

∣∣∣∣uc

∣∣∣∣ + ∣∣∣∣u0

∣∣∣∣) + 1
ζ0
δδ̇. (4.45)

By substitute Eq (4.43), Eq (4.45) becomes

V̇2 ≤

δ
∣∣∣∣sT

∣∣∣∣ (ϑF + ϑG

∣∣∣∣uc

∣∣∣∣ + ∣∣∣∣u0

∣∣∣∣)
σ0

∥∥∥∥s
∥∥∥∥2
+ δ

+
1
ζ0
δδ̇, (4.46)
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then by using Eq (4.31) in Eq (4.46), we obtain

V̇2 ≤ 0. (4.47)

Finally, we obtain

V̇ ≤ −sT K0s = −
p∑

i=1

k0is2
i . (4.48)

As a result, V̇ is semi-definite negative and V ∈ L∞,
which means that the parameters si(t), θ̃ fi (t) and θ̃gi j (t)
are bounded. i.e., θF , θG, x(t), u(t) and s(t) are L2 bounded.
θ fi (t) and θgi j (t), ṡ(t) as V(t) is a bounded nonincreasing
function,

lim
t→∞

V(t) = V(∞)

exists and we develop∫ ∞

o

p∑
i=1

k0is2
i (t)dt ≤ V(0) − V(∞) < ∞. (4.49)

From Eq (4,49) we know si(t) ∈ L2, and by using Barbalat’s
lemma [35], si(t) ∈ L2 ∩ L∞ and ṡi(t) ∈ L∞, it is obvious that
si(t) → 0 as t → ∞. Hence, there exists that e( j)

i (t) → 0 as
t → ∞ for i = 1, 2, · · · , p and j = 1, 2, · · · , ri − 1.

Now, we can see the singularity problem is avoided
effectively by the control law Eq (4.28), which is always well
defined. □

4.5. Procedure of MIMO adaptive FRM controllers

According to the above description on analysis and
synthesis in Sections 4.2–4.4, the detailed procedure to
design an indirect adaptive FRM controller is summarized
for multivariable nonlinear systems. The properties of
closed-loop adaptive fuzzy control systems will be further
discussed.

Step 1: The necessary offline initial design processes:

• Specify a MIMO plant and its input, output
and state variables and the adjusting parameters
u(t), y(t), x(t), F(t), G(t), θF , θG, etc.

• Specify suitable parameters to guarantee the matrix
Ĝ(x, θg) nonsingular.

• According to the limits of practical variables, determine
the design constraints of parameters Mx,Mθ,Mu, etc.

Step 2: Modeling of initial FRM controllers:

• Specify the UOD Dx for the state vector, construct the
fuzzy logical rules of each unknown functions fi and
gi j, i, j = 1, 2, · · · , p.

• Design FRM models for all fi and gi j and then combine
them into the global FRM models for F(x) and G(x),
respectively.

• Calculate the maximum values of both µEl1 l2 ···ln

and µHl1 l2 ···ln for ξ fi (x) and ηgi j (x), and then collect
them into θ fi (0) and θgi j (0), respectively. Therefore,
f̂
(
x
∣∣∣ θ fi

)
and ĝ

(
x
∣∣∣ θgi j

)
are obtained as Eqs (4.14)

and (4.15).

• Construct the initial global FRM models F̂ (x | θF) and
Ĝ (x | θG) in Eqs (4.16) and (4.17).

Step 3: Online adaptive control processes:

• Import the adaptation feedback control laws Eqs (4.28)
and (4.31) to the plant Eq (4.1).

• Online adjust the matrix parameter vectors θF and θG
by the adaptive laws until the desired output tracking
accuracy is obtained.

In summary, the structure of global FRM models using
the proposed MIMO indirect adaptive fuzzy control system
is shown in Figure 3. Generally, fuzzy IF-THEN rules
in Eqs (4.12) and (4.13) are combined with the initial
parameters θ fi (0) and θgi j (0), and then it will be considered as
adaptive FRM models in the design procedure for F̂ (x | θF)

and Ĝ (x | θG). Finally, to investigate the performance of
the adaptive FRM control systems based on fuzzy STP,
the following remarks about the MIMO system analysis is
given.

Figure 3. The MFs of state variable of the inverted
pendulum system.
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Remark 4.1. The assumptions A1 and A2 and appending

control terms ur in Eq (4.28) guarantee that Eq (4.26) is

always defined well.

Remark 4.2. Theorem 4.1 is the original control objective

such that the multiple-variable plant outputs y and follows

the ideal outputs yd, so the global matrix design of the

adaptive FRM system is achieved.

Remark 4.3. In practical systems, there exists constraints

for the state and control variables within certain regions.

Moreover, it is much more complex for real control problems

than the plant in Eqs (4.1)–(4.3), so it is only the first trial

to describe the MIMO adaptive FRM fuzzy controller for us

based on fuzzy STP operations. There are many works to be

done for our research group in the future.

5. Simulation results

In this section, the tracking control of a two-link
rigid robot manipulator moving a horizontal plane [34] is
employed to test the design of the proposed indirect fuzzy
adaptive FRM systems. First, the dynamic equation is as
follows:(

q̈1

q̈2

)
=

M11 M12

M21 M22

−1 (u1

u2

)
−

−hq̇2 −h (q̇1 + q̇2)

hq̇1 0

 (q̇1

q̇2

) , (5.1)

where

M11 = a1 + 2a3 cos(q2) + 2a4 sin(q2),

M12 = M21 = a2 + a3 cos(q2) + a4 sin(q2),

M22 = a2,

h = a3 sin(q2) − a4 cos(q2)

with

a1 = I1 + m1l2c1 + Ie + mel2ce + mel21,

a2 = Ie + mel2ce,

a3 = mel1lce cos δe,

a4 = mel1lce sin δe.

In this case, the following parameters are chosen:

le = 0.25, δe = 30o, l1 = 1, lc1 = 0.5,

lce = 0.6, I1 = 0.12, m1 = 1,me = 2.

Denote

x =
[
q1, q̇1, q2, q̇2

]T , u = [u1, u2]T , y =
[
q1, q2

]T

and

F(x) =
(

f1(x)
f2(x)

)
= −M−1

−hq̇2 −h (q̇1 + q̇2)

hq̇1 0

 (q̇1

q̇2

)
,

G(x) =

g11(x) g12(x)
g21(x) g22(x)

 = M−1

=

M11 M12

M21 M22

−1

,

and the following matrix model of the robot system is
obtained by

ÿ = F(x) +G(x)u. (5.2)

According to the specified parameters in Eq (5.1), it is
obvious for M to be definite positive so it is regular, then
G = M−1 is definite positive. The control objective is to
track the following desired trajectories, respectively, for the
output y =

[
q1, q2

]
yd1(t) = sin(t), yd2(t) = sin(t).

In this case, the dynamic model of the robot system is only
required for simulation purposes. Both F(x) and G(x) are
supposed to be completely unknown, then two fuzzy systems
in the form of Eq (4.12) are used to approximate F(x), and
four to approximate G(x), respectively.

For state variable

x =
[
q1, q̇1, q2, q̇2

]T

as the inputs of FRM models, the following Gaussian MFs
are defined for each state and the corresponding MFs are
shown in Figure 3

µA1
i
(xi) = exp

−1
2

(
xi + 1.25

0.6

)2 ,
µA2

i
(xi) = exp

[
−

1
2

( xi

0.6

)2
]

and

µA3
i
(xi) = exp

−1
2

(
xi − 1.25

0.6

)2 , i = 1, · · · , 4.

The initial condition of the robot tracking control is set to
be

x(0) = (0.5, 0, 0.25, 0)T ,
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and both initial θ f (0) and θg(0) are set to be zero. The
following parameters are designed for the tests

λ1 = 20, λ2 = 20, k0 = 5I2, k1 = 20,

ε0 = 0.1, η fi = 0.5, ηgi j = 0.5, γ0 = 0.001,

ε̂u(0) = 0, ε̂ fi (0) = 0, ε̂gi j (0) = 0, η0i = 0.001

and δ(0) = 1, for i, j = 1, 2.

The simulation is shown for tracking results in Figures 4
and 5, respectively.

Figure 4. The tracking results of y1 = q1.

Figure 5. The tracking results of y2 = q2.

Figure 6. The control variables of the robot
tracking system.

These simulation results show that both outputs y1 and y2
tracked the objective sinusoid curves in five seconds under
the control of the proposed FRM-based adaptive controller.
At the same time, the control input signals are smooth, as
shown in Figure 6, to realize the output tracking control.
Hence, the tests on system Eq (5.1) demonstrate the tracking
ability of the proposed FRM controller as effective based on
STP algorithms in uncertain nonlinear systems.

6. Conclusions

A global matrix expression of the adaptive fuzzy
controller was formulated for MIMO nonlinear systems
based on local FRM models and fuzzy STP algorithms
in this paper. The MIMO adaptive fuzzy control laws
were developed on basic local FRM models with unknown
functions, then the tracking performance was guaranteed
through the Lyapunov stability analysis. Moreover, global
FRM models and uniform bound for all variables were
obtained. The simulation results for the two-link rigid
robot manipulator show the effective tracking control and
the good performance of the adaptive FRM control strategy.
In future work, more advanced algorithms related to matrix
expression of fuzzy strategies will be applied to MIMO non-
linear adaptive systems on the basis of the FRM models and
fuzzy STP algorithms.
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