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Abstract: This paper investigated the Kronecker product (KP) decomposition of the Boolean matrix and analyzed the topological
structure of Kronecker product Boolean networks (KPBNs). First, the support matrix set of the Boolean matrix consisting of support
matrices was defined. Second, a verifiable condition was presented for the KP decomposition of the Boolean matrix based on the support
matrices. Third, the equivalence of KP decomposition between the Boolean matrix and support matrix set was established. Finally, the
KP decomposition of Boolean matrix was used to analyze the topological structure of KPBNs. It was shown that the topological structure
of KPBNs can be determined by that of the factor of Boolean networks (BNs).
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1. Introduction

Matrix decomposition is an important tool in data
analysis and processing. As a typical matrix decomposition
technique, the concept of nonnegative matrix factorization
was first proposed in [1] for the purpose of dimensionality
reduction. Since then, nonnegative matrix factorization
has found many applications such as data storage [2],
signal processing [3], information retrieval [4] and neural
network [5]. Specifically, when the considered nonnegative
matrices are Boolean matrices, the goal of Boolean matrix
decomposition is to decompose a Boolean matrix into two
Boolean matrices based on Boolean algebra [6, 7]. There
exist several feasible algorithms for the implementation of
Boolean matrix decomposition [8,9], which are used in data
engineering [7] and gene expression [10]. Logical matrix
factorization [11] was developed to explore the topological
structure of BNs.

Besides the nonnegative matrix factorization, there
is another matrix decomposition method called KP
decomposition. KP is an important matrix operation that
generates a large block matrix by the KP of two or more

smaller factor matrices. KP decomposition method has been
applied to graph theory [12–14] and finite field [15, 16].
Furthermore, it can be used to model the complex systems
in biology and social networks via large KP networks [17].
Here, KP networks are composite networks of small factor
networks by using the KP operation, and one can get insights
about the properties of KP networks from factor ones [18].
Hence, it is important to obtain the factor networks based
on the KP decomposition or KP approximation [19, 20]. To
the best of our knowledge, there are fewer results on the KP
decomposition of the Boolean matrix. As a special kind of
Boolean matrices, the KP decomposition of logical matrix
was analyzed in [21].

Inspired by [11, 21], this paper investigates the KP
decomposition of the Boolean matrix. Compared with [21],
this paper presents a more general result on the KP
decomposition of the Boolean matrix, which can be used
to decompose a graph represented by the Boolean matrix.
It is noted that the KP decomposition of logical matrix
considered in [21] is a special case. Since the adjacency
matrix of the network graph is a kind of Boolean matrix,
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the KP decomposition of Boolean matrix can be used to
decompose graphs. Based on this, this paper analyzes
the topological structure of KPBNs, which are composite
networks obtained by applying the KP operation to some
smaller BNs called factor BNs. Since the introduction of the
semi-tensor product of matrices [22], a BN can be converted
into an algebraic form conveniently by calculating its unique
state transition matrix [23, 24]. Some recent development
of BNs can be found in [25–29]. In addition, there are
excellent works focusing on large-scale BNs [30, 31] and
finite-field networks [32, 33]. With the help of algebraic
representation, the state transition matrix of KPBN is the
KP of state transition matrices for factor BNs. Thus, a large
BN can be decomposed into KP of several smaller BNs if
its state transition matrix can be decomposed into KP of
several state transition matrices. This process is based on
the KP decomposition of the Boolean matrix, since the state
transition matrix is a special BN. As a result, the dimension
of the large BN can be reduced.

In this paper, we first define the support matrix set of
the Boolean matrix, which contains the full information of
the Boolean matrix, then, we present a verifiable condition
for the KP decomposition of the Boolean matrix. As an
application, we use the results on the KP decomposition of
the Boolean matrix to analyze the topological structure of
KPBNs. The notations we used are shown in Table 1.

Table 1. Notations.

Notations Definitions

Rk Set of k-dimensional real column vectors
Bm×n Set of m × n Boolean matrices
(X)i i-th element of column vector X

Coli(A) i-th column of matrix A

Row j(A) j-th row of matrix A

(A)i, j (i, j)-th element of matrix A

D D := {0, 1}
Dn Dn := D× · · · × D︸         ︷︷         ︸

n

δin i-th column of In

∆n ∆n := {δ1n, · · · , δ
n
n}

Lm×n set of m × n logical matrices
⊗ KP operator
⊕ Boolean addition operator inD

The rest of this paper is organized as follows: Section 2
gives some useful preliminaries. Section 3 presents the
formulation of problem. Section 4 investigates the KP
decomposition of the Boolean matrix, which is applied to
analyze the topological structure of KPBNs in Section 5.
Section 6 is a brief conclusion.

2. Preliminaries

The basic operations used in this paper are Boolean
addition and KP of Boolean matrices [34, 35], denoted by
⊕ and ⊗, respectively.

Definition 2.1. [34] The Boolean addition of two Boolean

matrices

A = (ai, j) ∈ Bm×n

and

B = (bi, j) ∈ Bm×n

is

A ⊕ B =


a1,1 ⊕ b1,1 · · · a1,n ⊕ b1,n
...

...
...

am,1 ⊕ am,1 · · · am,n ⊕ bm,n

 ∈ Bm×n. (2.1)

Definition 2.2. [35] The KP of two Boolean matrices

A = (ai, j) ∈ Bm×n

and

B = (bi, j) ∈ Bp×q

is

A ⊗ B =


a1,1B · · · a1,nB
...

...
...

am,1B · · · am,nB

 ∈ Bmp×nq. (2.2)

The following is the distribution law of Boolean matrix in
terms of Boolean addition and KP.

Lemma 2.1. Let

A = (ai, j) ∈ Bm×n, B = (bi, j) ∈ Bp×q

and

C = (ci, j) ∈ Bp×q,

then
A ⊗ (B ⊕C) = A ⊗ B ⊕ A ⊗C,

(B ⊕C) ⊗ A = B ⊗ A ⊕C ⊗ A.
(2.3)
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For a Boolean matrix A = (ai, j) ∈ Bm×n, we are interested
in its nonzero elements. The support set of A is defined as

S upp(A) = {(i, j) : ai, j = 1, i = 1, · · · ,m; j = 1, · · · , n},

which contains the indices of nonzero elements in A. For
any (i, j) ∈ S upp(A), we construct a matrix E(i, j)

m×n ∈ Bm×n by
fixing the (i, j)-th element as one and the remaining elements
as zero. E(i, j)

m×n is said to be a support matrix of A. Let

S A = {E
(i, j)
m×n : (i, j) ∈ S upp(A)}

be the set of support matrices for A, which is called the
support matrix set of A.

Remark 2.1. Based on the support matrix set, it is obvious

that

A =
⊕

(i, j)∈S upp(A)

E(i, j)
m×n, (2.4)

which reveals the relation between Boolean matrix A and its

support matrix set S A.

Lemma 2.2. Given A ∈ Bm×n and B ∈ Bp×q, then the KP of

support matrices E(i, j)
m×n ∈ S A and E(k,l)

p×q ∈ S B is

E(i, j)
m×n ⊗ E(k,l)

p×q = E((i−1)p+k,( j−1)q+l)
mp×nq . (2.5)

With the help of Lemma 2.2, the KP of two support matrix
sets is defined below.

Definition 2.3. Let the support matrix sets of A ∈ Bm×n and

B ∈ Bp×q be

S A = {E
(i, j)
m×n : (i, j) ∈ S upp(A)}

and

S B = {E
(k,l)
p×q : (k, l) ∈ S upp(B)},

respectively, then the KP of S A and S B is

S A ⊗ S B = {E
((i−1)p+k,( j−1)q+l)
mp×nq : (i, j)

∈ S upp(A), (k, l) ∈ S upp(B)}.

3. Problem formulation

In this paper, we aim to investigate the KP decomposition
of the Boolean matrix, which is defined as follows.

Definition 3.1. Boolean matrix C ∈ Bmp×nq is said to be

KP decomposable with respect to (m, n) if there exist two

Boolean matrices A ∈ Bm×n and B ∈ Bp×q such that C =

A ⊗ B.

Remark 3.1. As a special Boolean matrix E(α,β)
mp×nq ∈ S C , if

it is KP decomposable with respect to (m, n), then

E(α,β)
mp×nq = E(i, j)

m×n ⊗ E(k,l)
p×q,

where α = (i − 1)p + k, and β = ( j − 1)q + l.

The basic idea of analyzing KP decomposition for
Boolean matrix C is to convert it into the KP decomposition
of support matrices in S C . To this end, we define the KP
decomposition of the support matrix set.

Remark 3.2. Let C ∈ Bmp×nq be given. S C is said to be KP

decomposable with respect to (m, n), if there exist A ∈ Bm×n

and B ∈ Bp×q such that S C = S A ⊗ S B.

Note that C ∈ Bmp×nq can be expressed in the form
of (2.4), then, with respect to (m, n), C is KP decomposable,
if all support matrices in S C are KP decomposable. By
analyzing the KP decomposition of support matrices in
S C , we aim to obtain a verifiable condition for the KP
decomposition of C ∈ Bmp×nq. In addition, with respect
to (m, n), it is obvious that S C is KP decomposable when
each E(α,β)

mp×nq ∈ S C is KP decomposable. Hence, the
KP decomposition of C and KP decomposition of S C are
equivalent.

As an application of KP decomposition for the Boolean
matrix, we investigate the KP decomposition of large-scale
BNs. To this end, we need to recall BNs and semi-tensor
product of matrices.

Consider the following BN:
x1(t + 1) = f1(x1(t), · · · , xn(t)),

...

xn(t + 1) = fn(x1(t), · · · , xn(t)),

(3.1)

where xi ∈ D is a logical state variable and fi: Dn → D is a
logical function, i = 1, · · · , n.

Cheng and Qi [24] introduced the semi-tensor product of
matrices and converted system (3.1) into an algebraic form
as

x(t + 1) = Lx(t), (3.2)
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where

x(t) = ⋉n
i=1xi(t) ∈ ∆2n ,

and

L = δ2n [i1, · · · , i2n ] ∈ L2n×2n

is called the state transition matrix of system (3.1).

It is a basic issue to study the topological structure of BNs,
including fixed points and cycles. A state xe ∈ ∆2n is said to
be a fixed point of system (3.1) if Lxe = xe. A set of different
points {x1, · · · , xl} ∈ ∆2n is said to be a cycle of system (3.1)
with length l, if xk+1 = Lxk holds for any k = 1, · · · , l−1 and
xl+1 = x1.

It is worth noting that Cheng and Qi [24] proposed a
method to figure out the number of fixed points and cycles
on the basis of state transition matrix L. However, L

is a logical matrix with dimension 2n × 2n, which grows
exponentially. To ease the computation burden, a potential
idea is to decompose L into the KP of two state transition
matrices with smaller dimensions. Keeping this procedure
going, we finally obtain the KP of several transition matrices
with the smallest dimensions. Hence, we develop a kind
of new BNs, called KPBNs, generated by KP of two state
transition matrices for two smaller BNs.

Let

x(t + 1) = L1x(t) (3.3)

and

y(t + 1) = L2y(t) (3.4)

be the algebraic forms of two small BNs, where x(t) ∈ ∆2nx ,
y(t) ∈ ∆2ny , L1 ∈ L2nx×2nx and L2 ∈ L2ny×2ny are state
transition matrices of systems (3.3) and (3.4), respectively.
Setting

L = L1 ⊗ L2 ∈ L2nx+ny×2nx+ny ,

then the KPBN generated by systems (3.3) and (3.4), can be
described as

z(t + 1) = Lz(t), (3.5)

where

z(t) = x(t) ⊗ y(t) ∈ ∆2nx+ny .

Systems (3.3) and (3.4) are called factor BNs of KPBN (3.5).

Based on the method of KP decomposition for the
Boolean matrix, we aim to analyze the topological structure
of KPBNs by studying factors of the BNs.

4. KP decomposition of Boolean matrix

In this section, we investigate the KP decomposition of the
Boolean matrix. First, we analyze the KP decomposition of
support matrix and give a necessary and sufficient condition.
Based on this, we present a verifiable condition for the KP
decomposition of Boolean matrix. Second, we reveal the
relation between KP of Boolean matrices and their support
matrix sets, and propose an equivalent condition for KP
decomposition of the Boolean matrix, which is useful to
obtain the decomposed Boolean matrices.

From Remark 2.1, the KP decomposition of C ∈ Bmp×nq

can be converted into KP decomposition of E(α,β)
mp×nq ∈ S C .

Hence, we establish a theorem to verify whether a support
matrix E(α,β)

mp×nq ∈ S C is KP decomposable with respect to
(m, n).

Theorem 4.1. Given a support matrix E(α,β)
mp×nq ∈ S C , E(α,β)

mp×nq

is KP decomposable with respect to (m, n) if, and only if,

there exists a set of integers i ∈ {1, · · · ,m}, j ∈ {1, · · · , n},
k ∈ {1, · · · , p} and l ∈ {1, · · · , q} such that α = (i − 1)p + k,

β = ( j − 1)q + l.
(4.1)

Proof. (Necessity) Suppose that E(α,β)
mp×nq can be decomposed

as the following form:

E(α,β)
mp×nq = E(i, j)

m×n ⊗ E(k,l)
p×q.

By Lemma 2.2, we have

α = (i − 1)p + k

and
β = ( j − 1)q + l.

In addition, i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}, k ∈ {1, · · · , p} and
l ∈ {1, · · · , q}.

(Sufficiency) Suppose that there exists a set of integers i ∈

{1, · · · ,m}, j ∈ {1, · · · , n}, k ∈ {1, · · · , p} and l ∈ {1, · · · , q}
satisfying (4.1). According to Lemma 2.2, E(α,β)

mp×nq can be
decomposed as

E(α,β)
mp×nq = E(i, j)

m×n ⊗ E(k,l)
p×q.

□
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Remark 4.1. With respect to (m, n), the KP decomposition

of E(α,β)
mp×nq is unique when E(α,β)

mp×nq ∈ S C is KP decomposable.

Now, we present a verifiable condition for the KP

decomposition of the Boolean matrix based on Theorem 4.1.

Theorem 4.2. Let C ∈ Bmp×nq be given, then, with respect

to (m, n), C is KP decomposable if, and only if, any E(α,β)
mp×nq ∈

S C is KP decomposable.

When C ∈ Bmp×nq is KP decomposable with respect

to (m, n), the decomposition is unique, then, we need to

determine A ∈ Bm×n and B ∈ Bp×q satisfying C = A⊗B. For

this purpose, we uncover the relation between KP of Boolean

matrices and their support matrix sets.

Proposition 4.1. Let the support matrix sets of A ∈ Bm×n

and B ∈ Bp×q be

S A = {E
(i, j)
m×n : (i, j) ∈ S upp(A)}

and

S B = {E
(k,l)
p×q : (k, l) ∈ S upp(B)},

respectively, then the support matrix set of A ⊗ B is

S A⊗B = S A ⊗ S B

= {E((i−1)p+k,( j−1)q+l)
mp×nq : (i, j) ∈ S upp(A), (k, l) ∈ S upp(B)}.

Proof. According to (2.4), we have

A =
⊕

(i, j)∈S upp(A)

E(i, j)
m×n

and
B =

⊕
(k,l)∈S upp(B)

E(k,l)
p×q.

From Lemmas 2.1 and 2.2, we can obtain

A ⊗ B =
( ⊕

(i, j)∈S upp(A)

E(i, j)
m×n

)
⊗
( ⊕

(k,l)∈S upp(B)

E(k,l)
p×q

)
=

⊕
(i, j)∈S upp(A)

⊕
(k,l)∈S upp(B)

(
E(i, j)

m×n ⊗ E(k,l)
p×q

)
=

⊕
((i−1)p+k,( j−1)q+l)∈S upp(A⊗B)

(
E((i−1)p+k,( j−1)q+l)

mp×nq

)
,

where

((i − 1)p + k, ( j − 1)q + l) ∈ S upp(A ⊗ B)

is clearly derived by the definition of the support set. Thus,
E((i−1)p+k,( j−1)q+l)

mp×nq is the support matrix in S A⊗B for any (i, j) ∈
S upp(A) and any (k, l) ∈ S upp(B). Therefore, we have
S A⊗B = S A ⊗ S B by Definition 2.3. □

Proposition 4.1 indicates that the support matrix set S C

can be decomposed as KP of two support matrix sets S A

and S B if, and only if, C ∈ Bmp×nq can be decomposed
as C = A ⊗ B. In other words, with respect to KP, the
decomposed support matrix sets S A and S B can determine
the decomposed matrices A and B based on (2.4).

Proposition 4.2. Let the support matrix set of C ∈ Bmp×nq

be

S C = {E
(α,β)
mp×nq : (α, β) ∈ S upp(C)},

then, with respect to (m, n), C = A⊗B is a KP decomposition

if, and only if,

S C = S A ⊗ S B

= {E(i, j)
m×n : (i, j) ∈ S upp(A)} ⊗ {E(k,l)

p×q : (k, l) ∈ S upp(B)}

is a KP decomposition, where

A =
⊕

(i, j)∈S upp(A)

E(i, j)
m×n

and

B =
⊕

(k,l)∈S upp(B)

E(k,l)
p×q.

Remark 4.2. Note that a Boolean matrix can be

decomposed into more than two Boolean matrices, if the

decomposed matrices are still KP decomposable.

We give a simple example to show the process of using the

obtained results to decompose a Boolean matrix with respect

to KP.

Example 4.1. Given a Boolean matrix

C =



0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0


∈ B6×9, (4.2)

we discuss whether C ∈ B6×9 can be decomposed into the

KP of two Boolean matrices with respect to (2, 3).

First, one can obtain

S C ={E
(1,4)
6×9 , E

(1,7)
6×9 , E

(2,5)
6×9 , E

(2,8)
6×9 , E

(3,5)
6×9 , E

(3,8)
6×9 ,

E(4,1)
6×9 , E

(4,7)
6×9 , E

(5,2)
6×9 , E

(5,8)
6×9 , E

(6,2)
6×9 , E

(6,8)
6×9 }.
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From Theorem 4.1, we conclude that all the support matrices
in S C are KP decomposable with respect to (2, 3) and

E(1,4)
6×9 = E(1,2)

2×3 ⊗ E(1,1)
3×3 , E

(1,7)
6×9 = E(1,3)

2×3 ⊗ E(1,1)
3×3 ,

E(2,5)
6×9 = E(1,2)

2×3 ⊗ E(2,2)
3×3 , E

(2,8)
6×9 = E(1,3)

2×3 ⊗ E(2,2)
3×3 ,

E(3,5)
6×9 = E(1,2)

2×3 ⊗ E(3,2)
3×3 , E

(3,8)
6×9 = E(1,3)

2×3 ⊗ E(3,2)
3×3 ,

E(4,1)
6×9 = E(2,1)

2×3 ⊗ E(1,1)
3×3 , E

(4,7)
6×9 = E(2,2)

2×3 ⊗ E(1,1)
3×3 ,

E(5,2)
6×9 = E(2,1)

2×3 ⊗ E(2,2)
3×3 , E

(5,8)
6×9 = E(2,2)

2×3 ⊗ E(2,2)
3×3 ,

E(6,2)
6×9 = E(2,1)

2×3 ⊗ E(3,2)
3×3 , E

(6,8)
6×9 = E(2,2)

2×3 ⊗ E(3,2)
3×3 ,

then, with respect to (2, 3), C is KP decomposable by
Theorem 4.2.

Suppose that C can be decomposed as C = A ⊗ B, where
A ∈ B2×3 and B ∈ B3×3, then we have S C = S A ⊗ S B, where

S A = {E
(1,2)
2×3 , E

(1,3)
2×3 , E

(2,1)
2×3 , E

(2,2)
2×3 }

and

S B = {E
(1,1)
3×3 , E

(2,2)
3×3 , E

(3,2)
3×3 }.

According to (2.4), we obtain

A = E(1,2)
2×3 ⊕ E(1,3)

2×3 ⊕ E(2,1)
2×3 ⊕ E(2,2)

2×3

and

B = E(1,1)
3×3 ⊕ E(2,2)

3×3 ⊕ E(3,2)
3×3 ,

that is,

A =

 0 1 1
1 1 0

 and B =


1 0 0
0 1 0
0 1 0

 .
5. Topological structure analysis of KPBNs

In this section, we explore the topological structure of
KPBNs, including fixed points and cycles, on the basis of
results obtained in Section 4.

We first present the process of characterizing the
topological structure of KPBNs by using graph theory. A
graph G = (V, E) consists of a set of vertices V = {v1, · · · , vn}

and a set of edges E ⊆ V×V.An edge (i, j) ∈ E if there exists
a directed path from vertex vi to vertex v j, denoted by vi →

v j. Note that a convenient representation of finite graphs is
an adjacency matrix. The adjacency matrix A(G) of graph G

is a matrix A(G) = (ai, j) such that ai, j = 1 if vi → v j and
ai, j = 0 otherwise. Apparently, the adjacency matrix A(G)

is a Boolean matrix. Additionally, the adjacency matrix
A(G) contains the interaction information between vertices
in the graph G. We consider fixed points as self-loops and
cycles with length l as directed cycles on l vertices, which
are denoted by graphs G1 and G2, respectively. Based on the
construction of KPBNs, it is natural to use the KP of graphs
to characterize the topological structure of KPBNs. For this
purpose, we recall the KP of graphs. For details, please refer
to [12].

Definition 5.1. [12] Let A(G1) and A(G2) be adjacency

matrices of graphs G1 and G1, respectively. The KP of

graphs G1 and G1, denoted by G1 ⊗ G2, is the graph with

adjacency matrix A(G1) ⊗ A(G2).

In order to characterize the KP of graphs, we denote the

vertex set of G1 ⊗G2 by

V = {(ik, jl) : k = 1, · · · , p; l = 1, · · · , q},

where G1 has vertex set V1 = {i1, · · · , ip} and G2 has vertex

set V2 = { j1, · · · , jq}.

As was shown in [21], the KP of p fixed points and a cycle

with length q is composed of p cycles with length q. Next, we

give a further analysis of topological structure for KPBNs.

Proposition 5.1. Suppose that system (3.3) has p fixed

points xe1 = δ
i1
2nx , · · · , xep = δ

ip

2nx and system (3.4) has q

fixed points ye1 = δ
j1
2ny , · · · , yeq = δ

jq
2ny , then KPBN (3.5) has

pq fixed points as follows:

zek,l = xek ⊗ yel = δ
αk,l

2nx+ny ,

where

αk,l = (ik − 1)2ny + jl, k = 1, · · · , p, l = 1, · · · , q.

Proof. By the definition of fixed points, we can obtain that
xek = L1xek and yel = L2yel hold for any k = 1, · · · , p and
any l = 1, · · · , q. Thus, we have

xek ⊗ yel = (L1xek ) ⊗ (L2yel )

= (L1 ⊗ L2)(xek ⊗ yel )

= L(xek ⊗ yel ),

which implies that zek,l = Lzek,l holds for any k = 1, · · · , p
and any l = 1, · · · , q. Thus, zek,l = δ

αk,l

2nx+ny is a fixed point of
KPBN (3.5). □
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The KP of fixed points can be obtained directly through
Proposition 5.1. However, when both systems (3.3) and (3.4)
have cycles, the topological structure of KPBN (3.5) is hard
to be figured out. For the convenience of analysis, we denote
two directed cycles with length p and q by C⃗p and C⃗q,
respectively.

Proposition 5.2. Given two directed cycles C⃗p and C⃗q

with vertex sets V1 = {i1, · · · , ip} and V2 = { j1, · · · , jq},

respectively, then the graph C⃗p ⊗ C⃗q with vertex set

V = {(ik, jl) : k = 1, · · · , p; l = 1, · · · , q}

is composed of unconnected directed cycles.

Proof. Let the adjacency matrices of directed cycles C⃗p and
C⃗q be A(C⃗p) and A(C⃗q), respectively, then it is easy to
see that A(C⃗p), A(C⃗q) and A(C⃗p) ⊗ A(C⃗q) are permutation
matrices; that is, for any vertex (ik, jl) ∈ V , its out-degree
and in-degree are exactly one. Obviously, there is no self-
loop in graph C⃗p ⊗ C⃗q. Now, we prove that any vertex
(ik, jl) ∈ V , (ik, jl) is exactly on one of the cycles in graph
C⃗p ⊗ C⃗q by a reduction to absurdity.

Suppose that there exists a vertex (ik0 , jl0 ) ∈ V , which is
not on any cycle in graph C⃗p⊗C⃗q. Without loss of generality,
we assume that there is only one such vertex. Since both out-
degree and in-degree of every vertex in C⃗p⊗C⃗q are one, there
must exist a vertex (ik1 , jl1 ) ∈ V such that (ik0 , jl0 )→ (ik1 , jl1 )
is a directed path in C⃗p ⊗ C⃗q. Noting that the vertex (ik1 , jl1 )
is on a directed cycle, there exists another vertex (ik2 , jl2 ) ∈
V on the cycle such that (ik2 , jl2 ) → (ik1 , jl1 ) is a directed
path. Thus, the in-degree of vertex (ik1 , jl1 ) is two, which is
contradictory to the fact that the in-degree of every vertex in
C⃗p ⊗ C⃗q is one.

Suppose that there exists a vertex (ik0 , jl0 ) ∈ V on two
connected but different cycles in C⃗p ⊗ C⃗q. We assume that
there is only one such vertex, then we have two vertices
(ik1 , jl1 ) and (ik2 , jl2 ) on the two cycles, respectively, such
that (ik1 , jl1 ) → (ik0 , jl0 ) and (ik2 , jl2 ) → (ik0 , jl0 ) are directed
paths, where (ik1 , jl1 ) , (ik2 , jl2 ). Thus, the in-degree of
vertex (ik0 , jl0 ) is two, which is also a contradiction.

Consequently, the graph C⃗p ⊗ C⃗q is composed of
unconnected directed cycles. □

Remark 5.1. Note that the number of unconnected

components for KP of two cycles is determined by the KP

of two adjacency matrices corresponding to the two directed

cycles. In addition, there exist results on the cases of

two special cycles. For detailed information, please refer

to [12].

To obtain a deeper understanding for the KP of directed
cycles, we need to recall some results on the connectivity
for KP of graphs. In [12], for undirected connected graphs
G1 and G2, G1 ⊗ G2 is connected if, and only if, either G1

or G2 contains an odd cycle. Here, a cycle is called odd
if it contains an odd number of vertices. Similarly, we call
a directed cycle with an odd number of vertices a directed
odd cycle. Combining with Proposition 5.2, we present a
proposition revealing the topological structure of KPBNs.

Proposition 5.3. Suppose that system (3.3) is stable at cycle

{δi12nx , · · · , δ
ip

2nx }, and system (3.4) is stable at cycle {δ j1
2ny , · · · ,

δ
jq
2ny }. If either p or q is odd, then KPBN (3.5) is stable at a

cycle with length pq.

Remark 5.2. For a large-scale BN, if the state transition

matrix can be decomposed into smaller ones with respect

to KP, then the topological structure can be described by

the KP of graphs representing the topological structure

of smaller BNs. Compared with [11], in which the

topological structure of size-reduced BNs and original ones

are identical, this paper presents a new perspective for

analyzing the topological structure of large-scale BNs with

lower dimensions.

Denote the two cycles in Proposition 5.3 by C⃗p and C⃗q,
respectively, then, the specific structure of cycle C⃗p ⊗ C⃗q

for KPBN (3.5) can be determined by the adjacency matrix
A(C⃗p) ⊗ A(C⃗q). We give a simple example to illustrate the
procedure.

Example 5.1. Consider systems (3.3) and (3.4), where

L1 = δ8[3, 2, 8, 4, 5, 6, 7, 1]

and

L2 = δ16[1, 3, 7, 3, 4, 5, 11, 8, 9, 10, 2, 4, 6, 10, 8, 9].

System (3.3) is stable at cycle {δ18, δ
3
8, δ

8
8}, while

system (3.4) is stable at cycle {δ216, δ
3
16, δ

7
16, δ

11
16}. The two

cycles are shown in Figure 1.
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(a) (b)

Figure 1. Cycles of systems (3.3) and (3.4) in
Example 5.1.

Let the cycles of systems (3.3) and (3.4) be represented
by directed cycles C⃗3 and C⃗4 with vertex sets V1 = {1, 3, 8}
and V2 = {2, 3, 7, 11}, respectively. The adjacency matrices
A(C⃗3) and A(C⃗4) are given below:

A(C⃗3) =


1 3 8

1 0 1 0
3 0 0 1
8 1 0 0

, A(C⃗4) =



2 3 7 11

2 0 1 0 0
3 0 0 1 0
7 0 0 0 1
11 1 0 0 0

.

By calculating A(C⃗) = A(C⃗3) ⊗ A(C⃗4), we can obtain the
specific structure in the cycle C⃗

(1, 2)→ (3, 3)→ (8, 7)→ (1, 11)→ (3, 2)→ (8, 3)→ (1, 7)

→ (3, 11)→ (8, 2)→ (1, 3)→ (3, 7)→ (8, 11).

Hence, KPBN (3.5) is stable at the cycle

{δ2128, δ
35
128, δ

119
128, δ

11
128, δ

34
128, δ

115
128, δ

7
128, δ

43
128, δ

114
128, δ

3
128, δ

39
128, δ

123
128},

which is shown in Figure 2.

Figure 2. Cycle of KPBN (3.5) in Example 5.1.

6. Conclusions

In this paper, we have investigated the KP decomposition
of the Boolean matrix and analyzed the topological structure
of KPBNs. By analyzing the KP decomposition of

support matrices, we have presented a criterion for the
KP decomposition of the Boolean matrix. In addition,
we have applied the results on the KP decomposition of
the Boolean matrix to the topological structure analysis of
KPBNs. Future works can analyze the KP approximation
of the Boolean matrix when it cannot be decomposed with
respect to KP.
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