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Abstract: In this paper, the problem of existence-uniqueness and global exponential stability of periodic solution (i.e., stationary
oscillation) for a class of nonlinear delay systems with impulses was studied. Some new sufficient conditions ensuring the existence
of stationary oscillation for the addressed equations were derived by using the inequality technique that has been reported in recent
publications. Our proposed method, which is different with the existing results in the literature, shows that nonlinear delay systems may
admit a stationary oscillation using proper impulsive control strategies even if it was originally unstable or divergent. As an application,
we considered the single species logarithmic population model and established a new criterion to guarantee the existence of positive
stationary oscillation. Some numerical examples and their computer simulations were also given at the end of this paper to show the
effectiveness of our development control method.
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1. Introduction

In many real systems there are two common phenomena:
Delay effects and impulsive effects [1–8]. For example,
time delays will inevitably occur in the communication
and response of neurons owing to the unavoidable
finite switching speed of amplifiers in the electronic
implementation of analog neural networks [3, 4]. In many
nonnegative and compartmental models, the transfers of
material, energy or information between compartments are
not instantaneous and some information of the past system
states are always considered for capturing the realistic
dynamics of systems, which leads to time delay systems
[5, 6]. Moreover, it has been shown that the existence of
time delays may lead to oscillation, instability and other bad
performances of systems [7, 8].

Examples of impulsive phenomena can be found
in many fields such as biological neural networks,
bursting rhythm models in pathology, information science,
frequency-modulated signal processing systems and

telecommunication [1, 2, 9–12]. Such kinds of systems
are characterized by abrupt changes of state at certain
instants, in the form of impulses, which cannot be well
described by using pure continuous or pure discrete
models. Additionally, impulse as a control method has
been applied to many interesting fields such as ecosystems
management, orbital transfer of satellites, optimal control
of economic systems, synchronization of chaos-based
secure communication systems and so on [13–16]. The
main idea of impulsive control is to change the states of
continuous dynamic systems via discontinuous control
inputs at certain time moments. There are many cases
where impulsive control can make better performance
than continuous control [17–19]. Therefore, it is of
great theoretical and practical significance to study and
develop the fundamental theory of impulsive nonlinear
delay systems. Up until now, numerous works dealing
with the fundamental theory such as existence-uniqueness,
differentiability, controllability, boundedness, oscillation,
stability and periodic solution problems for impulsive
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functional differential equations have been reported in
the literature, see [20–28] and the references therein. In
particular, Alzabut and Abdeljawad [25] investigated the
existence of a globally attractive periodic solution for a class
of impulsive delay logarithmic population model. Recently,
Alzabut et al. [26] further investigated the almost periodic
solutions of the impulsive delay logarithmic population
model by employing the contraction mapping principle and
Gronwall-Bellman inequality. Considering the fact that the
existing work mainly focuses on some special scalar delay
differential equations with impulses, Yang and Xu [27] and
Weng and Sun [28] studied the stationary oscillation for
generalized nonlinear impulsive delay differential equations
by establishing an exponential estimate for delay differential
inequality with impulsive initial condition and employing
Banach fixed point theorem. The obtained results extended
and improved some earlier works. However, one may
note that all of those results [25–28] dealing with periodic
solution problems of impulsive delay differential equations
have a common property that the system still admits a
stationary oscillation even there is no impulsive effects.
Since impulses can make an unstable system stable, it is
nature to ask, under impulsive control, whether there exists
some criteria that can ensure the delay systems admits
a stationary oscillation even it is originally unstable or
divergent. More specifically, when a1(t) < a2(t) in [26],
α(t) < β(t) in [26] and some of the eigenvalues of the
parameter matrix A(t) have positive real parts in [27, 28], it
is a question whether we can design some impulsive control
strategies to ensure the existence of stationary oscillation
for those systems. This is a real problem in applications.

Motivated by the above statements, in this paper, we
shall further consider the impulsive nonlinear delay systems
which is same as that in [27,28]. The difference is that, from
the impulsive control point of view, some new sufficient
conditions ensuring the existence of stationary oscillation
are derived by using the inequality technique that has been
given by [29]. Based on the obtained results, we further
consider the single species logarithmic population model
and establish a new criterion to guarantee the existence of
positive stationary oscillation. The organization of this paper
is as follows. In Section 2, we introduce some notations
and definitions. In Section 3, we present the main results on

stationary oscillation of the addressed equations. In Section
4, three numerical examples and their computer simulations
are given to show the effectiveness of our development
control method. Finally, we shall make concluding remarks
in Section 5.

2. Preliminaries

Notations. Let R denote the set of real numbers, R+ the set
of positive real numbers, Z+ the set of positive integers, Rn×m

the n ×m-dimensional real spaces and Rn the n-dimensional
real spaces equipped with the norm ∥x∥ =

∑n
i=1 |xi|. The

impulse times tk satisfies 0 ≤ t0 < t1 < . . . < tk → ∞ as k →

∞. For any interval J ⊆ R, set S ⊆ Rk(1 ≤ k ≤ n),C(J, S ) =
{φ : J → S is continuous} and PC(J, S ) = {φ : J → S is
continuous everywhere except at finite number of points t, at
which φ(t+), φ(t−) exist and φ(t+) = φ(t)}. In particular, for
a given τ ∈ [0,∞), let PC = PC([−τ, 0],Rn) with the norm
∥ • ∥τ defined by ∥φ∥τ = sup−τ≤s≤0 ∥φ(s)∥. α ∨ β denotes the
maximum value of α and β. [•]∗ denotes the integer function.

Consider the following nonlinear delay systems with
impulses:

ẋ(t) = A(t)x(t) + f (t, xt), t ≥ t0, t , tk,

x(tk) = Ik(tk, x(t−k )), k ∈ Z+,

xt0 = ϕ(s), −τ ≤ s ≤ 0,

(1)

where ϕ ∈ PC, A(t) = (ai j(t))n×n ∈ PC(R+,Rn×n) and
f (t, xt) : R+ × PC→ Rn; For each t ≥ t0, xt ∈ PC is defined
by xt(s) = x(t + s), s ∈ [−τ, 0]; For each k ∈ Z+, Ik(t, x) ∈
C(R+ × Rn,Rn).

In this paper, we make the following assumptions:

(H1) There exists a constant ω > 0 such that A(t + ω) =
A(t), f (t + ω, •) = f (t, •), Ik(t + ω, •) = Ik(t, •), t ∈

R+, k ∈ Z+;

(H2) For given ω > 0, there exists a constant q ∈ Z+ such
that tk+q = tk + ω, Ik+q(t, •) = Ik(t, •), t ∈ R+, k ∈ Z+;

(H3) There exists some positive functions Li j(t) ∈

PC(R+,Rn×n
+ ) such that

| fi(t, φ1) − fi(t, φ2)| ≤
n∑

j=1

Li j(t)|φ1 j − φ2 j|,
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where i ∈ Λ, φ1, φ2 ∈ PC, t ∈ R+, Λ =

{1, 2, · · · , n}, φi = (φi1, · · · , φin)T , i = 1, 2;

(H4) There exists some positive constants ρik ∈ (0, 1) such
that

|Iik(t, u) − Iik(t, v)| ≤ ρik |u − v|,

where u, v ∈ R, t ∈ R+, i ∈ Λ, k ∈ Z+;

(H5) a⋆ii = supt∈[0,ω] aii(t), a⋆i j = supt∈[0,ω] |ai j(t)|(i ,
j), L⋆i j = supt∈[0,ω] Li j(t), i, j ∈ Λ.

Remark 2.1. Under the above assumptions (H3) and (H4),
the solution of Eq (1) exists on [t0,+∞) and is unique [20].

In the following, denote by x(t) = x(t, t0, ϕ) the solution of

Eq (1) with initial value (t0, ϕ). On the other hand, it should

be noted that assumptions (H1) and (H3) imply that a⋆i j and

L⋆i j exist in assumption (H5).

Definition 2.1. A map x : R+ → Rn is said to be a ω-

periodic solution of Eq (1), if
(1) x(t) is a piecewise continuous map with first-class

discontinuity points and satisfies Eq (1);
(2) x(t) satisfies x(t + ω) = x(t), t , tk and x(tk + ω+) =

x(t+k ), k ∈ Z+.

Definition 2.2. Let x∗ = x∗(t, t0, ϕ∗) be a solution of Eq (1)

with initial value (t0, ϕ∗). Then the solution x∗ is said to be a

stationary oscillation of Eq (1), if

(1) x∗ is the unique ω-periodic solution of Eq (1);
(2) For any other solution x = x(t, t0, ϕ) of Eq (1) through

(t0, ϕ), it holds that

|x − x∗| → 0 as t → ∞.

Lemma 2.1 ( [29]). Let p ∈ R, q ≥ 0, δ > 1 be some real

constants and function f ∈ PC(R,R+) satisfying D+ f (t) ≤ p f (t) + q supt−τ≤s≤t f (s), t , tk, t ≥ t0,

f (tk) ≤ 1
δ

f (t−k ), k ∈ Z+.
(2)

Assume that p + qδ − ln δ
σ
< 0, where σ � supk∈Z+ {tk − tk−1},

then Eq (2) has the following estimate:

f (t) ≤ δ sup
t0−τ≤s≤t0

f (s)e−λ(t−t0), t ≥ t0,

in which λ > 0 is a constant.

Remark 2.2. In particular, when p + q < 0, constant δ in

Lemma 2.1 can be sufficiently close to 1+. In this case, it is

known that Eq (2) still has above estimate even there is no

impulsive effects (see [30]). Since the aim of this paper is to

consider the effect of impulsive control, in the following we

will employ Lemma 2.1 under the assumption that p+q > 0.

Lemma 2.2 ( [27]). Assume that (H1) and (H2) hold. Then

Eq(1) has an ω-periodic solution if there exists a ϕ ∈ PC

such that xt0+ω(t0, ϕ) = ϕ, where x(t, t0, ϕ) is a solution of

Eq(1) through (t0, ϕ).

3. Main results

In this section, we shall present some results on stationary
oscillation for Eq (1) via impulsive control.

Theorem 3.1. Assume that assumptions (H1) − (H5) hold.

Then Eq (1) admits a stationary oscillation, if there exists

a constant σ > 0 such that tk − tk−1 ≤ σ, k ∈

Z+, supi∈Λ,k∈Z+ ρik < 1 and

max
i∈Λ

a⋆ii+
n∑

i=1

max
j∈Λ, j,i

a⋆i j+

∑n
i=1 max j∈Λ L⋆i j

supi∈Λ,k∈Z+ ρik
+

ln supi∈Λ,k∈Z+ ρik

σ
< 0.

(3)

Proof. Let x = x(t, t0, ϕ) and y = y(t, t0, φ) be two
arbitrary solutions of Eq (1) with initial values (t0, ϕ) and
(t0, φ), respectively, where x = (x1, · · · , xn)T ∈ Rn, y =

(y1, · · · , yn)T ∈ Rn and ϕ, φ ∈ PC.

Consider an auxiliary function

Γ(t) = ∥x − y∥ =
n∑

i=1

|xi − yi|.

Clearly, Γ ∈ PC(R,R+). Calculating the upper right
derivative of function Γ, it can be deduced from assumption
(H3) that

D+Γ(t) =
∑n

i=1(ẋi − ẏi) sgn (xi − yi)

=
∑n

i=1
{∑n

j=1 ai j(t)[x j(t) − y j(t)]

+ fi(t, xt) − fi(t, yt)
}
sgn (xi − yi)
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≤
∑n

i=1 aii(t)|xi(t) − yi(t)|

+
∑n

i=1
∑n

j=1, j,i |ai j(t)||x j(t) − y j(t)|

+
∑n

i=1
∑n

j=1 Li j(t)|xt j − yt j|

≤
∑n

i=1 a⋆ii |xi(t) − yi(t)| +
∑n

i=1
∑n

j=1, j,i a⋆i j|x j(t) − y j(t)|

+
∑n

i=1
∑n

j=1 L⋆i j|xt j − yt j|

≤
{
maxi∈Λ a⋆ii +

∑n
i=1 max j∈Λ, j,i a⋆i j

}∑n
j=1 |x j(t) − y j(t)|

+
∑n

i=1 max j∈Λ L⋆i j
∑n

j=1 |xt j − yt j|

≤
{
maxi∈Λ a⋆ii +

∑n
i=1 max j∈Λ, j,i a⋆i j

}
Γ(t)

+
( ∑n

i=1 max j∈Λ L⋆i j

)
Γ̄(t),

where Γ̄(t) = supt−τ≤s≤t Γ(s).

On the other hand, it follows from assumption (H4) that

Γ(tk) =
∑n

i=1 |xi(tk) − yi(tk)|

=
∑n

i=1 |Iik(xi(t−k )) − Iik(yi(t−k ))|

≤
∑n

i=1 ρik |xi(t−k ) − yi(t−k )|

≤
(

supi∈Λ,k∈Z+ ρik

)
Γ(t−k ).

Considering assumption (3) and using Lemma 2.1, we know
that there exists a constant λ > 0 such that

Γ(t) ≤
Γ̄(t0)

supi∈Λ,k∈Z+ ρik
e−λ(t−t0), t ≥ t0,

i.e.,

∥x − y∥ ≤
∥ϕ − φ∥τ

supi∈Λ,k∈Z+ ρik
e−λ(t−t0), t ≥ t0.

Thus one may choose a T ≥ t0 such that

∥x − y∥ ≤
1
2
∥ϕ − φ∥τ, t ≥ T. (4)

Define an operator

F : ϕ̂ → xt0+ω(t0, ϕ̂), where ϕ̂ ∈ PC. Note that
xt0+ω(t0, ϕ̂) ∈ PC, which implies that operator F maps the
set PC into itself. By simple induction, it can be deduced
that

F kϕ̂ = xt0+kω(t0, ϕ̂), k ∈ Z+.

Let k be large enough such that t0 + kω− τ ≥ T, then it holds
from (4) that

∥F kϕ̂ − F kφ̂∥ = ∥xt0+kω(t0, ϕ̂) − yt0+kω(t0, ϕ̂) ≤
1
2
∥ϕ̂ − φ̂∥τ.

Hence, we get that F is a contraction mapping in Banach
space PC. Using Banach fixed point theorem, there exists
a unique ϕ⋆ ∈ PC such that F ϕ⋆ = ϕ⋆, which implies that
there exists a unique ϕ⋆ ∈ PC such that x(t0+ω, t0, ϕ⋆) = ϕ⋆.
By Lemma 2.2, it can be deduced that Eq (1) has exactly one
ω-periodic solution which is globally exponentially stable,
i.e., Eq (1) admits a stationary oscillation and the proof is
therefore complete. □

In particular, if A(t) is a diagonal matrix, then the
following simple result can be derived by Theorem 3.1.

Corollary 3.1. Assume that assumptions (H1) − (H5)
hold. Then Eq (1) admits a stationary oscillation, if there

exists a constant σ > 0 such that tk − tk−1 ≤ σ, k ∈

Z+, supi∈Λ,k∈Z+ ρik < 1 and

max
i∈Λ

a⋆ii +

∑n
i=1 max j∈Λ L⋆i j

supi∈Λ,k∈Z+ ρik
+

ln supi∈Λ,k∈Z+ ρik

σ
< 0.

Remark 3.1. From the estimate of D+Γ in Theorem 3.1,

one may observe that Eq (1) may not has stationary

oscillation even it is divergent and if there is no impulsive

effects. However, the criteria established in Theorem

3.1 and Corollary 3.1 tell us that the proper impulsive

control strategies may contribute to system periodicity and

guarantee the existence of stationary oscillation. This

assertion will be further illustrated in Section 4.

Now, we consider the following special equations:
ẋ(t) = A(t)x(t) + B(t)x(t − τ(t)) +C(t), t ∈ [tk−1, tk),

x(tk) = Dk x(t−k ), k ∈ Z+,
(5)

where A(t) = (ai j(t))n×n, B(t) = (bi j(t))n×n ∈ PC(R+,Rn×n)
and τ(t) : R+ → R+ is the time-varying delay function.
Dk =diag(D(1)

k , · · · ,D
(n)
k ) ∈ Rn×n, k ∈ Z+.

Some assumptions are given here:

(P1) There exists a constant ω > 0 such that A(t + ω) =
A(t), B(t + ω) = B(t), C(t + ω) = C(t), τ(t + ω) =
τ(t), t ∈ R+;

(P2) For a given ω > 0, there exists a constant q ∈ Z+ such
that tk+q = tk + ω, Dk+q = Dk, t ∈ R+, k ∈ Z+;

(P3) D(i)
k ∈ (0, 1), i ∈ Λ, k ∈ Z+;
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(P4) a⋆ii = supt∈[0,ω] aii(t), a⋆i j = supt∈[0,ω] |ai j(t)|(i ,
j), b⋆i j = supt∈[0,ω] |bi j(t)|, i, j ∈ Λ.

Theorem 3.2. Assume that assumptions (P1) − (P4) hold.

Then Eq (5) admits a stationary oscillation, if there exists

a constant σ > 0 such that tk − tk−1 ≤ σ, k ∈

Z+, supi∈Λ,k∈Z+ D(i)
k < 1 and

maxi∈Λ a⋆ii +
∑n

i=1 max j∈Λ, j,i a⋆i j

+

∑n
i=1 max j∈Λ b⋆i j

supi∈Λ,k∈Z+ D(i)
k
+

ln supi∈Λ,k∈Z+ D(i)
k

σ
< 0.

Proof. Note that f (t, xt) = B(t)x(t − τ(t)) +C(t) implies that
Li j = bi j, i, j ∈ Λ. By Theorem 3.1, the above result can be
derived directly. □

Furthermore, we consider the well-known single species
logarithmic population model with impulses (see [25, 26]):

ẋ(t) = x(t)
[
γ(t) − a1(t) ln x(t)

−a2(t) ln x(t − τ(t))
]
, t ∈ [tk−1, tk),

x(tk) = [x(t−k )]dk , k ∈ Z+,

(6)

where x denotes the size of population. Here γ(t) is the
growth rate. While there are plenty of resources and there is
no intra-specific competition for these resources, a1(t) is the
measure of the competition among the individuals, a2(t) is
added to generalize the model with the same interpretation
of competitive effects and τ(t) is a maturation delay in the
sense that competition involves adults who have matured
by an age of τ(t) units, dk represents the change exponent
of population due to some impulsive factors such as human
harvesting, weather change, birth pulse and natural enemies
at some time tk, where tk represent the instants at which the
population suffers those rapid changes.

Remark 3.2. Recently, the existence of periodic solution

and an almost periodic solution of Eq (6) with/without

impulses have been extensively studied in the literature, see

[25,26]. However, there is very little work about the periodic

solution problem of Eq (6) using impulsive control strategies

due to technical difficulty. In the following, we shall give

some conditions to guarantee the stationary oscillation of

Eq (6) using proper impulsive control strategies. First, we

need some assumptions as follows:

(S 1) γ, a1, a2, τ ∈ PC(R+,R+) and moreover there exists a

constant ω > 0 such that γ(t + ω) = γ(t), a1(t + ω) =
a1(t), a2(t + ω) = a2(t), τ(t + ω) = τ(t), t ∈ R+;

(S 2) For given ω > 0, there exists a constant q ∈ Z+ such

that tk+q = tk + ω, dk+q = dk, t ∈ R+, k ∈ Z+;

(S 3) dk ∈ (0, 1), k ∈ Z+;

(S 4) a⋆1 = inft∈[0,ω] a1(t), a⋆2 = supt∈[0,ω] a2(t);

(S 5) The initial value ϕ ∈ C([−τ, 0],R+), where τ =

supt∈[0,ω] τ(t).

Lemma 3.1. Assume that (S 5) holds. Then every solution

of Eq (6) is positive on [t0,∞).

Proof. From Eq (6), we easily get

x(t) = x(t0) exp
( ∫ t

t0
Γ(s)ds

)
, t ∈ [t0, t1),

where

Γ(t) = γ(t) − a1(t) ln x(t) − a2(t) ln x(t − τ(t)).

Since x(t0) = ϕ(0) ∈ C([−τ, 0],R+), it is clear that x(t) > 0
for t ∈ [t0, t1). Note that x(t1) = [x(t−1 )]d1 implies that x(t1) >
0. By the same way, we get x(t) > 0 for t ∈ [t1, t2). Hence,
it can be deduced that x(t) > 0 for t ∈ [t0,∞). The proof is
complete. □

Based on Lemma 3.1, we can make a transformation
y(t) = ln x(t), which leads to a new system:

ẏ(t) = −a1(t)y(t) − a2(t)y(t − τ(t)) + γ(t), t ∈ [tk−1, tk),

y(tk) = dky(t−k ), k ∈ Z+.
(7)

Obviously, Eq (6) has a positive stationary oscillation if and
only if Eq (7) has a stationary oscillation.

Theorem 3.3. Assume that assumptions (S 1) − (S 5) hold.

Then Eq (6) admits a positive stationary oscillation, if there

exists a constant σ > 0 such that tk − tk−1 ≤ σ, k ∈

Z+, supk∈Z+ dk < 1 and

−a⋆1 +
a⋆2

supk∈Z+ dk
+

ln supk∈Z+ dk

σ
< 0.

Proof. By Theorem 3.2, the above result can be derived
directly. □
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4. Applications

In this section, we employ three examples and their
simulations to demonstrate the effectiveness of the obtained
results.

Example 4.1. Consider the following simple impulsive
delay differential equations:

ẋ(t) =
[
0.1 + 0.2 sin 2π

ω
t
]
x(t)

+
[
0.1 + 0.1 cos 2π

ω
t
]
x(t − 1)

+ sin 2π
ω

t, t ∈ [tk−1, tk),

x(tk) = ρx(t−k ), k ∈ Z+,

(8)

where x ∈ R, ω > 0 and ρ ∈ (0, 1) are two real constants.

Property 4.1. Equation (8) admits a stationary oscillation

if there exists constants σ > 0 and q ∈ Z+ such that
0.3 + 0.2

ρ
+

ln ρ
σ
< 0;

tk+q − tk = ω, k ∈ Z+;

tk+1 − tk ≤ σ, k ∈ Z+.

Proof. Note that Eq (8) is ω-periodic, by Theorem 3.1 we
can obtain above result easily. □

Corollary 4.1. Equation (8) admits a stationary oscillation

with tk = σk, k ∈ Z+ if there exists a constant σ > 0 such

that  0.3 + 0.2
ρ
+

ln ρ
σ
< 0;

ω
σ
∈ Z+.

Remark 4.1. In particular, when there is no impulsive effect,
i.e., ρ = 1, Eq (8) has no stationary oscillation and moreover
it is divergent, which is shown in Figure 1(a) for the case
ω=1,2 and 4. Considering impulsive control, for instance,
when ω = 1, one may choose ρ = 0.3 and σ = 1 such
that the conditions in Corollary 4.1 hold. Then Eq (8)
admits a stationary oscillation with tk = k, k ∈ Z+, which
is shown in Figure 1(b). Additionally, when ω = 2 or 4,
one may choose different ρ and σ such that Eq (8) admits a
stationary oscillation with tk = σk, k ∈ Z+ under the help of
Corollary 4.1. The corresponding numerical simulations are
shown in Figure 1(c,d). Those simulations results match our
development method in this paper perfectly.
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Figure 1. (a) State trajectory of Eq (8) with ω=1,2 and 4
without impulsive control. (b) State trajectory of Eq (8) with
ω = 1, ρ = 0.3, σ = 1. (c) State trajectory of Eq (8) with
ω = 2, ρ = 0.5, σ = 0.5. (d) State trajectory of Eq (8) with
ω = 4, ρ = 0.5, σ = 0.8.
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Example 4.2. Consider a two-dimensional impulsive delay
differential equations:

ẋ(t) = A(t)x(t) + B(t)x(t − τ(t)) +C(t), t ∈ [tk−1, tk),

x(tk) = Dk x(t−k ), k ∈ Z+
(9)

with

A(t) =

 −0.2 + 0.02 sin 2π
ω

t 0
0 −0.3 + 0.12 cos 2π

ω
t

 ,
B(t) =

 0.2 + 0.01 cos 2π
ω

t 0.08 − 0.12 cos 2π
ω

t

0.1 + 0.11 sin 2π
ω

t 0.2 − 0.01 sin 2π
ω

t

 ,
C(t) =

 2 sin 2π
ω

t

3 cos 2π
ω

t

 , Dk =

 d1 0

0 d2

 ,
τ(t) = 0.4 + 0.35

[
sin 2π

ω
t
]∗
,

where ω > 0 and d1, d2 ∈ (0, 1) are some real constants.

Property 4.2. Eq (9) admits a stationary oscillation if there

exists constants σ > 0 and q ∈ Z+ such that
−0.18 + 0.42

d1∨d2
+

ln(d1∨d2)
σ

< 0;

tk+q − tk = ω, k ∈ Z+;

tk+1 − tk ≤ σ, k ∈ Z+.

Proof. Note that Eq (9) is ω-periodic, by Theorem 3.2 we
can obtain above result directly. □

Corollary 4.2. Eq (9) admits a stationary oscillation with

tk = σk, k ∈ Z+ if there exists a constant σ > 0 such that −0.18 + 0.42
d1∨d2

+
ln(d1∨d2)
σ

< 0;

ω
σ
∈ Z+.

Remark 4.2. When there is no impulsive effect, i.e., d1 =

d2 = 1, Eq (9) has no stationary oscillation and moreover it
is divergent, which is shown in Figure 2(a,b). Considering
impulsive control, for instance, when ω = 1, one may
choose d1 = d2 = 0.5 and σ = 1 such that the conditions
in Corollary 4.2 hold. Then Eq (9) admits a stationary
oscillation with tk = k, k ∈ Z+, which is shown in Figure
2(c,d). Additionally, when ω = 6, the numerical simulations
are shown in Figure 3(a-d), where d1 = 0.3, d2 = 0.25
and σ = 0.6. From those simulations, we can see that
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Figure 2. (a) State trajectory of Eq (9) with ω=1 without
impulsive control. (b) State trajectory of Eq (9) in phase
space with ω=1 without impulsive control. (c) State
trajectory of Eq (9) with ω = 1, d1 = d2 = 0.5, σ = 1. (d)
State trajectory of Eq (9) in phase space with ω = 1, d1 =

d2 = 0.5, σ = 1.
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Figure 3. (a) State trajectory of Eq (9) with ω=6 without
impulsive control. (b) State trajectory of Eq (9) in phase
space with ω=6 without impulsive control. (c) State
trajectory of Eq (9) with ω = 6, d1 = 0.3, d2 = 0.25, σ = 0.6.
(d) State trajectory of Eq (9) in phase space with ω = 6, d1 =

0.3, d2 = 0.25, σ = 0.6.

the proper impulsive control strategies may stabilize the
divergent system and make it admit a stationary oscillation.

Example 4.3. Consider a logarithmic population model:

ẋ(t) = x(t)
{
−
[
0.1 + 0.01 sin π2 t

]
x(t)

−
[
0.85 + 0.01 cos π2 t

]
x(t − 2)

+3 + sin π2 t
}
, t ∈ [tk−1, tk),

x(tk) =
[
x(t−k )
]d
, k ∈ Z+,

(10)

where x ∈ R and d ∈ (0, 1) are two real constants.

Property 4.3. Eq (10) admits a positive stationary

oscillation if there exist constants σ > 0 and q ∈ Z+ such

that 
−0.09 + 0.86

d +
ln d
σ
< 0;

tk+q − tk = 4, k ∈ Z+;

tk+1 − tk ≤ σ, k ∈ Z+.

Corollary 4.3. Eq (10) admits a positive stationary

oscillation with tk = σk, k ∈ Z+ if there exists a constant

σ > 0 such that  −0.09 + 0.86
d +

ln d
σ
< 0;

4
σ
∈ Z+.

Remark 4.3. One may observe that Eq (10) has no stationary
oscillation when there is no impulsive effect, which is shown
in Figure 4(a,b). However, if we take d = 0.5 and σ = 0.4
such that the conditions in Corollary 4.3 hold. Then Eq (10)
admits a positive stationary oscillation with tk = 0.4k, k ∈

Z+, which is shown in Figure 4(c,d).

Appendix. In the simulations, we choose the time step h =

0.01 and the initial values ϕ = 0.2m in Example 4.1, ϕ =
(−0.2m,m)T in Example 4.2 and ϕ = 0.5m in Example 4.3,
where m = 1, · · · , 4.

5. Conclusions

This paper was dedicated to the problem of stationary
oscillation for a class of nonlinear delay systems with
impulses. By using inequality techniques, some new
sufficient conditions ensuring the existence of stationary
oscillation have been presented. As an application, we have
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Figure 4. (a) State trajectory of Eq (10) without impulsive
control when t ∈ [0, 200]. (b) State trajectory of Eq (10)
without impulsive control when t ∈ [116, 120]. (c) State
trajectory of Eq (10) with d = 0.5, σ = 0.4 when t ∈ [0, 200].
(d) State trajectory of Eq (10) with d = 0.5, σ = 0.4 when
t ∈ [0, 15].

investigated a special system, i.e., single species logarithmic
population model. Unlike all methods considered in
the literature, our results show that delay systems may
admit a stationary oscillation via proper impulsive control
strategies even if it was originally unstable or divergent.
Three examples with their computer simulations have been
provided to demonstrate the feasibility of our control
method.
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