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Abstract: Finite-field networks (FFNs) are a class of multi-agent systems over finite fields with sensing, computing, and communication
capabilities. FFNs have been investigated extensively to save computing and communication resources. This paper summarizes the
current research results to provide a direction for future research. First, different models of FFNs are reviewed, including FFNs with time-
delays, switching topology, and leader-following structures. Then, the consensus and synchronization problems of multi-agent systems
over finite fields are analyzed, and the necessary and sufficient conditions for consensus and synchronization of some autonomous
systems have been derived in recent research. Finally, the distributed control of multi-agent systems over finite fields has been developed
by many scholars based on various approaches.
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1. Introduction

A multi-agent system consists of a group of agents
or nodes who communicate with each other based on
local information and aims to achieve some purpose under
contro [1, 2]. Due to its broad applications, many critical
problems are investigated in multi-agent systems, such as
consensus [3, 4], controllability [5, 6] and stabilizability [7,
8]. Among these practical research directions of multi-agent
systems, the consensus problem is one of the most important
problems, which requires members of a network to reach an
agreement on certain information of interest [9]. Scholars
have also studied the consensus problem with structures
such as time-delay and switching signal [3, 10]. It is worth
mentioning that research on consensus has been applied in
many practical areas, including robotics, drones, robotic arm
collaboration, and other directions. The controllability of
multi-agent systems with different structures [11–13] has
been studied which was proposed by Tanner in 2004 [14].
Then the structural controllability submitted by Lin [15]

in the control system was introduced into the multi-agent
systems [16, 17].

Due to the limitation of communication bandwidth,
memory constraints, and information safety, many scholars
employ finite fields rather than the fields of real numbers
to model multi-agent systems [18]. It means the system
takes values from finite sets, and operations are performed
according to modular arithmetic. In 2013, Shreyas and
Christoforos [19] investigated the conditions for structural
controllability and observability of linear systems over finite
fields. Subsequently, Lu et al. [20] extended the results
of [19] to higher dimensions and studied the theory of
structural controllability of general linear dynamics and
switching topology over finite fields. Pasqualetti [18]
provided the necessary and sufficient conditions for the
consensus of networks over finite fields based on graph
theory and the characteristic polynomial in 2014. The results
of finite-field consensus [18] were then expanded by Li et
al. to the case with time delays and switching topologies
[21, 22]. Meng [23] developed the synchronization problem
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of finite-field networks (FFNs) and gave some sufficient
conditions for synchronization based on graph theory and
characteristic polynomials of network matrices. In 2022,
Zhu [24] studied the synchronization problem of FFNs with
time-delays, strengthened some conclusions obtained by Li
et al. [21, 22]. Xu and Hong [25] investigated the leader-
following consensus problem of multi-agent systems with
dynamics of high dimensions over finite fields, requiring
that the interaction graph of the FFNs was a directed acyclic
graph. They provided consensusability conditions for fixed
and switching topologies. Then the controllability of multi-
agent systems with switching topology over finite fields was
developed in [26].

In addition to the above study, Li et al. [27–29] proposed
a new approach to study the consensus problem and
the controllability of FFNs via the semi-tensor product
(STP) of matrices and obtained the necessary and sufficient
conditions of consensus with switching topology and
controllability of multi-agent systems. With the help of
STP, the leader-follower consensus of multi-agent systems
with time-delays was researched [30], and some consensus
criteria were presented based on set stability. Then the
set stability was applied to study switched delayed logical
networks [31], consensus of FFNs with stochastic time-
delays [32] and containment problem of FFNs with fixed and
switching topologies [33].

The rest of this paper is organized as follows. In Section
2, some necessary preliminaries are presented. Section 3-
5 introduce the latest results in FFNs research, including
models, analysis, and control of FFNs. Section 6 gives a
brief summary and prospect of this paper.

2. Preliminaries

2.1. Preliminaries on STP

For a matrix A, the i-th column and j-th row are denoted
by Coli(A) and Row j(A), respectively. Dk := {0, . . . , k − 1},
Dn

k := Dk × · · · × Dk. ∆n := {Colk(In), k = 1, . . . , n}, where
In is the n-dimensional identity matrix. Ln×t:= set of n × t

logical matrices. 1n := [1, . . . , 1︸  ︷︷  ︸
n

]T.

Definition 2.1. [34] Let A = [ai j] ∈ Rm×n, B = [bi j] ∈ Rp×q,

the Kronecker product of matrices A and B is

A ⊗ B =


a11B a21B ... a1nB
a21B a22B ... a2nB
...
...
. . .
...

am1B am2B ... amnB

 ∈ Mmp×nq. (2.1)

Definition 2.2. [35] Let A ∈ Rm×r, B ∈ Rn×r, the Khatri-

Rao product of matrices A and B is denoted by

A ∗ B = [Col1(A) ⋉Col1(B), . . . ,Colr(A) ⋉Colr(B)]. (2.2)

Definition 2.3. [36] The STP of matrices A and B is defined

as

A ⋉ B = (A ⊗ It/n)(B ⊗ It/p) ∈ M(mt/n)×(qt/p), t = lcm(n, p).
(2.3)

Lemma 2.1. [36] Let f (x1, x2, . . . , xn) : Dn
k 7→ Dk be a

k-valued logical function. Then, there exists a unique matrix

M f ∈ Lk×kn , called the structural matrix of f , such that

f (x1, x2, . . . , xn) = M f ⋉
n
i=1 xi, xi ∈ ∆k, (2.4)

where ⋉n
i=1xi = x1 ⋉ x2 ⋉ · · · ⋉ xn.

2.2. Preliminaries on finite fields and graph theory

The definition and properties of finite fields are given as
follows. A finite field F is a set of elements with addition
“+” and multiplication “·” satisfying the following axioms:
• Closure under addition and multiplication. For ∀u, v ∈

F, u + v ∈ F and u · v ∈ F hold;
• Associativity of addition and multiplication. For ∀u, v,

w ∈ F, u + (v + w) = (u + v) + w and u · (v · w) = (u · v) · w
hold;
• Commutativity of addition and multiplication. For ∀u,

v ∈ F, it holds u + v = v + u, u · v = v · u;
• Distributivity of multiplication over addition. For ∀u, v,

w ∈ F, it holds u · (v + w) = u · v + u · w;
• Existence of additive and multiplicative identity

elements. For ∀u ∈ F, ∃ elements 0, 1 ∈ F, such that u+0 = u

and u · 1 = u;
• Existence of additive and multiplicative inverse

elements. For ∀u ∈ F, ∃ −u, u−1 ∈ F, such that u + (−u) = 0
and u · u−1 = 1, with u , 0.

The field F is finite if and only if the number of elements
in the field is finite. In this study, the finite field is considered
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as a prime field, i.e., the number of elements in the finite field
is prime. In Fp, Fp = {0, 1, ..., p − 1}, p is a prime number,
with addition operator “+p” and the multiplication operator
“×p” defined as in modular arithmetic.

(i) The structural matrix of “+p” is

M+,p = δp[U1,U2, ...,Up], (2.5)

where U1 = (1, ..., p), Us = (s, ..., p, 1, ..., s − 1).
(ii) The structural matrix of “×p” is

M×,p = δp[V1,V2, ...,Vp], (2.6)

where Vs = ((0 × s)mod(p) + 1, (1 × s)mod(p) + 1, ..., ((p −

1) × s)mod(p) + 1)), s = 1, ..., p.
Finally, we recall some standard definitions in graph

theory. A directed graph G = (V, ε), consists of a set
of vertices V and a set of edges ε ⊆ V ×V. An edge
(vi, v j) ∈ ε is directed from vertex v j to vertex vi. For a vertex
vi ∈ V, the set of neighbors of vi is defined as Ni = {v j ∈

V : (vi, v j) ∈ ε}. The adjacency matrix of G is defined as
A = (ai j) ∈ Fn×n

p : if vi ∈ Ni, ai j , 0, ai j = 0, otherwise.
A path in G is a subgraph P = ({v1, ..., vk+1}, {e1, ..., ek})
such that vi , v j for all i , j, and ei = (vi+1, vi) for each
i ∈ {1, ..., k}. A cycle is a path in which the first and last
vertex in the sequence are the same.

3. Different models of the networks over finite fields

Due to the different dynamical behaviors of multi-agent
systems and the uncertainty of communication topology,
there are many different dynamics of multi-agent systems
in finite fields. This section will introduce several models of
FFNs.

3.1. Models of multi-agent systems over finite fields

Consider a network with n ∈ N agents over the finite
field Fp [18], where Fp is defined in last section. The
communication topology between agents is described by
the directed graph G = (V, ε) and requires each agent
to manipulate and transmit values over Fp according to a
distributed protocol. Let xi(t) ∈ Fp denotes the state of the
i-th agent at time t. Then, the evolution of the network state
x(t) = [x1(t), ..., xn(t)]T can be described by the network:

x(t + 1) = Ax(t). (3.1)

3.2. Models of multi-agent systems with switching topology

and time-delays over finite fields

The deferred response between multi-agents and sensors
sometimes leads to delays in systems. A form of FFNs with
time-delays was proposed in [21], and its dynamics is

xi(t + 1) = aiixi(t) +
∑
j∈Ni

ai jx j(t − τi j), i = 1, 2, . . . ,N. (3.2)

If all time-delays are constant and equal, let x(t) =
[x1(t), ..., xn(t)]T, the dynamics of the network can be
rewritten as

x(t + 1) = Bx(t) +Cx(t − τ), (3.3)

where B = diag(A),C = A − B. If τi j(t) is independent of
time t for i , j, and denoted by τi j, the dynamics of the
network can be rewritten as

x(t+1) = B0x(t)+C1x(t−1)+C2x(t−2)+ · · ·+Cτ0 x(t−τ0),
(3.4)

where B0 = diag(A), and Ck, k = 1, 2, . . . , τ0, respectively,
represent an interaction matrix of the agents that send
information by time-delay k. So, one of ck

i j in matrix
Ck, k = 1, 2, . . . , τ0 equals ai j in matrix A. Thus, A =

B0 +
∑τ0

k=1 Ck. The dynamics of a network with time-delays
was also described in the synchronization problem [24].

Both [27] and [22] proposed switched networks over finite
fields, the evolution of the FFN with switching topology and
linear protocols can be described as

x(t + 1) = Aσ(t)x(t), (3.5)

where σ : N 7→ {1, . . . ,w} is the switching signal.

In addition, [22] also studied FFNs with switching
topology and time-delays:

xi(t + 1) =
∑

j∈Ni
⋃
{i}

aσ(t)
i j x j(t − τi j), i = 1, 2, . . . ,N. (3.6)

In [22], the network can be rewritten as

x(t + 1) =C0,σ(t)x(t) +C1,σ(t)x(t − 1) +C2,σ(t)x(t − 2) + . . .

+Cτ0,σ(t)x(t − τ0),
(3.7)
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where Ck,σ(t), k = 0, 1, . . . , τ is determined by time-delay k

that is experienced by information transmission on the link
received at time t. It always holds

τ∑
k=0

Ck,s(t) = As(t). (3.8)

Then [32] analyzed FFNs with two kinds of stochastic
time-delays.

xi(t + 1) =
∑

j∈N in
i
⋃

i

ai jx j(t − dt). (3.9)

where stochastic time-delays is given as follows:
(i) Probabilistic time-delay: P{d(t) = l} = pl ≥ 0

satisfying
∑τ

l=0 pl = 1, ∀l ∈ {0, . . . , τ}.
(ii) Markov jump time-delay: d(t) is a Markov chain.

P{d(t + 1) = s|d(t) = l} = ps,l ≥ 0,s, l ∈ {0, . . . , τ}, and∑τ
l=0 ps,l = 1, ∀l ∈ {0, . . . , τ}.

3.3. Models of leader-follower multi-agent systems over

finite fields

In [25], consider a leader-follower multi-agent system
with one leader and N followers. For the leader, the system
is autonomous. For each follower, the system can obtain
local information input from itself and its neighbors. The
dynamics of the leader is described by a autonomous system:

x0(t + 1) = Ax0(t). (3.10)

The dynamics of the i-th follower is described by a linear
control system:

xi(t + 1) = Axi(t) + bui(k), (3.11)

where xi(t) ∈ Fn
p, b is a column vector and ui(k) is the input.

A multi-agent system consists of M leaders and N − M

followers in [33]. The dynamics of the leader can be given
as the following form:

xl(t + 1) = Axl(t). (3.12)

The dynamics of the f -th follower can be given as the
following form:

x f (t + 1) =
∑

j∈Ni
⋃
{ f }

a f jx j(t). (3.13)

Lu et al. [20] proposed the dynamics of a system which
is different from (3.12) and (3.13), distinguishing leader and
follower through external control. For each follower, there
is a following linear dynamical system:

xi(t + 1) = Axi(t) + Bui(t). (3.14)

For each leader, the linear dynamical system is given by

xi(t + 1) = Axi(t) + Bui(t) + uext
i (t), (3.15)

where ui(t) ∈ Fm
p and uext

i (t) ∈ Fn
p are the control input

of i-th agent and the external control input of i-th agent,
respectively.

Lu et al. [26] developed a multi-agent system over finite
fields which consists ofN agents. For the given multi-agent
system, an agent is said to be a leader if external control
inputs actuate the agent; an agent is said to be a follower
if the agent obeys linear distributed protocol. It holds that
N = N f

⋃
Nl and N f

⋂
Nl = ∅. The dynamics of the

leader-follower multi-agent system is given as follows:

xi(t + 1) = aiixi(t) +
∑
j∈Ni

ai jx j(t), i ∈ N f , (3.16)

xi(t + 1) = aiixi(t) +
∑
j∈Ni

ai jx j(t) + ui(t), i ∈ Nl, (3.17)

where xi(t) ∈ Fp.

In [19, 26], for system model (3.16) and (3.17), it can be
written into a compact form:

x(t + 1) = Ax(t) + Bu(k). (3.18)

Due to link failure or creation, the communication
topology of expressing the information flow among agents
may vary at times. Consider the following switched multi-
agent system:

x(t + 1) = Aσ(t)x(t) + Bσ(t)u(k). (3.19)

Similarly, there are time-delays in leader-follower multi-
agent systems. A leader-follower multi-agent system with
one leader and N followers was considered in [28, 30]. The
dynamics of the leader is given as follows:

x0(t + 1) = A0x0(t − τ0), (3.20)
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where x0(t) = (x1
0(t), . . . , xn

0(t))T ∈ Fn
p. The dynamics of the

i-th follower (i ∈ {1, . . . ,N}) is given as follows:

xi(t + 1) = Aixi(t − τi j), (3.21)

or

xi(t + 1) = aiixi(t) +
∑

j∈Ni
⋃
{i}

ai jx j(t − τi j), (3.22)

or

xi(t + 1) = aiixi(t) +
∑

j∈Ni
⋃
{i}

aσ(t)
i j x j(t − τi j), (3.23)

where xi(t) = (x1
i (t), . . . , xn

i (t))T ∈ Fn
p.

In [28, 30], the follower has several dynamics. The i-th
follower in (3.21) updates the state of the agent according
to the initial condition of the states and dynamic matrix
of the follower’s autonomous system. The i-th follower in
(3.22) updates the state according to the initial condition of
the states and weighted adjacency matrix associated with
the directed graph G. In addition, the dynamics of the
follower in [30] adds a switching signal. Note that each
agent in those mentioned above leader-following multi-
agent systems except (3.16) and (3.17) is an n-dimensional
vector over finite field Fp. Each agent in (3.16), (3.17),
and other models without leader-following structure is a 1-
dimensional vector, so these systems are |N|-dimensional.
Therefore, using various methods, scholars have developed
the research of multi-agent systems over finite field Fp

based on the model’s differences in terms of communication
topology as well as state dimensionality. These progress can
be summarized in two aspects: analysis and control of FFNs.
The following sections will present these methods and the
results obtained in the analysis and control of FFNs.

4. Several analysis results of the networks over finite
fields

In the research related to FFNs, consensus is the most
fundamental and important research direction, and many
complete and exceptional outcomes have been obtained.
Graph theory, characteristic polynomials and matrix STP are
the key methodologies utilized for the consensus analysis of
different models. Most of the finite-field networks in these

studies are autonomous systems. The consensus problem
is developed by analyzing communication topology and
dynamic matrix of FFNs.

The definition of consensus of FFNs is defined as follows:

Definition 4.1. [18] The network (3.1) over Fp achieves

(finite-time) consensus if for all initial states in Fn
p, there

exist a finite time T ∈ N and some constant η ∈ Fp such

that x(T + k) = x(T ) = η1n for all k ∈ N.

4.1. Analysis of FFNs by algebraic and graphical methods

Consider the analysis of FFNs under algebraic and
graphical methods. [18] proposed model (3.1) to start the
research related to FFNs. First, the preconditions for
consensus of networks over finite fields were proposed.

Lemma 4.1. [18] Consider the network (3.1) over finite

field Fp. If consensus is achieved, then A is either nilpotent

or row-stochastic.

When A is a nilpotent matrix, it is obvious that the system
will achieve consensus after finite step iterations. Hence, the
analysis follows presupposes that the network matrix A is
row-stochastic. [18] derived a set of consensus equivalence
requirements on this basis. Considering the state transition
graph of matrix A, they proposed the following conclusion.

Theorem 4.1. [18] The network (3.1) over a finite field Fp

achieves consensus with row-stochastic matrix A if and only

if the transition graph GA = (VA, εA) contains exactly p

cycles, corresponding to the unit cycles around the vertices

η1, η ∈ Fp.

The above theorem is a necessary and sufficient condition
for achieving the finite-field network consensus based on the
state transition graph. When the number of agents rises, the
size of the related state transition graph grows exponentially,
making it harder to verify the consensus of the network.
Consider the following inverse recursion in [18]:

δk+1
α = Â−1(δkα), (4.1)

where δkα ∈ F
ωr
p for all time k ∈ N and δ0α = {α1}, α ∈ Fωr

p .
Then, the consensus of network (3.1) can be verified by
inverse recursion (4.1) without analyzing the state transition
graph. The two previously mentioned approaches are

Mathematical Modelling and Control Volume 3, Issue 3, 244–255



249

not explicit enough for finite-field consensus. Thus, [18]
presented an additional equivalence requirement based on
the characteristic polynomial of the network matrix.

Theorem 4.2. [18] The network (3.1) over a finite field Fp

achieves consensus with row-stochastic matrix A if and only

if the characteristic polynomial

PA(λ) = λn−1(λ − 1). (4.2)

Theorem 4.2 enables the design of finite-field consensus
matrices. Finite-field consensus time and value were
obtained by a theorem. It indicated that consensus time
depended on the dimension of the largest Jordan block
associated with the eigenvalue 0. Subsequently, they
gave the relevant results for average consensus. These
conclusions in [18] were extended to consensus of networks
with switching topology and time-delays over finite fields
by [21, 22].

For networks (3.3), (3.4), and (3.7), taking y(k) = [xT (t +
τ), xT (t + τ − 1), ..., xT (t)]T ∈ Fn(τ+1)

p , there is the following
equivalent form:

y(k + 1) = Ds(t)y(k), (4.3)

where

Ds(t) =



C0,s(t+τ) C1,s(t+τ) · · · Cτ−1,s(t+τ) Cτ,s(t+τ)

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


.

(4.4)
Similar to the form of (4.3), networks (3.3) and (3.4)
can be equivalently transformed into a network without
time-delays. Then they can obtain a series of theorems
on consensus based on graph theory, characteristic
polynomials, and other methods. The above definition of
consensus requires that the state in the network reach a
common value and stay at the value forever. In some
practical systems, it requires the state of the network
to be equal to each other but not remain at a fixed
value. Consequently, [23] defined network synchronization
over finite fields and provided some results related to
synchronization. The research model of [23] is still (3.1).

Definition 4.2. [23] The network (3.1) over Fp achieves

synchronization if for all initial states in Fn
p, there exist a

finite time K ∈ N such that x1(t) = x2(t) = · · · = xn(t) for all

t ≥ K.

When network (3.1) achieves synchronization, the state
trajectory of the network converges to Ω = {α1n|α ∈ Fp}.
Synchronization of FFNs requires the network matrix to
satisfy preconditions.

Lemma 4.2. [23] If synchronization of network (3.1) is

achieved, then either A is a nilpotent matrix or the row sums

of A are the same and nonzero.

For synchronization of FFNs, there exists a class of
initial state x(0) ∈ {ei,n|i = 1, . . . , n}, where ei,n is an
n-dimensional vector with the i-th element being 1 and
others 0. After a finite time, it can achieve synchronization
regardless of the form of the network matrix. In [18],
the transition graph can be used to verify consensus of
network (3.1). The synchronization problem has similar
results as theorem 4.1. The difference is that the transition
graph of consensus FFNs contains p unit cycles, while the
transition graph of synchronization FFNs has r same length
cycles except for the unit cycle around 0n, and the vertex
sets of r + 1 cycles constitute a partition of Ω. [24] can
verify the consensus problem based on the characteristic
polynomial, and derive a theorem that is similar to (4.2)
as a necessary and sufficient condition for synchronization
of network (3.1). Assume A1n = α1n, network (3.1) over
Fp achieves synchronization if and only if the characteristic
polynomial of A, is PA(λ) = λn−1(λ − α). Besides, time and
cycles of finite-field synchronization can be obtained.

In [24], synchronization of FFNs with time-delays was
investigated from a perspective of linear recursion theory.
It extended results in [21, 22], and derived a sufficient
condition for synchronization.

4.2. Analysis of FFNs via STP

Since many previous methods for studying the consensus
of multi-agent systems over the field of real numbers are
difficult to apply to finite fields, the aforementioned papers
have derived several algebra-theoretic and graph-theoretic
conditions for FFNs. Studies for linear FFNs with time
delays and switching topology are currently insufficient,
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and it is not easy to verify consensus by some existing
conclusions. Many researchers attempted to use the STP
of matrices to study the consensus problem of FFNs, gave
more explicit and concise results for some proposed models,
and further explored some unsolved problems. This is due
to the excellent performance of STP in Boolean networks
and multi-valued logical networks. [27, 28] first proposed
to use STP to study the consensus problem of FFNs,
converted switched FFN (3.5) and leader-follower multi-
agent system (3.20,3.21) into algebraic forms via STP to
give a preliminary analysis. Subsequently, these results were
advanced by [29–33].

For switched FFN (3.5), by Lemma 1, there exists a
structural matrix such that xi = S r

i x(t), i = 1, . . . , n, where
S r

i = (M+,p)n−1 ⋉n
k=1 [Ipk−1 ⊗ (M×,p ⋉ ar

ik)] ∈ Lp×pn , M+,p
and M×,p are given to represent the addition operator and the
multiplication operator over the finite field Fp.

Then, it can be converted into the form:

x(t + 1) = Lr x(t), (4.5)

where Lr = S r
1 ∗S r

2 ∗ · · · ∗S r
n ∈ Lpn×pn . So the algebraic form

of (3.5) can be obtained as follows:

x(t + 1) = Lσ(t)x(t). (4.6)

After the above model transformation, the network can be
analyzed. First, the definition of switching point reachability
and its equivalent conditions can be given. Then, a necessary
and sufficient condition can be presented for consensus of
network (3.5).

Theorem 4.3. [27] For each Ar, suppose that conditions

of Theorem 1 holds. Then, the network (3.5) achieves

consensus under arbitrary switching signal, if and only if

there exists a positive integer τ ≤ pn such that

Rowi(Mτ)1pn = 0 (4.7)

holds for any i ∈ {1, . . . , pn}/{c(α) : α ∈ Fp}, where c(α) =
α pn−1

p−1 + 1.

Li et al. [22] and [27] both analyzed the finite-
field network with switching topology, and provided
the equivalence conditions of consensus. The former
primarily used methods like graph theory and characteristic

polynomials, while the latter employed STP to transform
network (3.5) into a new algebraic form, with the results can
be confirmed by straightforward calculations.

Li et al. [30] studied leader-follower consensus of multi-
agent systems with time-delays (3.20,3.22) over Fp. Note
that the definition of consensus in [30] is the same as the
definition of synchronization in [23] (Definition 4.2), which
requires that every component in state vector of an agent
equal to corresponding component in state vector of other
agents and can change over time. By Lemma 1, there are
x0(t + 1) = L0Z(t) and xi(t + 1) = Liz(t), i = 1, . . . ,N. Then,
multiplying the N + 1 equations of a leader and followers
by the Khatri-Rao matrix product, there is x(t + 1) =
LZ(t). Using the pseudo-commutative law and the dummy
matrices, one can obtain the equivalent algebraic form:

z(t + 1) = LZ(t). (4.8)

Therefore, a new system without time-delays is established
by dimensionality expansion, and the subsequent analysis
can be performed. [30] first presented the concept of set
stability for system (4.8) over Fp.

Definition 4.3. [30] Given a nonempty set Ω ⊆ ∆pn(N+1)(τ+1) .

System (4.8) is said to be stable atΩ, if there exists a positive

integer µ such that

z(t; z0) ∈ Ω (4.9)

holds for any integer t ≥ µ and any initial state z0 ∈

∆pn(N+1)(τ+1) .

Defining the set Λ,

Λ = {δ
j
pn(N+1)(τ+1) = ⋉

τ+1
k=1δ

jk
pn(N+1) : jk ∈ {i1, . . . , ipn }

k = 1, . . . , τ + 1}

:= {δl1pn(N+1)(τ+1) , . . . , δ
lpn(τ+1)

pn(N+1)(τ+1) }

(4.10)

where i1 < i2 < · · · < ipn and l1 < l2 < · · · < lpn(τ+1) . Then
one can obtain the following theorem.

Theorem 4.4. [30] The follower (3.20) achieves (finite-

time) consensus with the leader (3.22), if and only if system

(4.8) is stable at Λ.

The consensus problem of leader-follower multi-agent
systems with time-delays over finite fields was converted
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into the problem of set stability. It only needs to investigate
requirements for the set stability of system (4.8), there is the
following conclusion.

Theorem 4.5. [30] System (4.8) is stable at Λ, if and only

if there exists a positive integer µ ≤ pn(N+1)(τ+1) such that∑
c∈Γ

Rowc(L̂µ) = 0T
pn(N+1)(τ+1) , (4.11)

where Γ = {1, . . . , pn(N+1)(τ+1)} \ {l1, . . . , ln(τ+1)}.

Based on Theorems 4.4 and 4.5, a criterion for the
leader-follower consensus of system (3.22) and (3.20) can
be presented. The follower (3.22) achieves (finite-time)
consensus with the leader (3.20), if and only if there exists a
positive integer µ ≤ pn(N+1)(τ+1) such that (4.11) holds.

Li et al. [30] also discussed the case of a follower with
a switching signal (3.23). Using STP, the system was
converted into an algebraic system without time-delays by
expanding dimensions. The definition of system consensus
and set stability under any switching signal was provided.
The definition of switching point reachability was proposed,
and the relevant criterion for the reachability of switching
point was given. Finally, they gave the necessary and
sufficient conditions for leader-follower consensus of the
system with switching topology based on the obtained
criterion .

Switched delayed logical networks were studied by set
stability which was applied to finite-field consensus in
[31]. They converted switched delayed logical networks
into an equivalent algebraic form, and proved that the set
stability of switched delayed logical networks is equivalent
to the set stability of the algebraic form with respect to
trajectory. Based on the algebraic form and the switching
point reachability, a necessary and sufficient condition for
the set stability of switched delayed logical networks can be
obtained. They applied the above results to the consensus of
FFNs with switching topology and time-delays, and showed
the effectiveness of the new results.

The set stability was used to investigate FFNs with
two kinds of stochastic time-delays in [32]. By STP,
they converted systems with stochastic time-delays into the
corresponding linear discrete-time stochastic systems. Then,
they revealed the relation between the finite-time consensus
of FFNs with stochastic time-delays and the finite-time set

stability of the obtained stochastic systems and proposed two
new criteria for the finite-time consensus problem.

Liu et al. [33] extended the concept of containment to
FFNs which was a multi-agent system with M leaders and
N − M followers.

Definition 4.4. [33] The followers (3.13) achieve

containment with the leaders (3.12) in Fp, if there exists

ρ ∈ Z+ , which satisfies the condition that

x f (t) ∈ {x1(t), . . . , xM(t)}, f = M + 1, . . . ,N, (4.12)

holds for any initial state and any integer t ≥ ρ.

The idea of this research is similar to the previous articles.
[33] used the STP method to obtain the corresponding
algebraic form of the system. They studied the consensus
problem under fixed and switching topologies through set
stability and set stability under arbitrary switching signal,
respectively.

5. Some control problems of the networks over finite
fields

In this section, controllability and consensus protocols
of multi-agent control systems over finite fields are
investigated, structural controllability of FFNs is derived,
and controllability of FFNs are researched via STP.

5.1. Consensus and controllability of FFNs

The leader-follower consensus problem of multi-agent
systems over finite fields was considered in [25]. For system
models (3.10) and (3.11), the input is a distributed control
protocol that has been used and intensively investigated for
the consensus problem of real-valued multi-agent systems.
The control protocol has the following form:

ui(t) = K
N∑

j=0

ai j(x j(t) − xi(t)). (5.1)

where K ∈ F1×n
p is the feedback gain matrix. Actually, the

consensus problem is similar to synchronization of FFNs in
[23] (Definition 4.2), that is, xi(t) = x0(t), i = 1, . . . ,N. Let
δi(t) = xi(t)−x0(t) ∈ Fn

p, the consensus problem is equivalent
to the existence of T such that, t ≥ T ,

δi(t) = 0, i = 1, . . . ,N. (5.2)
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The interaction graph describing the information
transmission among the N + 1 agents is denoted by
G = (V, ε). The subgraph induced by the N followers is
denoted by Ĝ. Note that A = (ai j) ∈ F

(N+1)×(N+1)
p and

D ∈ F(N+1)×(N+1)
p are the weighted adjacency matrix and

degree matrix of G, Â and D̂ is the induced adjacency
submatrix and degree submatrix corresponding to Ĝ. This
paper assumed the induced subgraph Ĝ is a directed acyclic
graph (DAG), which has been used in some studies of
consensus problems. If A is nilpotent, then consensus
can be easily achieved by just letting K = 0. So the
theorem in [25] assumed matrix A is not nilpotent. Then
the necessary and sufficient conditions for consensus were
provided for fixed and switching topologies.

For the multi-agent system with switching topology over
finite fields, researchers studied the controllability problem
of model (3.19) in [26]. First, several graphical conditions
for controllability of multi-agent systems over finite fields
were established. It was proved that a switched multi-
agent system is controllable over Fp if each graph of the
subsystem is a spanning forest. The conclusion can be
obtained that a multi-agent system with switching topology
can be controllable over Fp even if each of its subsystems
is not controllable. Besides, this paper showed that the
switched system is controllable if the union of graphs is a
path graph or a star graph.

5.2. Structural controllability of FFNs

When solving many control problems of systems, system
matrices are usually prescribed. However, in some cases, it
needs to analyze systems whose parameters are not exactly
known. In order to deal with these problems, scholars have
developed a characterization of system properties based on
the structure of the system. Then, a system of the form
(3.18) is said to be structured if every entry in the system
matrices is either zero or a free independent parameter.
[19, 20] extended this concept to the study of multi-agent
systems over finite fields.

Note that (3.16) and (3.17) can be compacted into (3.18)
in [19]. With y(t) = Cx(t), it can be written as a form
of a linear system. But unlike the general linear system,
the matrix B in the system actually is an n × |Nl| matrix
of the form B =

[
ei1,N ei2,N · · · eim,N

]
. Although a

form of a linear system is used to represent multi-agent
systems over finite fields, some traditional methods for
linear systems over field of real numbers may not be
applicable over Fp. [19] developed a characterization of
structural controllability over finite fields, and the definition
of structural controllability is as follows.

Definition 5.1. [19] The system (3.18) is said to be

structurally controllable if one can fix all free parameter

entries of (A, B) at some particular values from Fp such that

system (3.18) is controllable over finite fields in the classical

sense.

Then they proved that a linear system will be structurally
controllable (or observable) over Fp if the graph of the
system satisfies specific properties, and the size of the field
is sufficiently large.

Lu [20] researched the structural controllability of multi-
agent systems of the form (3.14) and (3.15). For the control
input, there is the following protocol:

ui(t + 1) = K
∑

j∈N in
i
⋃
{i}

ai jx j(t), (5.3)

where K ∈ Fm×n
p is the feedback gain matrix. Under

the given protocol (5.3), the system can be written into a
compact form:

x(t + 1) = Φx(t) + ΓUext(t), (5.4)

where Φ = In⊗A+ Â⊗BK, Γ = D⊗ IN , and D is the same as
matrix B of (3.18). The multi-agent systems with switching
topology are given by

x(t + 1) = Φxσ(t)(t) + Γσ(t)Uext(t), (5.5)

whereΦσ(t) = In⊗A+Âσ(t)⊗BK, Γσ(t) = Dσ(t)⊗IN . Then they
proved that a multi-agent system is structurally controllable
over a finite field if the graph has a spanning forest, and a
switched multi-agent system is structurally controllable if
each switching network has a spanning forest.

5.3. Controllability of FFNs via STP

The previous section used the STP of matrices to analyze
the finite-field networks. Consider leader-follower FFN
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(3.16) and (3.17), by Lemma 1, can be converted into an
equivalent algebraic form:

x(t + 1) = Lu(t)x(t), (5.6)

where L ∈ Lpn×p2n . The definition of reachability and
controllability for the leader-follower FFN was given in
[29]. By using the algebraic form, they proposed the
controllability matrix for the FFN, which can be used to
verify reachability and controllability of the multi-agent
systems.

Consider system (5.6), L can be split into pn blocks:
L =

[
L1 L2 . . . Lpn

]
, where Li ∈ Lpn×pn . Let M =∑pn

i=1 Li, the controllability matrix of system (5.6) is defined
as follows:

C =
pn+|Nl |∑

s=1

Ms. (5.7)

Then, there is the corresponding theorem.

Theorem 5.1. Consider system (5.6).

(i) xd = δ
β
pn is reachable from x0 = δ

α
pn at the s-th step, if and

only if

(Ms)β,α > 0. (5.8)

(ii) xd = δ
β
pn is reachable from x0 = δ

α
pn , if and only if

(C)β,α > 0. (5.9)

(iii) System (5.6) is controllable, if and only if

C > 0. (5.10)

Finally, an algorithm to find the minimal number of
leaders which can make the multi-agent systems over finite
fields be controllable was proposed.

6. Conclusions

This paper has presented recent research advances around
networks over finite fields, divided into three main aspects:
The first part introduced the models of multi-agent systems
over finite fields; The second part analyzed the consensus
and synchronization problems of FFNs through graph
theory, characteristic polynomial, and the STP of matrics;
The third part investigated multi-agent control systems over
finite fields and proposed relevant conclusions on consensus

and controllability. There are many models on FFNs in
recent research that focuses on linear iterative strategies, but
the research on nonlinear systems is still insufficient. The
models on finite fields are mainly studied for the constant
systems with time-delays and switching topology structures.
The time-varying systems over finite fields have yet to be
involved. Currently, many results have been obtained by
STP for FFNs, and this method can be used to analyze
and control nonlinear multi-agent systems over finite fields.
Sometimes, excessive computational complexity exists due
to the large matrix dimension of STP when dealing with
complex systems. Other theoretical methods urgently need
to be introduced into the research of FFNs, which requires
further exploration by scholars.
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