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Abstract: This study aims to analyze a mathematical model of alpha-synuclein transport and aggregation in neurons qualitatively.
Our analysis yielded a unique equilibrium point, which exists always. Also, we derive the criteria for the local and global asymptotic
stability of the equilibrium. Moreover, we utilize the closed form of the equilibrium to investigate the effect of the models’ parameters
on decreasing the long term value of the misfolded alpha-synuclein, which may help in suggesting pharmacological interventions for
Parkinson’s disease. Furthermore, numerical simulations are illustrated to support the analytic results and sensitivity analysis.
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1. Introduction

Parkinson’s disease (PD) is a neurological disease. The
name is associated with James Parkinson, who was the first
to describe the disease conditions in 1817. The standard
conditions of PD are generally motor disorder; however,
there are non-motor forms, which similarly have a major
effect on the patient’s life [1]. The cause of the disease is
due to dopamine deficiency in the brain area known as the
substantia nigra. This deficiency is responsible for the motor
symptoms that appear on patients. Also, Lewy bodies in the
brain are considered to be another cause for PD because it
was present in the anatomy of patients’ bodies. It was found
that Lewy bodies included a collection of alpha-synuclein
(α-syn) [2–4].

Mathematical models, both theoretical and empirical,
have contributed greatly in understanding the biological
mechanism behind neurodegenerative diseases [5]. Most
developed models are quantitative; nevertheless, they
were beneficial in exploring alternative treatments for the
disease [6]. Recently, in [7], they classified PD models
into two largely types: mechanistic models and phenotypic
models. The primary purpose of the phenotypic models is

to distinguish the variations between healthy and diseased
patients quantitatively regarding aspects of PD symptoms.
In contrast, mechanistic models are related to the pathology
aspect of PD. They further classify the mechanistic models
into α-syn aggregation models, pathogenesis models, and
pathology propagation models.

Some of these models were expressed as compartmental
models. For example, in [8] they modeled the
electrophysiology of the substantia nigra pars compacta
using a single-compartment model. Whereas, the model
in [9] explored the onset conditions of PD by proposing a
compartmental model with four state variables representing
the concentration of both monomeric and polymeric α-syn
in the soma and the synapse. The models’ simulations
concluded that the failure of α-syn degradation leads to
the abnormal accumulation of misfolded α-syn observed
in PD. They considered α-syn as an infectious agent
that propagates in a prion-like manner. Moreover, the
transportation of α-syn in axons from the soma to the
synapse is modeled in [10]. They proposed two models
to investigate the effect of two kinds of transport of α-syn
in the axons: active and diffusion. Also, they simulated
α-syn transport in healthy and diseased axons, where the
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latter led to α-syn accumulation in Lewy bodies. On the
other hand, in [11], the model analyzed the relation between
α-syn aggregation and proteasome activity. Proteasomes
are responsible for the degradation of unwanted proteins,
which allows for a cell to maintain homeostasis. The
compartment model consisted of three main concentrations:
fibrils, proteasome-fibril complex and the free proteasome.
They predicted that if the ratio between proteasome and α-
syn protofilament is reduced below a certain threshold level,
then the accumulation of α-syn aggregation increases.

Most of the above models were investigated numerically.
In this paper, we examine the model in [9] by employing the
stability theory of nonlinear ordinary differential equations
[12–14]. Also, we address theoretically the limitations in the
model, that is, we assume different half-lives of monomeric
and polymeric α-syn in the soma and in the synapse. To our
knowledge, this is the first analytical investigation executed
on α-syn propagation models. The significance of this
analysis lies in obtaining the equilibrium point in closed
form. As a result, it enables the determination of the critical
parameters involved in decreasing or increasing the level
of the equilibrium value depending on the desired target.
This study is expected to give more insight into Parkinson’s
disease for pharmacological interventions.

The comprehensive qualitative study is structured as
follows. In Section 2, we briefly describe the model in [9]
with its notations. Basic qualitative analysis of the model is
given in Section 3, such as obtaining the positively invariant
region for the model and finding the equilibrium point. In
Section 4, we scrutinize the local and global stability of
the equilibrium point. To assert the qualitative results, we
perform numerical simulations in Section 5. Also, in this
section, the sensitivity analysis is executed to inspect the role
of parameters in the equilibrium value. The conclusion of
this study is given in Section 6.

2. The α-syn transport and aggregation model

In our study, we investigate theoretically the mathematical
model presented by Kuznetsov in [9]. The model describes
the dynamics of α-syn transport and aggregation in neurons.
The presence of α-syn protein in the neuron is divided into
four disjoint classes. A1(t) represents α-syn concentration
in soma as a monomer at time t; B1(t) represents α-

syn concentration in soma as misfolded at time t; A2(t)
represents α-syn concentration in synapse as a monomer at
time t; B2(t) represents α-syn concentration in synapse as
misfolded at time t.

Figure 1. The transfer diagram of α-syn in
neuron.

We briefly describe the dynamics according to Kuznetsov
as follows. In the soma, monomeric α-syn concentration
increases due to its synthesis at a rate of q. During the
process of polymerization, the concentration of monomeric
α-syn decays in order to produce misfolded α-syn. Also,
monomeric α-syn concentration decreases, in the soma, as a
result of being transferred to the synapse. Similar dynamics
take place in the synapse (see Figure 1). In our theoretical
examination of the model, we assume that both monomeric
and polymeric (misfolded) α-syn in the soma decay with the
rate of ln(2)

T1
and ln(2)

T2
, respectively. Also, monomeric and

polymeric (misfolded) α-syn in the synapse decay with the
rate of ln(2)

T3
and ln(2)

T4
, respectively. To facilitate the analytical

investigations, we only consider the case of constant entry
rate of misfolded α-syn from outside the neuron toward the
soma and synapse. Based on the conservation of monomeric
and polymeric α-syn in the soma and synapse, the model
is expressed by the following system of nonlinear ordinary
differential equations:

A
′

1 = q − k1A1 − k2A1B1 − A1
ln(2)
T1
− A1

h
v1
,

B
′

1 = Q1 + k1A1 + k2A1B1 − B1
ln(2)
T2

,

A
′

2 = −k1A2 − k2A2B2 − A2
ln(2)
T3

+ A1
h
v2
,

B
′

2 = Q2 + k1A2 + k2A2B2 − B2
ln(2)
T4

.

(2.1)
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The variables and parameters used in (2.1) are summarized
in Table 1 as in [9]. It can be seen that the first two equations
in (2.1) form an independent subsystem that can be analyzed
separately. However, we will analyze the model as one
whole system.

Table 1. Definition of symbols used in the model
[9].

Symbol Definition Units

t Time. s

A1 α-syn monomer concentration in the soma. mol.m−3

B1 α-syn polymer concentration in the soma. mol.m−3

A2 α-syn monomer concentration in the synapse. mol.m−3

B2 α-syn polymer concentration in the synapse. mol.m−3

q Rate of synthesis of α-syn in the soma. mol.m−3.s−1

k1 Decay rate of monomeric α-syn concentration (first step in polymerization.) s−1

k2 Production rate of misfolded α-syn (second step in polymerization.) m3.s−1.mol−1

h Transport rate of monomeric α-syn form the soma to the synapse. m3.s−1

v1 Volume of the neuron soma. m3

v2 Volume of the neuron synapse. m3

Q1 Flux of misfolded α-syn from outside the neuron into the soma. mol.s−1

Q2 Flux of misfolded α-syn from outside the neuron into the synapse. mol.s−1

T1 The time taken to reach half of the initial value of monomeric α-syn in the soma. s

T2 The time taken to reach half of the initial value of polymeric α-syn in the soma. s

T3 The time taken to reach half of the initial value of monomeric α-syn in the synapse. s

T4 The time taken to reach half of the initial value of polymeric α-syn in the synapse. s

3. Basic analysis

One of the essential concepts to examine when studying
compartmental models is the equilibrium points. In this
section, we derive the conditions for the existence of the
equilibrium points of system (2.1). Also, we prove the
positivity and boundedness of the feasible region of the
system.

3.1. Positivity and boundedness

Theorem 3.1. If the initial values of system (2.1) are

A1(0) ≥ 0, B1(0) ≥ 0, A2(0) ≥ 0, and B2(0) ≥ 0, then the

solutions of the system: (A1(t), B1(t), A2(t), B2(t)) are non-

negative for all t > 0.

Proof. Let A1(0) ≥ 0, according to the first equation in
system (2.1), we have,

A
′

1 ≥ −(k1 + k2B1 +
ln(2)
T1

+
h
v1

)A1.

It can be written as:

A
′

1exp
{ ∫ t

0

(
k1 + k2B1 +

ln(2)
T1

+
h
v1

)
dτ

}
+ exp

{ ∫ t

0

(
k1 + k2B1 +

ln(2)
T1

+
h
v1

)
dτ

}

×

(
k1 + k2B1 +

ln(2)
T1

+
h
v1

)
A1 ≥ 0.

Thus,

d
dt

[
A1exp

{ ∫ t

0

(
k1 + k2B1 +

ln(2)
T1

+
h
v1

)
dτ

}]
≥ 0.

Integration gives,

A1exp
{ ∫ t

0

(
k1 + k2B1 +

ln(2)
T1

+
h
v1

)
dτ

}
− A1(0) ≥ 0

A1 ≥ A1(0)exp
{
−

∫ t

0
(k1 + k2B1 +

ln(2)
T1

+
h
v1

)dτ
}
.

Since A1(0) is non-negative, and the exponential function
is always positive, then A1(t) is non-negative for all t > 0.
Next, from the second equation in (2.1), we have

B
′

1 = Q1 + k1A1 + k2A1B1 − B1
ln(2)
T2

.

Since Q1 and A1 are non-negative, then

B
′

1 ≥ (k2A1 −
ln(2)
T2

)B1.

Similarly, using the method of integrating factor, we obtain

B1 ≥ B1(0)exp
{
−

∫ t

0

(
− k2A1 +

ln(2)
T2

)
dτ

}
,

By applying the same approach to the rest of the equations
in system (2.1), we obtain

A2 ≥ A2(0)exp
{
−

∫ t

0

(
(k1 + k2B2 +

ln(2)
T3

)
dτ

}]
,

B2 ≥ B2(0)exp
{
−

∫ t

0

(
− k2A2 +

ln(2)
T4

)
dτ

}
.

Since A1(0), B1(0), A2(0) and B2(0) are non-negative and the
exponential function is always positive, then the solution
(A1(t), B1(t), A2(t), B2(t)) is non-negative for all t > 0. �

Theorem 3.2. All solutions (A1(t), B1(t), A2(t), B2(t)) of

model (2.1) are bounded for all t > 0.

Proof. Adding the first and second equations in (2.1), we
have,

A
′

1 + B
′

1 = q + Q1 − (
ln(2)
T1

+
h
v1

)A1 − (
ln(2)
T2

)B1.

Let δ = min{ ln(2)
T1

+ h
v1
, ln(2)

T2
}, then A

′

1+B
′

1 ≤ q+Q1−δ(A1+B1),
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which can be written as:

(A1 + B1)
′

eδt + δ(A1 + B1)eδt ≤ (q + Q1)eδt.

Integration gives,

(A1 + B1)eδt − (A1(0) + B1(0)) ≤
q + Q1

δ
eδt −

q + Q1

δ
,

(A1 + B1) ≤ (A1(0) + B1(0))e−δt +
q + Q1

δ
−

q + Q1

δ
e−δt.

Therefore, lim supt→∞(A1 + B1) ≤ q+Q1
δ

.
Following the same approach for the last two equations in
(2.1), we obtain

(A2+B2) ≤ (A2(0)+B2(0))e−µt+
Q2v2 + A1h

µv2
−

Q2v2 + A1h
µv2

e−µt,

where µ = min{ ln(2)
T3
, ln(2)

T4
}. Then, lim supt→∞(A2 + B2) ≤

Q2v2+A1h
µv2

≤
Q2v2d+(q+Q1)h

µv2d .
Note that in the first part of this theorem, we have proved
that the sum of A1 + B1 is less than or equal to the constant
(q+Q1)/d. Since A1 and B1 are positive (from Theorem 3.1),
then A1+B1 ≤ constant yields that A1 ≤ constant. Therefore,
A1 is less than or equal to the constant (q + Q1)/d. Thus, the
sum of A2 + B2 is less than a constant since A1 is less than
a constant. Hence, all solutions of model (2.1) are bounded
for all t > 0. �

Theorem 3.3. The feasible region of model (2.1):
Ω = {(A1, B1, A2, B2) ∈ R4

+ : 0 ≤ A1 + B1 ≤
q+Q1
δ
,

0 ≤ A2 + B2 ≤
Q2v2+A1h

µv2
} is positively invariant, where

δ = min{ ln(2)
T1

+ h
v1
, ln(2)

T2
}, and µ = min{ ln(2)

T3
, ln(2)

T4
}.

Proof. In Theorem 3.1, we proved that if the initial values
are non-negative, then also the state variables are non-
negative for all t > 0. We now prove that if the state
variables initially begin in Ω, then it stays there. Let
(A1(0), B1(0), A2(0), B2(0)) ∈ Ω, then

A
′

1 + B
′

1 + A2
′ + B2

′

=q + Q1 + Q2 +
h
v2

A1 − (
ln(2)
T1

+
h
v1

)A1 − (
ln(2)
T2

)B1

−
ln(2)
T3

A2 −
ln(2)
T4

B2

≤q + Q1 + Q2 + A1
h
v2
− δ(A1 + B1) − µ(A2 + B2)

≤0.

Since at the boundary A1 + B1 = 1
δ
(q + Q1) and A2 +

B2 = 1
µ
(Q2 + A1

h
v2

). Thus, the solution stays within the

region according to Nagumo-Bony-Brezis Theorem [15–
17]. Hence, the region Ω is positively invariant. �

3.2. Equilibrium point

To find the equilibrium point of the model, we set all the
rates in (2.1) to zero, that is,

q − k1A1 − k2A1B1 − A1
ln(2)
T1
− A1

h
v1

= 0, (3.1)

Q1 + k1A1 + k2A1B1 − B1
ln(2)
T2

= 0, (3.2)

− k1A2 − k2A2B2 − A2
ln(2)
T3

+ A1
h
v2

= 0, (3.3)

Q2 + k1A2 + k2A2B2 − B2
ln(2)
T4

= 0. (3.4)

By adding (3.1) and (3.2), we obtain,

q + Q1 − A1
ln(2)
T1
− A1

h
v1
− B1

ln(2)
T2

= 0.

Thus,

A1 =
q + Q1 − B1

ln(2)
T2

ln(2)
T1

+ h
v1

.

Substituting A1 into (3.2), we get the following:

k2
ln(2)
T2

B2
1 +

(
k1

ln(2)
T2
− k2q − k2Q1 +

ln(2)
T2

(
ln(2)
T1

+
h
v1

))
B1

−Q1

(
ln(2)
T1

+
h
v1

)
− k1(q + Q1) = 0,

which is a second degree equation of the form β1B2
1 +β2B1 +

β3 = 0, where

β1 = k2
ln(2)
T2

, β2 = k1
ln(2)
T2
−k2q−k2Q1+

ln(2)
T2

(
ln(2)
T1

+
h
v1

)
,

β3 = −Q1

(
ln(2)
T1

+
h
v1

)
− k1(q + Q1). (3.5)

Since β1 > 0 and β3 < 0, then, β2 <
√
β2

2 − 4β1β3. Thus, the
feasible solution for B1 is:

B1 =
−β2 +

√
β2

2 − 4β1β3

2β1
.
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From (3.1), we have

A1 =
q

k1 + k2B1 +
ln(2)
T1

+ h
v1

.

Since B1 is positive, then A1 is also positive. Now, solving
equation (3.3) for A2, we get

A2 =
A1h

v2(k1 + k2B2 +
ln(2)
T3

)
.

Substituting for A2 into (3.4), we obtain the following
equation

µ1B2
2 + µ2B2 + µ3 = 0,

where

µ1 = k2
ln(2)
T4

, µ2 = k1
ln(2)
T4

+
(ln(2))2

T3T4
− k2A1

h
v2
− k2Q2,

µ3 = −k1A1
h
v2
− k1Q2 − Q2

ln(2)
T3

. (3.6)

Here, µ1 > 0 and µ3 < 0. Thus, µ2 <
√
µ2

2 − 4µ1µ3. Hence,
the feasible solution for B2 is

B2 =
−µ2 +

√
µ2

2 − 4µ1µ3

2µ1
.

B2 is positive, thus A2 is positive.

Theorem 3.4. Model (2.1) has a unique equilibrium point,

E∗ = (A∗1, B
∗
1, A

∗
2, B

∗
2), where

A∗1 =
q

k1 + k2B∗1 +
ln(2)
T1

+ h
v1

, B∗1 =
−β2 +

√
β2

2 − 4β1β3

2β1
,

A∗2 =
A∗1h

v2(k1 + k2B∗2 +
ln(2)
T3

)
, B∗2 =

−µ2 +

√
µ2

2 − 4µ1µ3

2µ1
.

Here β1, β2, β3, µ1, µ2 and µ3 are given in (3.5) and (3.6).

4. Stability analysis

In this section, we investigate the stability of the
equilibrium point of model (2.1) both locally and globally.
We state the following theorems.

Theorem 4.1. The equilibrium point E∗, if it exists, is

locally asymptotically stable if max{ k2A∗1T2

ln(2) ,
k2A∗2T4

ln(2) } < 1.

Proof. First, we compute the Jacobin matrix of system (2.1)
evaluated at E∗:

J(E∗) =


−k1−k2B∗1−

ln(2)
T1
− h

v1
−k2A∗1 0 0

k1+k2B∗1 k2A∗1−
ln(2)
T2

0 0
h

v2
0 −k1−k2B∗2−

ln(2)
T3

−k2A∗2
0 0 k1+k2B∗2 k2A∗2−

ln(2)
T4

 .
Then, the characteristic equation, |J − λI| = 0, yield

[λ2 − (k2A∗1 −
ln(2)
T2
−

q
A∗1

)λ + k2A∗1(k1 + k2B∗1 −
q
A∗1

) +
qln(2)
T2A∗1

]

× [λ2 − (k2A∗2 −
hA∗1
v2A∗2

−
ln(2)
T4

)λ +
ln(2)hA∗1
v2A∗2T4

+ k2A∗2(k1 + k2B∗2) −
hA∗1k2

v2
] = 0. (4.1)

Note that from (3.1), −k1 − k2B∗1 −
ln(2)
T1
− h

v1
= −

q
A∗1
, and from

(3.3), −k1 − k2B∗2 −
ln(2)
T3

= −
hA∗1
v2A∗2

. Rewrite (4.1) in the form:

λ2 − α1λ + α2 = 0, (4.2)

λ2 − α3λ + α4 = 0, (4.3)

where,

α1 = k2A∗1 −
ln(2)
T2
−

q
A∗1
,

α2 = k2A∗1(k1 + k2B∗1) +
qln(2)
T2A∗1

− qk2,

α3 = k2A∗2 −
hA∗1
v2A∗2

−
ln(2)
T4

,

α4 =
ln(2)hA∗1
v2A∗2T4

+ k2A∗2(k1 + k2B∗2) −
hA∗1k2

v2
.

Thus, the roots of (4.2) and (4.3) are respectively

λ1,2 =
α1 ±

√
α2

1 − 4α2

2
,

λ3,4 =
α3 ±

√
α2

3 − 4α4

2
.

Now, α1 is negative since, by using (3.2), we have

α1 =
1
B∗1

(B∗1
ln(2)
T2
− k1A∗1 − Q1) −

ln(2)
T2
−

q
A∗1

= −k1
A∗1
B∗1
−

Q1

B∗1
−

q
A∗1

< 0.

If α2 > 0, λ1,2 have negative real parts. Hence, the sufficient

Mathematical Modelling and Control Volume 3, Issue 2, 104–115



109

condition for λ1,2 to be negative is when

qln(2)
T2A∗1

− qk2 > 0,

k2A∗1T2

ln(2)
< 1.

Also, from (3.4), we obtain

α3 =
1
B∗2

(B∗2
ln(2)
T4
− k1A∗2 − Q2) −

ln(2)
T4
−

hA∗1
v2A∗2

= −k1
A∗2
B∗2
−

Q2

B∗2
−

hA∗1
v2A∗2

< 0.

If α4 > 0, λ3,4 have negative real parts. Hence, the sufficient
condition for λ3,4 to be negative is when

k2A∗2T4

ln(2)
< 1.

We conclude that E∗, if it exists, is locally asymptotically
stable if max{ k2A∗1T2

ln(2) ,
k2A∗2T4

ln(2) } < 1. �

To investigate the global stability of the equilibrium point
E∗, we use the algebraic approach given in [18].

Theorem 4.2. The equilibrium point E∗ = (A∗1, B
∗
1, A

∗
2, B

∗
2),

if it exists, is globally asymptotically stable if v2 ≥ v1.

Proof. First, we define a Lyapunov function,

L(A1, B1, A2, B2)

= (A1 − A∗1 − A∗1ln
A1

A∗1
) + a1(B1 − B∗1 − B∗1ln

B1

B∗1
)

+ a2(A2 − A∗2 − A∗2ln
A2

A∗2
) + a3(B2 − B∗2 − B∗2ln

B2

B∗2
),

where ai > 0 (i=1,2 ,3). Clearly, L is a positive definite
function in Ω. Next, we find the derivative of L with respect
to t.

dL
dt

= (q − k1A1 − k2A1B1 − A1
ln(2)
T1
− A1

h
v1

)(1 −
A∗1
A1

)

+a1(Q1 + k1A1 + k2A1B1 − B1
ln(2)
T2

)(1 −
B∗1
B1

)

+a2(−k1A2 − k2A2B2 − A2
ln(2)
T3

+ A1
h
v2

)(1 −
A∗2
A2

)

+a3(Q2 + k1A2 + k2A2B2 − B2
ln(2)
T4

)(1 −
B∗2
B2

).

dL
dt

= C − k1A1 − k2A1B1 −
ln(2)A1

T1
−

hA1

v1
−

qA∗1
A1

+k2A∗1B1 + a1k1A1 + a1k2A1B1 − a1
ln(2)B1

T2

−a1
Q1B∗1

B1
− a1

k1A1B∗1
B1

− a1k2A1B∗1 − a2k1A2

−a2k2A2B2 − a2
ln(2)A2

T3
+ a2

hA1

v2
+ a2k2A∗2B2

−a2
hA1A∗2
v2A2

+ a3k1A2 + a3k2A2B2 − a3B2
ln(2)
T4

−a3
Q2B∗2

B2
− a3k1

B∗2A2

B2
− a3k2A2B∗2,

where

C = q + k1A∗1 +
ln(2)A∗1

T1
+

hA∗1
v1

+ a1Q1 + a1
ln(2)B∗1

T2

+a2k1A∗2 + a2
ln(2)A∗2

T3
+ a3Q2 + a3

ln(2)B∗2
T4

.

Let

y0 =
A1

A∗1
, y1 =

B1

B∗1
, y2 =

A2

A∗2
and y3 =

B2

B∗2
.

Thus, we get

dL
dt

= C − k1A∗1y0 − k2A∗1B∗1y0y1 −
ln(2)A∗1

T1
y0 −

hA∗1
v1

y0

−
q
y0

+ k2A∗1B∗1y1 + a1k1A∗1y0 + a1k2A∗1B∗1y0y1

−a1
ln(2)B∗1

T2
y1 − a1

Q1

y1
− a1

k1A∗1
y1

y0 − a1k2A∗1B∗1y0

−a2k1A∗2y2 − a2k2A∗2B∗2y2y3 − a2
ln(2)A∗2

T3
y2

+a2
hA∗1
v2

y0 + a2k2A∗2B∗2y3 − a2
hA∗1
v2y2

y0 + a3k1A∗2y2

+a3k2A∗2B∗2y2y3 − a3B∗2
ln(2)
T4

y3 − a3
Q2

y3

−a3k1
A∗2
y3

y2 − a3k2A∗2B∗2y2.

Collecting the terms, we have

dL
dt

= C − (k1A∗1 +
ln(2)A∗1

T1
+

hA∗1
v1
− a1k1A∗1 + a1k2A∗1B∗1

−a2
hA∗1
v2

)y0 − (−k2A∗1B∗1 + a1
ln(2)B∗1

T2
)y1

−(k2A∗1B∗1 − a1k2A∗1B∗1)y0y1 − (q)
1
y0

−(a2k1A∗2 + a2
ln(2)A∗2

T1
− a3k1A∗2 + a3k2A∗2B∗2)y2
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−(a3k1A∗2)
y2

y3
− (a3B∗2

ln(2)
T2
− a2k2A∗2B∗2)y3

−(a2
hA∗1
v2

)
y0

y2
− (a1Q1)

1
y1
− (a1k1A∗1)

y0

y1

−(a2k2A∗2B∗2 − a3k2A∗2B∗2)y2y3 − (a3Q2)
1
y3
.

The coefficients of the Lyapunov function may be any
constant as long as these coefficients satisfy that the
Lyapunov function is positive definite in the feasible region.
By letting the coefficients of the Lyapunove function, a1 =

a2 = a3 = 1, we get

dL
dt

= C − (
ln(2)A∗1

T1
+

hA∗1
v1

+ k2A∗1B∗1 −
hA∗1
v2

)y0

−(−k2A∗1B∗1 +
ln(2)B∗1

T2
)y1 − (q)

1
y0

−(
ln(2)A∗2

T3
+ k2A∗2B∗2)y2 − (k1A∗2)

y2

y3

−(B∗2
ln(2)
T4
− k2A∗2B∗2)y3 − (

hA∗1
v2

)
y0

y2
− (Q1)

1
y1

−(k1A∗1)
y0

y1
− (Q2)

1
y3

= G(y0, y1, y2, y3).

Construct the function set Γ = {y0, y1, y2, y3,
1
y0
, 1

y1
, 1

y3
, y0

y1
,

y0
y2
, y2

y3
}. There are six groups associated with Γ such that the

product of the functions within a group is unity. The six
groups are, respectively,

{y0,
1
y0
}, {y1,

1
y1
}, {y3,

1
y3
}, {

y0

y1
, y1,

1
y0
},

{
y0

y2
, y2,

1
y0
}, {

y2

y3
,

y0

y2
, y3,

1
y0
}.

Define the function H using the above groups as:

H(y0, y1, y2, y3) = − b1(y0 +
1
y0
− 2) − b2(y1 +

1
y1
− 2)

− b3(y3 +
1
y3
− 2) − b4(

y0

y1
+ y1 +

1
y0
− 3)

− b5(
y0

y2
+ y2 +

1
y0
− 3)

− b6(
y2

y3
+

y0

y2
+ y3 +

1
y0
− 4),

where bk ≥ 0 (k=1,2,...,6). Next, we obtain the parameters
bk such that

G(y0, y1, y2, y3) = H(y0, y1, y2, y3).

By equating the coefficients of similar terms on both sides,
we get the following equations:

b1 =
ln(2)A∗1

T1
+

hA∗1
v1

+ k2A∗1B∗1 −
hA∗1
v2

, (4.4)

b2 = Q1, (4.5)

b3 = Q2, (4.6)

b4 = k1A∗1, (4.7)

b5 =
ln(2)A∗2

T3
+ k2A∗2B∗2, (4.8)

b6 = k1A∗2, (4.9)

b2 + b4 = −k2A∗1B∗1 +
ln(2)B∗1

T2
, (4.10)

b3 + b6 = B∗2
ln(2)
T4
− k2A∗2B∗2, (4.11)

b5 + b6 =
hA∗1
v2

, (4.12)

b1 + b4 + b5 + b6 = q, (4.13)

2b1 + 2b2 + 2b3 + 3b4 + 3b5 + 4b6 = C. (4.14)

We must show that all the previous equations are satisfied
and bi(i = 1, 2, ..., 6) are nonnegative. Clearly, bi(i = 2, ..., 6)
are nonnegtive. We have only to prove that b1 is nonnegative.
Now,

b1 =
ln(2)A∗1

T1
+ k2A∗1B∗1 +

hA∗1
v1
−

hA∗1
v2

.

Thus, b1 > 0 if v2 ≥ v1.

Equation (4.10) is satisfied since

b2 + b4 = Q1 + k1A∗1

= −k2A∗1B∗1 +
ln(2)B∗1

T2
.

Here, we have used (3.2). Similarly, by using (3.4), equation
(4.11) is satisfied and by using (3.3), equation (4.12) is
satisfied. As for equation (4.13), we have

b1 + b4 + b5 + b6 =
ln(2)A∗1

T1
+

hA∗1
v1

+ k2A∗1B∗1 −
hA∗1
v2

+ k1A∗1

+
ln(2)A∗2

T3
+ k2A∗2B∗2 + k1A∗2.

By using (3.1) and (3.3), we obtain

b1 + b4 + b5 + b6 = q.

Thus, equation (4.13) is satisfied. Lastly, we verify equation
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(4.14) as follows:

L.H.S = 2b1 + 2b2 + 2b3 + 3b4 + 3b5 + 4b6

= 2
ln(2)A∗1

T1
+ 2

hA∗1
v1

+ 2k2A∗1B∗1 − 2
hA∗1
v2

+ 2Q1

+ 2Q2 + 3k1A∗1 + 3
ln(2)A∗2

T3
+ 3k2A∗2B∗2 + 4k1A∗2

= 2
ln(2)A∗1

T1
+ 2

hA∗1
v1

+ 2k2A∗1B∗1 + 2k1A∗1 − 2
hA∗1
v2

+ 2Q1 + 2Q2 + k1A∗1 + 3
ln(2)A∗2

T3
+ 3k2A∗2B∗2

+ 4k1A∗2

= 2q + 2Q1 + 2Q2 + k1A∗1 +
ln(2)A∗2

T3
+ k2A∗2B∗2

+ 2k1A∗2 − 2
hA∗1
v2

+ 2
ln(2)A∗2

T3
+ 2k2A∗2B∗2 + 2k1A∗2

= 2q + 2Q1 + Q2 +
ln(2)A∗2

T3
+ k1A∗1 + k1A∗2 + Q2+

k2A∗2B∗2 + k1A∗2

= 2q + 2Q1 + Q2 +
ln(2)A∗2

T3
+ k1A∗1 + k1A∗2 + B∗2

ln(2)
T4

= q + Q1 + Q2 +
ln(2)A∗2

T3
+ k1A∗1 + k1A∗2 + B∗2

ln(2)
T4

+
ln(2)A∗1

T1
+

ln(2)B∗1
T2

+
hA∗1
v1

= C = R.H.S .

Note that we have used (3.1), (3.2), (3.3) and (3.4) in the
above calculations. Finally, we show that dL/dt is negative
definite. Let Ω∗ ⊂ Ω such that:

Ω∗ = {(A1, B1, A2, B2) ∈ R4
+ :

dL
dt

= 0},

= {(y0, y1, y2, y3) ∈ R4
+ :

dL(y0, y1, y2, y3)
dt

= 0},

= {(y0, y1, y2, y3) ∈ R4
+ : −b1(y0 +

1
y0
− 2)

− b2(y1 +
1
y1
− 2) − b3(y3 +

1
y3
− 2)

− b4(
y0

y1
+ y1 +

1
y0
− 3) − b5(

y0

y2
+ y2 +

1
y0
− 3)

− b6(
y2

y3
+

y0

y2
+ y3 +

1
y0
− 4) = 0},

= {(y0, y1, y2, y3) ∈ R4
+ : y0 = y1 = y2 = y3 = 1},

= {(A1, B1, A2, B2) ∈ R4
+ : A1 = A∗1, B1 = B∗1,

A2 = A∗2, B2 = B∗2},

={(A∗1, B
∗
1, A

∗
2, B

∗
2)}.

Table 2. Parameters’ values.

Symbol Value Units Reference

q 4.17 × 10−8 mol.m−3.s−1 [9]
k1 3 × 10−7 s−1 [9]
k2 2 × 10−9 m3.s−1.mol−1 [9]
h 2.91 × 10−20 m3.s−1 [9]
v1 4.19 × 10−15 m3 [9]
v2 4.19 × 10−15 m3 [9]
Q1 10−22 mol.s−1 [9]
Q2 10−22 mol.s−1 [9]
T1 7 × 104 s [9]
T2 7 × 106 s Estimated
T3 7 × 105 s [9]
T4 7 × 107 s Estimated

Thus, the largest invariant set of system (2.1) on Ω∗ ⊂ Ω

is the equilibrium point E∗. Therefore, by the LaSalle’s
Invariance Principle [14], E∗, if it exists, is globally
asymptotically stable if v2 ≥ v1. �

5. Numerical analysis

In this section, we illustrate numerical simulations of
model (2.1) using Matlab to substantiate the qualitative
results. Moreover, a sensitivity analysis is executed to
investigate the effect of the models’ parameters on the
equilibrium point E∗.

5.1. Numerical experiments

Three numerical experiments are conducted by solving
model (2.1) numerically. The values of the parameters are
taken from [9], which are presented in Table 2, except for
the parameters T2 and T4. It is possible to check that the
parameters, indeed, satisfy the conditions given in Theorems
4.1 and 4.2.

Figure 2 illustrates the numerical simulations of model
(2.1) under the following three different initial conditions:

a. A1(0) = 0.006, B1(0) = 0, A2(0) = 0 and B2(0) = 0,

b. A1(0) = 0.001, B1(0) = 0.09, A2(0) = 0.001 and
B2(0) = 0.09,
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Figure 2. Time plots of system (2.1)
with different initial conditions: a.(0.006,0,0,0),
b.(0.001,0.09,0.001,0.09), c.(0.06,0.09,0.05,0.1).

c. A1(0) = 0.06, B1(0) = 0.09, A2(0) = 0.05 and B2(0) =

0.1.

The figure shows that in all three experiments, the solution
curves tend to the equilibrium,

E∗ = (0.0024, 0.0074, 0.0131, 0.3974). (5.1)

By evaluating the equilibrium point in Theorem 3.4, using
the parameters’ values in Table 2, we get the same values in
(5.1). This demonstrates the agreement with the analytical
results.

5.2. Sensitivity analysis

We compute the normalized sensitivity index (elasticity)
of E∗ = (A∗1, B

∗
1, A

∗
2, B

∗
2) with respect to the models’

parameters given in Table 2 by using the formula in [14]:

S I[p] =
p

E∗
∂E∗

∂p
, (5.2)

where p denotes any parameter. In particular, we examine
the sensitivity of the misfolded α-syn equilibrium in the
soma and the synapse, i.e., B∗1 and B∗2, respectively.

Table 3. The sensitivity indices of the equilibrium
values B∗1 and B∗2.

Parameter (p) Sensitivity Index (B∗1) Sensitivity Index (B∗2)

q 1 1.002
k1 0.9825 0.7490
k2 4.8261 × 10−5 0.0020
h −0.4050 0.5962
v1 0.4050 0.4059
v2 0 −1.0020
Q1 1.37 × 10−13 −1.18 × 10−19

Q2 0 2.55 × 10−14

T1 0.5775 0.5786
T2 1 −8.6118 × 10−7

T3 0 0.7686
T4 0 1.0020

Table 3 displays the elasticity of B∗1 and B∗2, that is,
the percentage value of increase (or decrease) in B∗1 and
B∗2 after a 1% increase in the parameter. For instance,
a 1% increase in h corresponds to a reduction in B∗1 by
0.4050%, and a 0.5962% increase in B∗2. Moreover, we
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can see from the table that the most significant decline
in B∗1 is from increasing the parameter h. However,
increasing h leads to an increase of B∗2. This effect is
understandable since increasing h means increasing the
transport rate of monomeric α-syn from the soma to the
synapse. Consequently, monomeric α-syn concentration in
the soma becomes less, which, in turn, leads to a reduction
in the concentration of α-syn polymer in the soma. At the
same time, in the synapse, α-syn monomer is increasing,
due to transportation from the soma, which leads to α-syn
aggregation. On the other hand, the most significant decline
in B∗2 comes from increasing the parameter v2, while, v2 has
no effect on B∗1. The drop in B∗2 is a possible result from the
inverse proportionality between volume and concentration,
since v2 is the volume of the neuron synapse and part of the
axon is included in v2. As for the remaining parameters, they
all participate in increasing B∗1 with different percentages.
However, B∗2 increases with all parameters except for Q1 and
T2 (see Table 3).

Furthermore, The variations in B∗1 and B∗2 with respect
to the parameters are illustrated in Figure 3 and Figure 4,
respectively. The curves were generated by plotting B∗1 and
B∗2 as a function of one parameter. At the same time, the
values of the remaining parameters are fixed as in Table 2. It
can be seen that the alterations of B∗1 and B∗2 in the figures,
corresponding to each parameter, are consistent with their
sensitivity index calculated in Table 3.

The simulations suggest that the values of B∗1 and B∗2
descent when:

• reducing the rate of α-syn synthesis, q,
• minimizing the decay rate of monomeric α-syn, k1,

during polymerization,
• constricting the production rate of polymeric α-syn, k2,

during polymerization,
• shortening the half life of the monomeric α-syn in the

soma and synapse, T1 and T3, respectively.

The implications of the sensitivity analysis assist in
constructing therapeutic strategies. Specific treatments
may be attempted through targeting critical parameters that
contribute to lowering the polymeric α-syn equilibrium
level. Such as limiting the burden of α-syn, reducing the
rates of nucleation and autocatalytic growth of α-syn and
increasing the efficiency of α-syn degradation machinery.
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Figure 3. Variation of B∗1 with respect to the parameters in

system (2.1): a. parameter q, b. parameter k1, c. parameter k2, d.

parameter h, e. parameter v1, f. parameter v2, g. parameter Q1, h.

parameter Q2, i. parameter T1, j. parameter T2,k. parameter T3, l.

parameter T4.

Mathematical Modelling and Control Volume 3, Issue 2, 104–115



114

0 1 2 3 4
q 10-8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(a)

0 0.5 1 1.5 2 2.5 3
k1 10-7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(b)

0.5 1 1.5 2
k2 10-9

0.3967

0.3968

0.3969

0.397

0.3971

0.3972

0.3973

0.3974

B
2*

(c)

0 0.5 1 1.5 2 2.5
h 10-20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(d)

0.5 1 1.5 2 2.5 3 3.5 4
v1 10-15

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(e)

0.5 1 1.5 2 2.5 3 3.5 4
v2 10-15

5

10

15

20

25

30

35

40

45

B
2*

(f)

0 0.2 0.4 0.6 0.8 1
Q1 10-10

0.39740755

0.39740756

0.39740757

0.39740758

0.39740759

B
2*

(g)

0 0.2 0.4 0.6 0.8 1
Q2 10-14

0.3974076

0.3974078

0.397408

0.3974082

0.3974084

0.3974086

B
2*

(h)

1 2 3 4 5 6 7
T1 104

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(i)

1 2 3 4 5 6 7
T2 1010

0.391

0.392

0.393

0.394

0.395

0.396

0.397

B
2*

(j)

1 2 3 4 5 6 7
T3 105

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(k)

1 2 3 4 5 6 7
T4 107

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
2*

(l)

Figure 4. Variation of B∗2 with respect to the parameters in

system (2.1): a. parameter q, b. parameter k1, c. parameter k2, d.

parameter h, e. parameter v1, f. parameter v2, g. parameter Q1, h.

parameter Q2, i. parameter T1, j. parameter T2,k. parameter T3, l.

parameter T4.

6. Conclusions

In this paper, we analyzed qualitatively the compartmental
model proposed in [9] describing the α-synuclein
aggregation and transportation within the neuron. By
assuming different half-lives of monomeric and polymeric
α-syn in the soma and in the synapse, we expanded the
model in [9] theoretically. The analysis produced a unique
equilibrium point, E∗, that exists without any conditions
within the feasible region Ω. Moreover, we examined the
local stability of E∗ using the linearization method and its
global stability using a Lyapunov function with the algebraic
approach. Under the criteria, max{ k2A∗1T2

ln(2) ,
k2A∗2T4

ln(2) } < 1, the
equilibrium point was locally asymptotically stable.
Moreover, if v2 ≥ v1, then E∗ was globally asymptotically
stable. In addition, numerical simulations were executed to
support the analytical results. It has been shown numerically
that for different initial conditions, the model converges
to the equilibrium point, E∗, stated in Theorem 3.4. The
models’ parameters used in the simulations were taken
from [9], and they satisfied the above stability conditions.

The equilibrium point was analyzed further to determine
its sensitivity to the models’ parameters. In particular,
we investigated the sensitivity of the equilibrium values
of the misfolded α-syn, B∗1 and B∗2. The analysis was
carried out using the sensitivity index formula as well as
illustrating the dependency of B∗1 and B∗2 on the parameters
numerically. Both procedures were consistent and agreed
with the numerical simulations obtained in [9]. Also, the
suggested treatments concluded from the analysis are in line
with the therapeutic approaches in the literature.
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