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Abstract: For a hypergraph H with vertex set X and edge set Y , the incidence graph of hypergraph H is a bipartite graph I(H) = (X,Y, E),
where xy ∈ E if and only if x ∈ X, y ∈ Y and x ∈ y. A total dominating set of graph G is a vertex subset that intersects every open
neighborhood of G. Let M be a family of (not necessarily distinct) total dominating sets of G and rM be the maximum times that

any vertex of G appears in M . The fractional domatic number G is defined as FT D(G) = sup
M

|M |

rM
. In 2018, Goddard and Henning

showed that the incidence graph of every complete k-uniform hypergraph H with order n has FT D(I(H)) = n
n−k+1 when n ≥ 2k ≥ 4. We

extend the result to the range n > k ≥ 2. More generally, we prove that every balanced n-partite complete k-uniform hypergraph H has
FT D(I(H)) = n

n−k+1 when n ≥ k and H � K(n)
n , where FT D(I(K(n)

n )) = 1.

Keywords: fractional; total dominating set; hypergraph; incident graph

1. Introduction

Let H = (V,E ) be a hypergraph, where V is a finite
vertex set and E is a finite edge set such that every edge
e ∈ E is a subset of V . A vertex subset T ⊆ V is called
a transversal of H, if each edge of H contains at least one
vertex of T . The transversal number of H is the minimum
size among all transversals in H, and it is denoted by τ(H).
The dis joint transversal number of a hypergraph H is the
maximum number of disjoint transversals in H, and it is
denoted by dis jτ(H). Goddard and Henning [1] studied the
fractional disjoint transversal number. Given a hypergraph
H and a family of (not necessarily distinct) transversals F of
H, let rF be the maximum times that any vertex appears in
F . The f ractional dis joint transversal number is defined
as

DT f (H) = sup
F

|F |

rF
.

Goddard and Henning [1] gave some bounds of DT f (H).

Lemma 1.1. [1] For every isolate-free hypergraph H of

order n,

dis jτ(H) ≤ DT f (H) ≤ n
τ(H) .

The minimum size of all edges of H is called the anti-
rank of H and denoted by r(H). Goddard and Henning [1]
showed a lower bound on DT f (H) using the anti-rank of a
hypergraph H.

Lemma 1.2. [1] If a hypergraph H has order n and anti-

rank k, then

DT f (H) ≥ n/(n − k + 1).

For e ∈ E (H), if edge e has size k, e is called a k-edge.
When every edge of H is a k-edge, we call H k-uni f orm.
A complete k-uniform hypergraph on n vertices, denoted
by K(k)

n , has all k-subsets of {1, · · · , n} as edges. If D is a
minimum transversal of K(k)

n , then τ(K(k)
n ) = |D| ≥ n − k + 1

because each k-subset of V(K(k)
n ) contains at least one vertex

in D. By Lemmas 1.1 and 1.2, DT f (K
(k)
n ) = n/(n − k + 1).

Goddard and Henning [1] discussed the fractional disjoint
transversal number of the disjoint union of hypergraphs.

Lemma 1.3. [1] If H is the disjoint union of isolate-free

hypergraphs H1,H2, · · · ,Hk, then
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DT f (H) =min{DT f (H1),DT f (H2), · · · ,DT f (Hk)}.

The degree of a vertex v in H, denoted by d(v), is
the number of edges containing v in H. Let δ(H) and
∆(H) be the minimum degree and the maximum degree of
hypergraph H, respectively. If every vertex v ∈ V(H) has
degree k, we say that H is a k-regular hypergraph. For
k ≥ 2, let Hk denote the class of all k-regular k-uniform
hypergraphs. Henning and Yeo [2] showed that if H ∈ H3,
then DT f (H) ≥ 2. They also proved that for all k ≥ 3, if
H ∈Hk, then DT f (H) ≥ k

1+ln k , and this bound is essentially
the best possible.

A polychromatic (or panchromatic) m-coloring of
hypergraph H is a mapping f : V(H) → {1, 2, · · · ,m} such
that all m colors appear on each edge in H (see [3, 4]). In
particular, when m = 2, it is also called a 2-coloring of
H. Obviously, in a polychromatic m-coloring of H, each
color class is a transversal of H. So, a hypergraph H has
a polychromatic m-coloring if and only if H has m disjoint
transversals. Let H be a hypergraph with maximum degree
∆ and anti-rank r. The hall ratio of hypergraph H is defined
as h(H) = min{| ∪ J |/|J | : ∅ , J ⊆ E }, where
∪J = ∪J∈J J. Kostochka and Woodall [4] showed that,
if (i) h(H) > r − 1 or (ii) r ≥ 3, h(H) ≥ r − 1, then
dis jτ(H) ≥ r. Bollobás et al. [3] proved that, for a family
H of hypergraphs with maximum degree ∆ and anti-rank r,
each H ∈ H has dis jτ(H) ≥ r/(ln ∆ + O(ln ln ∆)); (ii) for
all ∆ ≥ 2, r ≥ 1, minH∈H {dis jτ(H)} ≤ max{1,O(r/ ln ∆)};
(iii) for each sequence ∆, r → ∞ with r = ω(ln ∆),
minH∈H dis jτ(H) ≤ (1 + o(1))r/ ln ∆. Li and Zhang [5]
gave a lower bound dis jτ(H) ≥ br/ln(c∆r2)c, where 0 <

c = c(∆, r) < 1.5582. Henning and Yeo [6] confirmed that
every hypergraph H ∈ Hk contains m disjoint transversals
for k ≥ 2 and 2 ≤ m ≤ k

3 ln k . Jiang, Yue and Zhang [7]
showed that, for a fixed constant q, every hypergraph H with
h edges and anti-rank r has a polychromatic m-coloring such
that each color appears at least q times on every edge, where
m ≥ r(1 − o(1))/(2 ln h).

Let G be a graph. A total dominating set of G is a vertex
set that intersects the neighborhood of every vertex of graph
G. The total domatic number of graph G is the maximum
number of disjoint total dominating sets of G and denoted
by td(G). Construct the open neighborhood hypergraph

ON(G) of G as follows. The vertex set of ON(G) is V(G),

and the edges of ON(G) are the open neighborhoods of
vertices in G. Clearly, a total dominating set of G is a
transversal of ON(G). Therefore, td(G) = dis jτ(ON(G)).
That is to say, graph G has m disjoint total dominating
sets if and only if ON(G) has m disjoint transversals. So,
the disjoint total dominating set partition problem of graphs
corresponds to the disjoint transversal partition problem of a
special class of hypergraphs.

An m-vertex-coloring of graph G is called a
coupon coloring (or thoroughly dispersed coloring) if
every color appears in every open neighborhood of G (see
[1, 8]). Obviously, in a coupon coloring of G, a color
class is a total dominating set, and thus the maximum
number m of colors in coupon colorings of G is equivalent
to td(G). Chen et al. [8] proved every k-regular graph G

has td(G) ≥ (1 − o(1))k/ ln k. Henning and Yeo [6] showed
every k-regular graph G has td(G) ≥ 2, provided k ≥ 4.
Goddard and Henning [1] confirmed that every planar graph
has td(G) ≤ 4, and the bound is tight.

Let M be a family of (not necessarily distinct) total
dominating sets of G. Let rM be the maximum times that
any vertex of G appears in M . Let

FT D(G) = sup
M

|M |

rM
.

It is called the f ractional total domatic number of G [1]. Let
γt be the minimum size among all total dominating sets in
G. Goddard and Henning [1] gave lower and upper bounds
on the fractional total domatic number of a graph.

Lemma 1.4. [1] If G is an isolate-free graph of order n,

then

td(G) ≤ FT D(G) ≤ n
γt(G) .

Goddard and Henning [1] established the relation between
the fractional total domatic number of graph G and
the fractional disjoint transversal number of its open
neighborhood hypergraph ON(G).

Lemma 1.5. [1] For every isolate-free graph G, FT D(G) =

DT f (ON(G)).

Goddard and Henning [1] showed that every claw-free
graph G with δ(G) ≥ 2 has FT D(G) ≥ 3/2. Also,
they showed that every planar graph has td(G) ≤ 4 and
FT D(G) ≤ 5− 12

n . Henning and Yeo [2] verified a conjecture
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in [1] that every connected cubic graph had FT D(G) ≥ 2.
For a k-regular graph G, its open neighborhood hypergraph
ON(G) ∈ Hk. By Lemma 1.5 and the conclusion that
DT f (H) ≥ k

1+ln k for each H ∈ Hk due to Henning and Yeo
[2], it follows that if G is a k-regular graph, then FT D(G) ≥

k
1+ln k , where k ≥ 3. For more relevant results, see [9].

The subdivision graph of graph G, denoted by S (G), is
the graph obtained from G by subdividing every edge of G

exactly once. So, V(S (G)) = V(G)
⋃

E(G). Goddard and
Henning [1] obtained the following result.

Theorem 1.1. [1] For integer n ≥ 3, FT D(S (Kn)) = n
n−1 .

The incidence graph of hypergraph H is a bipartite graph
I(H) = (X,Y, E), where X = V(H), Y = E (H), xy ∈ E

if and only if x ∈ X, y ∈ Y and x ∈ y. Note that S (G)
is exactly the incidence graph of G. Goddard and Henning
[1] extended Theorem 1.1 to incidence graphs of complete
k-uniform hypergraphs for any integer k ≥ 3.

Theorem 1.2. [1] Let k ≥ 3, n ≥ 2k be two integers. Then,

FT D(I(K(k)
n )) = n

n−k+1 .

In this paper, we extend Theorem 1.2 by removal of
the restriction that “n ≥ 2k”. Moreover, we generalize
Theorem 1.2 to the incident graphs of h-balanced n-
partite complete k-uniform hypergraphs and obtain a similar
result. In Section 2, we discuss and determine the
fractional disjoint transversal numbers for n-partite complete
k-uniform hypergraphs. In Section 3, we determine the
fractional total domatic numbers for the incidence graphs of
balanced n-partite complete k-uniform hypergraphs.

2. The fractional disjoint transversal numbers of
complete uniform hypergraphs

A hypergraph H is called an n-partite complete k-uniform
hypergraph if H satisfies the following:
(1) H has a vertex set partition {V1,V2, · · · ,Vn};
(2) |Vi| = hi ≥ 1, 1 ≤ i ≤ n;
(3) edge set of H consists of all k-tuples, each of which
exactly intersects k Vis.
We denote an n-partite complete k-uniform hypergraph by
K(k)

h1,h2,··· ,hn
. The following result shows us that the fractional

disjoint transversal number of K(k)
h1,h2,··· ,hn

is irrelevant to the
indices hi, 1 ≤ i ≤ n.

Theorem 2.1. For positive integers hi, n, k, where n ≥ k and

1 ≤ i ≤ n, DT f (K
(k)
h1,h2,··· ,hn

) = n
n−k+1 .

Proof. Define H = K(k)
h1,h2,··· ,hn

. Let the vertex set partition
of H be V(H) = {V1,V2, · · · ,Vn}. For any transversal F of
H, V(H) \ F intersects at most k − 1 Vis. That is to say,
F contains at least n − k + 1 distinct Vis. Furthermore, for
an arbitrary transversal family F of H, by the Pigeonhole
Principle, we have that rF ≥

|F |(n−k+1)
n , implying that |F |rF

≤

n
n−k+1 . So, DT f (H) ≤ n

n−k+1 . Consider a transversal family
F , which consists of all distinct unions of any n − k + 1
different Vis. Then, |F |=

(
n

n−k+1

)
. Since every vertex of H

is in
(

n−1
n−k

)
transversals of F , we have |F |

rF
=
(

n
n−k+1

)
/
(

n−1
n−k

)
=

n
n−k+1 . Consequently, DT f (H) = n

n−k+1 . �

When hi = h for each 1 ≤ i ≤ n, K(k)
h1,h2,··· ,hn

is called h-
balanced, simply denoted by K(k)

h×n.

Corollary 2.1. For positive integers n, k, h with n ≥ k,

DT f (K
(k)
h×n) = n

n−k+1 .

3. The fractional total domatic numbers of the
incidence graphs of balanced complete uniform
hypergraphs

Let H = (V,E ) be a hypergraph with V = {x1, x2, · · · , xn}

and E = (E1, E2, · · · , Es). The maximum size of all edges
of H is called the rank of H and denoted by R(H). An edge
subset S ⊆ E is called a cover of H if S contains all vertices
in V(H). If the edge set of H can be partitioned into m

disjoint covers, then H has a cover m-decomposition. The
maximum number m is denoted by cd(G). The dual of H is
denoted by H∗, whose vertices e1, e2, · · · , es correspond to
the edges of H and whose edges are Xi = {e j|xi ∈ E j, 1 ≤ j ≤

s}, i = 1, 2, · · · , n. Thus, δ(H) = r(H∗) and ∆(H) = R(H∗).
Clearly, an m-transversal-partition of H corresponds to a
cover m-decomposition of H∗, and dis jτ(H) = cd(H∗).

Goddard and Henning [1] referred to the following
relationship between H and the open neighborhood
hypergraph of I(H). For completeness, we give a proof.

Lemma 3.1. Let H be a hypergraph. Then, ON(I(H))
consists of two components, H and its dual H∗.

Proof. Let V(H)={u1, u2, · · · , un}. By the definition of
incidence graph, the vertex set of I(H) is V(H)∪E (H). Then,
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the ON(I(H)) consists of two components: H1, which has
vertex set V(H), and H2, which has vertex set E (H).

H1 is formed by the open neighborhoods of the
elements in E (H). Note that in I(H), for each e =

{u1, u2, · · · , us} ∈ E (H), the open neighborhood of e is itself,
i.e., {u1, u2, · · · , us}. So, H1 � H.

In I(H), the open neighborhood of an element ui ∈ V(H)
is the set of incident edges of ui, i = 1, 2, · · · , n, which
forms an edge of H2. For each ui ∈ V(H), we denote
its corresponding edge in H2 by Ui. For an element e ∈

V(H2) = E (H) and an element Ui ∈ E(H2), e is incident
with Ui in H2 if and only if e is incident with ui in H. This
means that H2 � H∗ � H∗1. �

Next, we improve Theorem 1.2 by removal of the
restriction that “n ≥ 2k”. Let P = (w1,w2, · · · ,wp) be a
permutation. We call (w j,w j+1, · · · , wp,w1, · · · ,w j−1) the
jth rotation of P, 1 ≤ j ≤ p. Clearly, the permutation P has
p different rotations.

Theorem 3.1. Let k, n be two integers and n > k ≥ 2. Then,

FT D(I(K(k)
n )) =

n
n − k + 1

.

Proof. We define H = K(k)
n . By Lemmas 1.3, 1.5 and 3.1,

FT D(I(H)) = DT f (ON(I(H))) = min{DT f (H), DT f (H∗)} ≤
DT f (H). Also, by Corollary 2.1, there is FT D(I(H)) ≤

n
n−k+1 .

Next, we prove that the bound is also a lower bound
of FT D(I(H)) by constructing a special family of total
dominating sets.

We know that I(H) is a bipartite graph with V(I(H)) =

V(H) ∪ E(H). Clearly, |E(H)| =
(

n
k

)
. Let V(H) =

{v1, v2, · · · , vn}. Assume that n = ak + b, where a ≥ 1, 0 ≤
b < k. Given a permutation (v1, v2, · · · , vn), we pick a subset
F1 ⊂ V(I(H)) following three rules, as below:

(R1) A1 = {v1, v2, · · · , vn−k, vn};
(R2) B1 = {e1

0, e
1
1, e

1
2, · · · , e

1
a},

where e1
0 = {vn−k+1, · · · , vn} and

e1
j = {vk j−k+1, · · · , vk j}, 1 ≤ j ≤ a;

(R3) F1 = A1 ∪ B1.

Note that e1
0 = e1

a if and only if b = 0. Since each element
of E(H) has k neighbors, and there are exactly k − 1 vertices
of V(H) not in F1, each element of E(H) is dominated by F1

in I(H). Also, by ∪a
j=0e1

j = V(H), each element of V(H) is
dominated by F1. That is to say, F1 is a total dominating set
of I(H).

Let (ui
1, u

i
2, · · · , u

i
n) = (vi, vi+1, · · · , vn, v1, · · · , vi−1) denote

the ith rotation of the sequence (v1, v2, · · · , vn). Analogously,
based on the sequence (ui

1, u
i
2, · · · , u

i
n), we can obtain a total

dominating set Fi = Ai ∪ Bi of I(H) for each 1 ≤ i ≤ n.
It is easy to see that each element of V(H) appears exactly
n − k + 1 times in the family of total dominating sets
F = {F1, F2, · · · , Fn}. When b = 0, for each 1 ≤ i ≤ n,
ei

1, e
i
2, · · · , e

i
a are distinct, and each of them appears exactly

a times in F , i.e., Bh = Bk+h = · · · = B(a−1)k+h for
each 1 ≤ h ≤ k. When b > 0, for each 1 ≤ i ≤ n,
ei

0, e
i
1, e

i
2, · · · , e

i
a are distinct (See Figure 1). Note that, for

any 1 ≤ j ≤ n, the sequential k-tuple {v j, v j+1, · · · , v j+k−1} =

ek+ j
0 (both the subscripts and k + j are mod n.) This means

that ∪n
i=1{e

i
0, e

i
1, e

i
2, · · · , e

i
a} = ∪n

i=1{e
i
0}. It is easy to see that

e1
0, e

2
0, · · · , e

n
0 are distinct. Next, we show ei

0 appears exactly
a + 1 times for each 1 ≤ i ≤ n.

• When 1 ≤ i ≤ k, ei
0 = ei+b

a = ei+b+k
a−1 = · · · = ei+b+(a−1)k

1 ;
• when tk + 1 ≤ i ≤ tk + k and 1 ≤ t ≤ a− 1, ei−tk

t = · · · =

ei−k
1 = ei

0 = ei+b
a = ei+b+k

a−1 = · · · = ei+b+(a−t−1)k
t+1 ;

• when ak + 1 ≤ i ≤ n, ei
0 = ei−ak

a = · · · = ei−2k
2 = ei−k

1 .

Figure 1. When b > 0, a demonstration for Bi =

{ei
1, · · · , e

i
a, e

i
0}, 1 ≤ i ≤ n.

We give a claim as follows.

Claim. n − k + 1 ≥ a + 1.

Recall that n > k ≥ 2. If a = 1, then b ≥ 1. So, n− k + 1 =

k+b−k+1 ≥ 2 = a+1. If a ≥ 2, then n−k+1 ≥ ak−k+1 =

a + a(k − 1) − k + 1 = a + (a − 1)(k − 1) ≥ a + 1.

In short, |F | = n, and rF = n− k + 1. By the definition of
the fractional total domatic number, FT D(I(H)) ≥ n

n−k+1 .
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�

Remark. According to the definition of K(k)
n , the

condition that n ≥ k is fundamental. The case that n = k

will be discussed in Theorem 3.2, and the case that n >

k = 1 is contained in Theorem 3.3. In either of the cases,
FT D(I(K(k)

n )) = 1.
The following Theorems 3.2, 3.3 determine the fractional

total domatic number of I(K(k)
h×n) and generalize Theorem

1.2. Before that, we give a relation between a hypergraph
and its sub-hypergraph on the fractional disjoint transversal
number. For two hypergraphs H and Ĥ, we call Ĥ a sub-
hypergraph of H if V(Ĥ) ⊆ V(H) and E (Ĥ) ⊆ E (H).

Lemma 3.2. Let Ĥ be a sub-hypergraph of H. Then,

DT f (Ĥ) ≥ DT f (H).

Proof. Let DT f (H) = r. By the definition of the fractional
disjoint transversal number, there exists a transversal family
F of H such that |F |rF

= r. By V(Ĥ) ⊆ V(H) and E (Ĥ) ⊆
E (H), we can obtain a corresponding transversal family F̂

of Ĥ by removal of the vertices in V(H) \ V(Ĥ) from F .
Obviously, |F̂ | = |F |, and rF̂ ≤ rF . So, |F̂ |rF̂

≥
|F |
rF

= r.

Then, we have DT f (Ĥ) ≥ |F̂ |rF̂
≥ r. �

A matching in a hypergraph is a set of non-intersecting
edges. The matching number µ(H) is the size of a largest
matching of hypergraph H.

Theorem 3.2. Let n, h be two positive integers. Then,

FT D(I(K(n)
h×n)) =

 n, h ≥ 2;
1, h = 1.

Proof. When n = 1, |V(I(K(1)
h×1))| = 2h. Clearly,

td(I(K(1)
h×1)) = 1, and γt(I(K(1)

h×1)) = 2h. By Lemma 1.4, we
have FT D(I(K(1)

h×1)) = 1. Next, we assume that n ≥ 2.
When h = 1, K(n)

1×n � K(n)
n has only one edge,

which contains n vertices. Clearly, I(K(n)
n ) is a star, and

|V(I(K(n)
n ))| = n + 1. The edge e in K(n)

n corresponds to a
vertex e in I(K(n)

n ). Every total dominating set must contain
vertex e in I(K(n)

n ). Thus, for every family M of total
dominating sets of I(K(n)

n ), vertex e appears |M | times in
M . So, rM = |M |. By the definition of the fractional total
domatic number, FT D(I(K(n)

n )) = 1.
Next, we focus on the cases that n ≥ 2 and h ≥ 2.

Define H = K(n)
h×n. By Lemma 3.1, ON(I(H)) consists of two

components H and H∗. Then, by Corollary 2.1, DT f (H) = n.
In the following, we will show that DT f (H∗) ≥ n. By
Lemma 1.3, DT f (ON(I(H))) = min{DT f (H), DT f (H∗)} =

n. Also, by Lemma 1.5, FT D(I(H)) = DT f (ON(I(H))) = n.

Now, we discuss DT f (H∗). First, |V(H)| = nh, and
|E (H)| = hn. Since each edge contributes n to the degree
sum of H,

∑
v∈V(H) d(v) = hnn. By H regularity, we have

dH(v) = hnn
nh = hn−1 for each v ∈ V(H). Then, we know that

H∗ is hn−1-uniform and has hn vertices.

Here, we establish a claim.

Claim. E (H) can be partitioned into hn−1 disjoint
maximum matchings.

Array all vertices of H into a matrix with h rows and
n columns as follows, in such a way that the jth column
consists of the jth partite vertices of V(H), and denote the
matrix by A1,1,··· ,1.

A1,1,··· ,1 =


v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
...

...

vh1 vh2 · · · vhn


Every row of A1,1,··· ,1 corresponds to an edge in H. The

set of all rows of A1,1,··· ,1 corresponds to a matching of H.
Clearly, it is a maximum matching of H, and µ(H) = h.
We use A1,i2,i3,··· ,in to denote the matrix obtained from A1,1,··· ,1

by replacing the jth column (v1 j, v2 j, · · · , vh j)T with its i jth
rotation, where 2 ≤ j ≤ n, 1 ≤ i j ≤ h. Then, we
can obtain hn−1 distinct matrices, which correspond to hn−1

maximum matchings. We show that arbitrary two of such
matchings are disjoint. Pick arbitrarily two distinct matrices
A = A1,i2,··· ,in and B = A1,i′2,··· ,i

′
n . Without loss of generality,

assume i j , i′j. For the sth row of A and the tth row of B,
when s , t, the first elements are different; when s = t, the
jth elements are different. That is to say, the corresponding
matchings of A, B are disjoint. Recalling that |E (H)| = hn,
we partition E (H) into hn−1 disjoint maximum matchings.
The claim is proved.

Note that every maximum matching in H corresponds to
a part of V(H∗). Thus, H∗ has hn−1 parts, each of which
contains h vertices. It is easy to see that H∗ is hn−1-partite
hn−1-uniform and non-complete. We can extend H∗ into a
K(hn−1)

h×hn−1 by adding the missing hn−1-edges. By Corollary 2.1,
we have DT f (K

(hn−1)
h×hn−1 ) = hn−1. By Lemma 3.2, DT f (H∗) ≥
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DT f (K
(hn−1)
h×hn−1 ) = hn−1. Noting that hn−1 ≥ n when h ≥ 2, we

have DT f (H∗) ≥ n and then complete the proof. �

Theorem 3.3. Let n, k, h be three positive integers and n >

k. Then, FT D(I(K(k)
h×n)) = n

n−k+1 .

Proof. Define H = K(k)
h×n. When k = 1, |V(I(H))| = 2nh.

Clearly, td(I(H)) = 1 and γt(I(H)) = 2nh. By Lemma 1.4,
we have FT D(I(H)) = 1. When h = 1, it is done by
Theorem 3.1. In the following, we assume that h ≥ 2, k ≥ 2.

By Lemma 3.1, ON(I(H)) consists of two components,
H and H∗. By Corollary 2.1, DT f (H) = n

n−k+1 . If
DT f (H∗) ≥ n

n−k+1 , then FT D(I(K(k)
h×n)) = DT f (ON(I(H))) =

min{DT f (H),DT f (H∗)} = n
n−k+1 . By FT D(I(K(k)

n )) = n
n−k+1 ,

we know that DT f ((K
(k)
n )∗) ≥ n

n−k+1 . Next, we show that
DT f (H∗) ≥ n

n−k+1 for h ≥ 2 and k ≥ 2. Before that, we need
some properties of K(k)

n and its dual.

Let V(K(k)
n ) = {v1, v2, · · · , vn} and E(K(k)

n ) = {E : E ⊂

V(K(k)
n ), |E| = k} = {Ei : 1 ≤ i ≤

(
n
k

)
}. By the duality, we

know that V((K(k)
n )∗) = {ei : 1 ≤ i ≤

(
n
k

)
}, E((K(k)

n )∗) =

{V1,V2, · · · ,Vn}, and ei is incident with V j if and only if Ei

is incident with v j, i.e., ei ∈ V j if and only if v j ∈ Ei for all
1 ≤ i ≤

(
n
k

)
, 1 ≤ j ≤ n. Pick a family of (not necessarily

distinct) transversals F of (K(k)
n )∗ such that DT f ((K

(k)
n )∗) =

|F |
rF

. According to the definition of the dual of a hypergraph,
we can establish the following observation.

Observation. Let F = {e1, e2, · · · , es} ⊆ V((K(k)
n )∗)

and f = {E1, E2, · · · , Es} ⊆ E(K(k)
n ). Then, the following

statements are equivalent.

(1) F is a transversal of (K(k)
n )∗;

(2) F ∩ V j , ∅ for each element V j ∈ E((K(k)
n )∗);

(3) for each element V j ∈ E((K(k)
n )∗), there exists an

element ei j ∈ F such that ei j ∈ V j;
(4) for each element v j ∈ V(K(k)

n ), there exists an element
Ei j ∈ f such that v j ∈ Ei j ;

(5) ∪s
i=1Ei = V(K(k)

n ) = {v1, v2, · · · , vn};
(6) f is a cover of K(k)

n .

Assume that the n parts of K(k)
h×n are X1, X2, · · · , Xn, where

Xp = {v1
p, v

2
p, · · · , v

h
p} for each 1 ≤ p ≤ n. We can

partition V(K(k)
h×n) into h subsets Y1,Y2, · · · ,Yh such that

Yq = {vq
1, v

q
2, · · · , v

q
n} for each 1 ≤ q ≤ h. We next give

a family of transversals of (K(k)
h×n)∗ based on F . For each

F ∈ F , we construct a corresponding transversal F(h) of

(K(k)
h×n)∗ as follows. Without loss of generality, assume that

F = {e1, e2, · · · , es}. Then, f = {E1, E2, · · · , Es} is a cover of
K(k)

n , i.e., ∪s
i=1Ei = {v1, v2, · · · , vn}. Noting that Ei ∈ E(K(k)

n ),
we may assume that Ei = {vi1 , · · · , vik } for each 1 ≤ i ≤ s.
Set f q = {Eq

1, E
q
2, · · · , E

q
s }, where Eq

i = {vq
i1
, · · · , vq

ik
}, 1 ≤ i ≤

s, 1 ≤ q ≤ h. Then, ∪s
i=1Eq

i = {vq
1, v

q
2, · · · , v

q
n} = Yq. Define

f (h) = ∪h
q=1 f q = {Eq

i : 1 ≤ i ≤ s, 1 ≤ q ≤ h}.

It follows that f (h) is a cover of K(k)
h×n because ∪E∈ f (h)E =

∪h
q=1 ∪

s
i=1 Eq

i = ∪h
q=1Yq = V(K(k)

h×n). By the duality, we know
that

F(h) = {eq
i : 1 ≤ i ≤ s, 1 ≤ q ≤ h}

is a transversal of (K(k)
h×n)∗. Let F = {F1, F2, · · · , F|F |}.

Then, F (h) = {F1(h), F2(h), · · · , F|F |(h)} is a family of
transversals of (K(k)

h×n)∗. Obviously, rF (h) = rF . Hence, we
have

DT f ((K
(k)
h×n)∗) ≥

|F (h)|
rF (h)

=
|F |

rF
≥

n
n − k + 1

for h ≥ 2 and k ≥ 2.
�

4. Concluding remarks

By Theorems 3.2 and 3.3, we have completely determined
the fractional total domatic number on the incident graph of
K(k)

h×n for all positive integers n, k, h.

Theorem 4.1. Let n, k, h be positive integers, n ≥ k. Then,

FT D(I(K(k)
h×n)) =

 1, n = k and h = 1;
n

n−k+1 , otherwise.

When k = 2, we simply denote K(k)
h×n by Kh×n. Recall that

the incidence graph of a graph G is exactly the subdivision
graph S (G). Then, we have the following result, which
extends Theorem 1.1.

Theorem 4.2. For integers n ≥ 3, h ≥ 1,

FT D(S (Kh×n)) =
n

n − 1
.

As discussed in Lemma 3.1, for an arbitrary hypergraph
H, the open neighborhood hypergraph ON(I(H)) of its
incident graph I(H) consists of two components: H and
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its dual hypergraph H∗. By Lemmas 1.3 and 1.5, there is
FT D(I(H)) = DT f (ON(I(H))) = min{DT f (H),DT f (H∗)} ≤
DT f (H). In this paper, we have proved that FT D(I(H)) =

DT f (H) when H is an h-balanced n-partite complete k-
uniform hypergraph for any positive integers h, n, k (n ≥ k).
It is interesting to determine the class of hypergraphs H with
FT D(I(H)) = DT f (H).
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