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Abstract: In networked control systems, channel packet loss is inevitable due to the restricted bandwidth, especially in control (from
supervisory controller to some remote actuators), which will lead to the occurrence of failure control. In this paper, the controllability
of networked finite state machine (NFSM) is investigated within the framework of matrix semi-tensor product (STP), where random
channel packet losses are considered. Firstly, to capture the transition dynamics under random packet losses in the control channel,
we introduce a stochastic variable to estimate the state evolution, and the variable is assumed to obey the Bernoulli binary distribution.
Meanwhile, the NFSM with random channel packet losses can be expressed as a probabilistic logic representation. Subsequently, by
means of the delicate operation of matrix STP, some concise validation conditions for the controllability with a probability of one (w.p.
1), are derived for NFSM based on the probabilistic logic representation. Finally, a typical computing instance is used to demonstrate
the validity of the proposed method. The conclusions are conducive to study the security issues of the system involving opacity, fault
detection, controller design and so on.
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1. Introduction

Finite state machine (FSM) has found successful
applications in many complex artificial systems, including
network intrusion detection and cyber-physical ones. In
a classical finite state machine, it is assumed that the
controller is close to the actuator, the event command can be
transmitted to the controlled plant instantaneously through
the control channel. After decades of development, many
problems for such these systems have been well studied,
such as monitor theory [1], state estimate and detectability
[2], controllability [3, 4] and so on. It is important to
note that [5–7] converting the cyber-physical systems in the
logical networks and obtained a series of meaningful and
innovative results about the cyber-physical system. On the
one hand, the need for the interconnection of all things

makes it is easier for information to be transferred by
means of communication networks; and on the other hand,
the introduction of communication networks renders the
system with many excellent performances, such as cost
reduction, convenient maintenance friendly, easy tests and
so on. Hence, the control problems of NFSM have attracted
increasing attention and has become a very active field.

Generally, due to the relatively far transmission distance,
it is inevitable to introduce delays or packet losses between
supervisory controller and actuator. Specifically, an event
occurring spontaneously or a control command generated
by the monitor could be transferred at random in the
model of NFSM. If the monitor is designed without
considering the delays or packet losses in the control
channel (from supervisory controller and actuator), the
command issued by a supervisor may not be effectively or
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successfully accepted by the plant. Hence, in consideration
of the complex evolutionary behavior, the modeling and
analyzing of communication delays and packet losses has
given rise to new challenges. Meanwhile, the utilization
of communication networks in the control loops have
also considerable theoretical and practical significance for
NFSM.

From the analysis of the current literature, many
researches on NFSM almost always concentrate on the
channel delays, such as centralized control [8] and
decentralized control [9], robust control [10] and distributed
failure prognosis [11] and so on. In recent years, Lin
[12] investigated the bounded communication losses in the
control and observation channel from the perspective of
supervisory control, and obtained the existence conditions
for networked supervisor, i.e., network observability and
controllability need to be met simultaneously. Up to
now, There are fewer works to address the issues on the
controllability problem with communication losses in the
control channel, except our previous work [13], which has
solved the reachability problem with communication losses
from a switched perspective. However, in [13], we assumed
that the communication losses occur determinately, i.e.,
the probability of random channel packet losses from the
controller to the actuator is not considered, which lacks the
strict quantitative analysis for random packet losses.

Inspired by the methods in [13], i.e., matrix STP method,
this paper continues to study the influence of random packet
losses on controllability in the control channel of NFSM.
We refer to the work in [8], and assume that all the events
are disabled by default, and then, construct another finite
state machine affected by packet losses, where the set of
transitions with communication losses are disabled and the
predecessor of such transitions will remain unchanged with
respect to the lost events. To characterize the dynamics
with random channel packet losses, the state estimator
is introduced by utilizing a stochastic variable, which is
assumed to obey the Bernoulli random binary distribution.
Some key contributions include the following points:

• The matrix expression of NFSM with random channel
packet losses in control is proposed by an algebraic
state space method.

• The validation criteria for the reachability and

controllability w.p. 1 are given for NFSM on the basis
of the transition probability matrix.

The remaining sections are structured as follows: Section
2 brings in some basic notations and knowledge about
the NFSM and matrix STP. Section 3 focuses on the key
results of this paper, including the algebraic representation
for NFSM with random channel packet losses, and the
validation criteria for the existence of controllability. In
section 4, one typical simulation example is illustrated to
validate the proposed results. Finally, in Section 5, we
summarize the whole paper and give a brief prospect of the
future study.

2. Basic notations and preliminaries

• N+ is said to be the set of all positive integers.
• Mm×l is expressed as the set of m × l-dimensional real

matrices.
• A(i, j) ∈ Mm×l represents the element with the i-th row

and j-th column of matrix M.
• The j-th column of A ∈ Mm×l can be expressed as

Col j(M), and furthermore, the set of all columns is
Col(M).

•
∨

is termed as the logical ‘OR’ operation.
• 1n = [1, 1, · · · , 1︸      ︷︷      ︸

n

].

• δk
n is the k-th column of identity matrix In, k ∈

{1, 2, · · · , n}.
• ∆n := {δ1

n, δ
2
n, · · · , δ

n
n}.

• ν = [ν1, ν2, . . . , νn]T ∈ Rn is said to be sub-stochastic
logical vector if every element is satisfied that νi ≥ 0
and

∑n
i=1 νi 6 1; Especially, it is defined as stochastic

logical vector if
∑n

i=1 νi = 1.
• The set of n-dimensional sub-stochastic logical vector

is denoted by L̃s
n, making Ls

n as the set of n-
dimensional stochastic logical vector.

• E[y] is called the expected value of sub-stochastic or
stochastic logical vector y.

• Σ∗ denotes the set, which is composed of all finite-
length and non-empty strings on the finite set Σ.

In the classical FSM, the distance from controller to
actuator is assumed to be close, and the supervisory
command can be transmitted to the plant instantaneously
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through the control channel. In general, the finite state
machine can be briefly written as G =

(
Q,Σ, f , q0

)
, and

it consists of four-tuple, including the set of events Σ and
states Q from the initial state q0, the (partial) state transition
function f : Q × Σ → Q, generating all possible transitions
f = {(q, σ, q′) : f (q, σ) = q′}. Additionally, the transition
function f can be generalized over Σ∗ by an iterative way.

Due to the relatively far transmission distance, it is noted
that packet losses between the supervisory controller and
actuator will be introduced inevitably. According to the
actual situation of engineering system modeling and the
information transmission network, those transitions affected
by the actuators that are far away from the supervisor may
be lost at random. We define such transitions as the set
fl ⊆ f , and the remaining transitions are supposed to not
be absolutely lost, which is written as ful = f − fl. That is,
the set of all transitions can be divided into two parts, i.e.,
f = fl ∪ ful. In view of the above condition, a NFSM can be
characterized asA = {A, fl}.

At the beginning of the 21-st century, a novel algebraic
framework is proposed on the basis of the matrix semi-
tensor product, which transforms the logic dynamic system
into algebraic representation and extends the application
scope of the classical linear state space approach. Since
then, the STP-based algebraic state space method has
inspired and generated an abound of excellent works in
related areas, such as logic control networks [14–20], multi-
agent systems [21], networked evolution games [22–25] and
discrete event systems [26–28] and so on [29]. First of all,
for the convenience of understanding, we give some related
definitions and properties of matrix STP.

Definition 2.1 ( [30]). Given two matrices of arbitrary

dimensions H ∈ Mm×n, D ∈ Mp×q, the corresponding STP

(‘n’) of H and D is defined as:

H n D := (H ⊗ Ir/n)(D ⊗ Ir/p), (2.1)

where r is called the least common multiple of n and p.

(1) For χ ∈ Mm×1, ϕ ∈ Mn×1, the pseudo-commutativity of
χ and ϕ is satisfied that ϕ n χ = Ψ[m,n] n χ n ϕ, where
Ψ[m,n] is a constructed swap matrix, defined as:

Ψ[m,n] = [δ1
mn, δ

m+1
mn , δ2m+1

mn , · · · , δ(n−1)m+1
mn , δ2

mn,

δm+2
mn , · · · , δ(n−1)m+2

mn , · · · , δm
mn, · · · , δ

nm
mn],

where δ
j
mn is termed as the j-th column of identity

matrix Imn

(2) Given a matrix of arbitrary dimension X ∈ Mm×n, if it
is supposed that X(0) := In, then for k ∈ N+, the STP

power is denoted by

X(k) := X n X n · · · n X︸              ︷︷              ︸
k

. (2.2)

The STP-based algebraic state space method can be
described as the following two procedures:

• Firstly, by using the matrix STP, the logical variables
involved in the system are represented by a vector of
finite dimensions (xi ∼ δ

i
n);

• Secondly, the logical dynamic system is transferred into
a bilinear system on the finite state set. The bilinear
representation is used to study the process of the logical
dynamic system.

In accordance with the modeling process of algebraic
state space method, a NFSM A can be redefined as
Q = {q1, q2, · · · , qn} and Σ = {σ1, σ2, · · · , σm}, and these
variables are further set as qi = δi

n (i ∈ {1, 2 . . . , n})
and σk = δk

m (k ∈ {1, 2 . . . ,m}). Meanwhile, for
the convenience, we list some variable symbols used
later. qul(ς) = [qul

1 (ς), qul
2 (ς), · · · , qul

n (ς)]T (ql(ς) =

[ql
1(ς), ql

2(ς), · · · , ql
n(ς)]T ) is expressed as the vector form of

state reached at t steps with (no) control packet loss, and
qul

i (ς) = 1 (ql
i(ς) = 1) is defined if, and only, if there is

a transition that qi is reachable from q0 with (no) control
packet loss; u(ς) = [u1(ς), u2(ς), · · · , um(ς)]T is termed as
the event vector on Σ, and uk(ς) = 1 if σk is enabled at ς
steps. In the next section, we present the model dynamics
and controllability analysis of NFSM with packet losses
based on the representations.

3. Controllability under random channel packet losses

3.1. Models for random channel packet losses

In networked control systems, channel packet loss is
inevitable due to the restricted bandwidth, especially
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in control (from supervisory controller to some remote
actuators), which will lead to the occurrence of failure
control. Firstly, given a NFSM A = (A, fl),

Assumption 3.1. Before we present the main results, some

assumptions are made in the following:

1. Each event in Σ is disabled by default, and is only

allowed to occur if it is enabled by a control command.

2. The communication losses are random, i.e., the

transitions in fl may or may not be communicated in

control.

On the one hand, if the transitions in set fl are assumed
to be communicated successfully in the control channel,
the algebraic representation can be constructed in a manner
similar to that described in the reference [13], and the
dynamics of NFSM is shown as a discrete-time bi-linear
form in the following form:

qul(ς + 1) = Ful n u(ς) n qul(ς), (3.1)

where Ful is called the state transition structure matrix with
no control packet loss, and it is specifically defined as

Ful := [Ful
1 , F

ul
2 , · · · , F

ul
m ] ∈ Mn×mn, (3.2)

where Ful
k ∈ Mn×n is defined as:

Ful
k( j,i) =

 1, δ j
n ∈ f (δi

n, δ
k
m)

0, otherwise.
(3.3)

On the other hand, if the transitions in fl fails to be
communicated to the plant, such transitions are disabled and
will be permitted to occur until the transitions are not lost
in a later step. In particular, for (q, σ, q′) ∈ fl, not any
transition labeled by σ is enabled from state q to q′. In this
situation, state q will remain unchanged in itself with respect
to event σ under communication losses, which will alter the
transition structure of NFSM. In order to characterize such
changed transitions, we construct a new finite state machine,
in which the transitions will be replaced with a self-loop
if (q, σ, q′) ∈ fl is not transmitted to the performer. Let’s
illustrate the above process with a simple example.

Example 3.1. Consider a NFSM A = (A, fl), where fl =

{(q1, σ2, q3), (q3, σ1, q2)}, and if the transitions in fl are

hypothesized to be transmitted through the control channel,

and Figure 1 shows the state transition relationship among

various states. Otherwise, the newly constructed finite

state machine is represented as Figure 2. Note that the

added self-loops in Figure 2 are represented by the dashed

arrows on account of the communication losses, which can

be obtained by substituting (q1, σ2, q3), (q3, σ1, q2) with

(q1, σ2, q1), (q3, σ1, q3), respectively.

1q 2q

3q 4q

1

1

2

1 2, 

1

2

Figure 1. NFSM with no control packet loss.

1

1

2

1 2, 

12 1q 2q

3q 4q

Figure 2. NFSM with the control channel packet
loss.

According to (3.2) and (3.3), we define a new structure
matrix F l := [F l

1, F
l
2, · · · , F

l
m] ∈ Mn×mn for the constructed

NFSM, and the dynamics with control packet losses will be
iterated according to the following equation:

ql(ς + 1) = F l n u(ς) n ql(ς). (3.4)

However, the dynamics expressed by (3.1) and (3.4)
can characterize both cases with complete communication
losses, and the case with no packet loss. In practice, the
losses in the control channel are random, i.e., the transitions
in fl may or may not be communicated in the control
channel. So as to cope with the random packet losses, we
introduce a state estimation with random channel packet
losses, which can be depicted as follows:

q(ς) = (1 − γ)qul(ς) + γql(ς), (3.5)
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where γ is a random variable on behalf of the packet loss
rate, which is independent of system state. Note that q(ς)
is also stochastic because it merely refers to the source of
randomness from γ, which is indeed a random variable,
then the expectation of q(ς) will be implemented. In this
work, it is assumed that the communication losses may
happen according to the following Bernoulli random binary
distribution:

Prob{γ = 1} = E[γ] = λ (3.6)

Prob{γ = 0} = 1 − E[γ] = 1 − λ, (3.7)

where λ ∈ [0, 1) is a constant and represents the probability
that any transition in fl will be lost.

In the following theorem, the dynamics of NFSM with
random channel packet losses can be established.

Theorem 3.1. Given a NFSM A = (A, fl) with channel

packet loss rate λ, the evolutionary dynamics can be

described by the following stochastic logical equation:

E[q(ς + 1)] = F u(ς)E[q(ς)], (3.8)

where F = (1 − λ)Ful + λF l is termed as the probabilistic

transition structure matrix (PTSM), and E[q(ς)] ∈ Ls
n

denotes the expected value of the reachable state q(ς) and

E[q(0)] = q0.

Proof. : For any state q in the transition (q, σ, q′) ∈ ful,
q(ς) = qul(ς) = ql(ς) is satisfied. According to (3.5), (3.6)
and (3.7), we can obtain that

E[q(ς + 1)] =E[(1 − γ)qul(ς + 1) + γql(ς + 1)]

=E[(1 − γ)]E[qul(ς + 1)] + E[γ]E[ql(ς + 1)]

=(1 − E(γ))Ful n u(ς) n E[qul(ς)]+

E[γ]F l n u(ς) n E[ql(ς)]

=((1 − λ)Ful + λF l)u(ς)E[q(ς)]. (3.9)

For state q in the transition (q, σ, q′) ∈ fl, q(ς) = qul(ς) =

ql(ς) may be not satisfied. Generally, it is not hard to get that
E[q(ς + 1)] equals to E[(1 − γ)qul(ς + 1) + γ0] or equals to
E[(1 − γ)0 + γql(ς + 1)]. To sum up, E[q(ς + 1)] = ((1 −
λ)Ful + λF l)u(ς)E[q(ς)] represents the state transitions of
NFSM with random packet loss rate. �

In fact, the aforementioned theorem tells us that the
NFSM with random channel packet losses can be captured
by a special probabilistic finite state machine [31]. Next,
by means of the matrix expression in Theorem 3.1,
controllability of NFSM with random channel packet losses
will be investigated.

Remark 3.1. In the previous work [13], we discussed the

influence of arbitrary packet loss on the reachability, and

a novel theoretical framework is proposed to analyze the

robustness of reachable state from a switched perspective.

Here, the controllability is studied by the matrix STP, but

we concentrates on its analysis from a stochastic view. We

firmly believe that the models proposed in this paper and

[13] provide a very important basis for studying the control

problem with network packet loss.

3.2. Controllability analysis

In this subsection, we continue to investigate the
controllability of NFSM (network controllability), where
random packet losses are considered. Here, the definition of
controllability with random channel packet losses are given
as follows:

Definition 3.1. Given a NFSM A = (A, fl) with channel

packet loss rate λ,

(1) from the initial state q0 = δi
n, the target state q j = δ

j
n

is reachable at the k-th step w.p. 1 (k-th reachable) if

there is an event string s = σl0σl1 . . . , σlk−1 ∈ Σ∗ so that

Prob{q(k) = q j | q(0) = q0} = 1.

(2) the set of all k-th reachable states from q0 is denoted

by Rk(q0). Furthermore, R(q0) is said to be the set

of all states reachable w.p. 1 from q0, and R(q0) =

∪i∈N+Ri

(
q0

)
.

(3) system is said to be controllable w.p. 1 from q0 if

R(q0) = ∆n.

Let us first introduce the notion of k-th transition
probability matrix (TPM) with some sequence of events.
Consider a NFSM with random channel packet losses.
Suppose a specified input u(ς) = δk

m, Theorem 3.1 means
E[q(ς + 1)] = F δk

mE[q(ς)] = FkE[q(ς)]; in this case,
Fk ∈ Mm×n is called the first step TPM from the current state
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q(ς) to the next q(ς + 1) with the input u(ς), and rewritten as
P1 . Denote k-th TPM by Pk ∈ Mn×n, whose (i, j) entry is
Prob{q(t + k) = q j | q(ς) = qi}, i.e., the probability from the
state vector q(ς) = δi

n to q(ς + k) = δ
j
n under a sequence of

events nk−1
c=0u(ς+c) that is executed. By using the matrix STP

and Theorem 3.1, Pk can be equivalently calculated through
the iterative computation, and established in the following
proposition.

Theorem 3.2. Given a NFSMA = (A, fl) with a sequence of

events s = σl0σl1 . . . , σlk−1 ∈ Σ∗, then the k-th TPM satisfies.

Pk = D(k) nk−1
c=0 δ

lc
m, (3.10)

where D(k) = (FΨ[n,m])(k)Ψ[mk ,n] ∈ Mn×nmk , and Ψ[n,m] can

be referred to the pseudo-commutativity.

Proof. Based on the matrix expression (3.8), we have the
following result:

E[q(1)] = FΨ[n,m]E[q(0)]u(0)

E[q(2)] = FΨ[n,m]E[q(1)]u(1)

= (FΨ[n,m])(2)E[q(0)]u(0)u(1)

...

E[q(k)] = FΨ[n,m]E[q(k − 1)]u(k − 1)

= (FΨ[n,m])(k)E[q(0)] nk−1
c=0 δ

lc
m

= (FΨ[n,m])(k)Ψ[mk ,n] n
k−1
c=0 δ

lc
mE[q(0)]. (3.11)

If (FΨ[n,m])(k)Ψ[mk ,n] is abbreviated as D(k), then, k-th TPM

Pk with a sequence of events s = σl0σl1 . . . , σlk−1

∈ Σ∗ can be calculated as D(k) nk−1
c=0 δ

lc
m. �

Theorem 3.2 reveals that the matrix D(k) ∈ Mn×nmk
s

consists of the current state transition probability and the
event strings with respect to the reachable paths ofA, which
provides an important basis for system control analysis
and design. Here, let us go further to split D(k) into mk

blocks, and D(k)
i ∈ Mn×n, i.e., D(k) = [D(k)

1 ,D(k)
2 , . . . ,D(k)

mk ].
To characterize the controllability of NFSM with random
channel packet losses, an operator 〈•〉 is introduced and
defined by

Lk :=
〈
D(k)

〉
:= D(k)

1 ∨ D(k)
2 ∨ · · · ∨ D(k)

mk =

mk∨
i=1

D(k)
i . (3.12)

Finally, the main results to validate the criterion are
derived based on the above preliminaries.

Theorem 3.3. Given a NFSM A = (A, fl) with channel

packet loss rate λ,

(1) the target state q j = δ
j
n is k-th reachable from q0 = δi

n

iff

Lk
( j,i) = 1; (3.13)

(2) the target state q j = δ
j
n is reachable w.p. 1 from q0 = δi

n

iff there is a positive integer α, such that

α∨
k=1

Lk
( j,i) = 1; (3.14)

(3) the NFSM is controllable w.p. 1 from q0 = δi
n iff the

positive integer α satisfies the following condition

α∨
k=1

Coli(Lk) = 1n. (3.15)

Proof. (1) ‘if’ part: According to the definition of operator
〈•〉 in Eq. (3.12), Lk

( j,i) = 1, i.e.,
〈
D(k)

〉
( j,i)

= 1 iff there is a

positive integer β ∈ {1, 2, . . . ,mk}, such that (D(k)
β )( j,i) = 1.

According to (3.11), it means that a sequence of events
s = σl0σl1 . . . , σlk−1 ∈ Σ∗ exists that (D(k) nk−1

c=0 δ
lc
m)( j,i) = 1,

i.e., Pk
( j,i) = 1 is satisfied. Then, an input string s =

σl0σl1 . . . , σlk−1 ∈ Σ∗ can satisfy the condition Prob{q(k) =

q j | q(0) = q0} = 1.
‘only if’ part: If state q j = δ

j
n is k-th reachable from q0 =

δi
n, we prove that Lk

( j,i) = 1 is satisfied. Based on the matrix
expression (3.8) and Theorem 3.2, the condition shows that
there is a sequence of events s = σl0σl1 . . . , σlk−1 ∈ Σ∗, such
that δ j

n = E[x(k)] = Pkδi
n, i.e., Pk

( j,i) = 1, which implies
that β ∈ {1, 2, . . . ,mk} exists, such that (D(k)

β )( j,i) = 1. Then
clearly, Lk

( j,i) = (
〈
D(k)

〉
)( j,i) = 1 is tenable.

(2) ‘if’ part: we suppose that there is a positive integer α
such that

α∨
k=1

Lk
( j,i) = L1

( j,i) ∨ L2
( j,i) ∨ · · · ∨ Lα

( j,i) = 1,

and the existence of k ∈ {1, 2, . . . , α} makes the formula
Lk

( j,i) = 1 true. Based on Eq. (3.13), the target state q j = δ
j
n

is k-th reachable w.p. 1 from q0 = δi
n. i.e., state q j = δ

j
n is

reachable w.p. 1 from q0 = δi
n.

‘only if’ part: If state q j = δ
j
n is reachable w.p. 1 from

q0 = δi
n, based on the result mentioned above, we can obtain
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that Lk1
( j,i) = 1, Lk2

( j,i) = 1, · · · , or Lkτ
( j,i) = 1. Thus,

∨α
k=1 Lk

( j,i) =

1 can be arrived at, where α = max{k1, k2, . . . , kτ}.
(3) ‘if’ part: If there is a positive integer α such that
α∨

k=1

Coli(Lk) = Coli(L1) ∨Coli(L2) ∨ · · · ∨Coli(Lα) = 1n,

it is satisfied that Lk1
(1,i) = 1, Lk2

(2,i) = 1, · · · , Lkτ
(n,i) = 1,

where ki ∈ {1, 2, . . . , α}. Based on the aforementioned result,
state q j = δ

j
n is k j-th reachable w.p. 1 from q0 = δi

n,
i.e., the k j-step reachable set w.p. 1 Rk j (q

0) = q j, and
R(q0) = ∪ j≤αRk j

(
q0

)
= ∆n. Henceforth, the NFSM system

with random packet loss is thought to be controllable w.p. 1
from q0.

‘only if’ part: If the system is controllable w.p. 1 from
q0 = δi

n, it is obvious that the reachable states w.p. 1 from
q0 satisfy R(q0) = ∆n. According to Eq. (3.13), we can
derive that Lk1

(1,i) = 1, Lk2
(2,i) = 1, · · · , Lkτ

(n,i) = 1. In brief,∨α
k=1 Coli(Lk) = 1n, where α = max{k1, k2, . . . , kτ}. �

Remark 3.2. In this paper, the impact of random

channel packet losses on the controllability of NFSM is

systematically studied. We discover that the dynamics of

NFSM with random channel packet losses can be expressed

as a probabilistic finite state machine by utilizing the

state estimation, and such dynamics take into account the

probability λ of random channel packet losses from the

controller to actuator, which provides us an important model

for quantitative analysis.

Remark 3.3. On a broader note, the underlying evolution

of the states seems analogous to that of a discrete-time

finite Markov chain, where the transition probabilities

depend on the packet loss. The results in this paper

are equivalent to the irreducibility of the Markov chain.

However, we put more emphasis on the controllable paths

from the initial state. With the assistance of matrix STP,

the algebraic representation of NFSM with channel packet

loss rate λ is established, and the verification criteria for

the controllability w.p. 1 are derived by the k-th transition

probability matrix Pk.

4. Numerical example

In this section, we utilize a typical example to validate the
theoretical results in Section 3.

Example 4.1. Considering a networked flexible

manufacturing system, it is characterized as a FSM

A =
(
Q,Σ, f , q0

)
, and its corresponding evolution

graph is depicted in Figure 3, where Q = {q1, · · · , q9}

and Σ = {σ1, · · · , σ4} denote the different states and

signal indicators. Due to the relatively far transmission

distance, it is assumed that the occurrences in fl =

{(q1, σ2, q7), (q7, σ3, q1), (q2, σ3, q8), (q8, σ4, q2), (q3, σ1, q9),
(q9, σ3, q3)} is communicated with channel packet loss rate

λ = 0.25. The following graph (see Figure 4) represents the

state transition diagram with packet losses.
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Figure 3. The evolution graph of A, or the state
transition diagram without any packet losses in fl.
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Figure 4. State transition diagram with packet
losses, which is similar with Figure 2. Also note
that dashed arrows represent the lost transitions.

When taking the packet loss rate into account, the

evolution dynamics on NFSM can be termed as E[q(ς +
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Figure 5. The resulting constructed state diagram
with channel packet loss rate λ = 0.25.

1)] = F u(ς)E[q(ς)], and its corresponding PTSM can be

written as F = {F1,F2,F3,F4}, which is calculated based

on Theorem 3.1. The resulting constructed state diagram is

shown as Figure 5 by adding the channel packet loss rate λ =

0.25. In this manufacturing system, some transactions are

always assigned to accomplish important tasks, for example,

from interface states q2, q5 to q1. Next, we will show how to

verify the controllability w.p. 1.

F1 =



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0.75 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0 0 0



F2 =



0.75 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0.25 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0



F3 =



0 0 0 0 0 0 0.25 1 0
0 0.75 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0.25
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.75 0 0
0 0.25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.75



F4 =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0.25 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.75 0
0 0 0 0 0 0 0 0 0


According to Theorem 3.3, when k = 3, the reachability

matrix with random packet loss rate
∨k
µ=1 L(µ) can be

obtained in the following:

3∨
µ=1

L(µ) =



1 1 0.3 1 1 1 1 1 1
1 0.6 0 0 0 0.8 0.3 1 1
0.1 1 1 0.8 1 1 0.3 0.3 0.2
1 1 1 1 1 1 0 0.3 0.3
1 1 1 1 1 1 0.3 0.3 0.3
1 0.3 0.3 1 0 1 1 1 1
0.3 0.1 0.3 0 0.3 0.7 0.3 0.3
1 0.2 0 0 0 0.3 0.3 1 1
0.3 1 1 0.8 1 1 0.8 0.3 0.6



Notice that
∨3
µ=1 L(µ)

(1,5) =
∨3
µ=1 L(µ)

(1,2) = 1, state q1 = δ1
9 is

reachable w.p. 1 from q2 = δ2
9 and q5 = δ5

9, respectively.

When considering system information security issues,

some states are supposed to be safe, such as q1 = δ1
9 and the

state will be labeled as a target state, which is required to be

arrived from all states. Through some iterative calculations,

if k = 4, the reachability matrix with random packet loss rate
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µ=1 L(µ) is computed as:



1 1 1 1 1 1 1 1 1
1 0.6 0.3 1 0 1 1 1 1
1 1 1 1 1 1 0.3 0.3 0.3
1 1 1 1 1 1 0.3 1 1
1 1 1 1 1 1 0.3 1 1
1 1 0.3 1 1 1 1 1 1

0.3 0.3 0.1 0.3 0.3 0.3 0.6 0.3 0.3
1 0.3 0.3 1 0 1 1 1 1
1 1 1 1 1 1 0.8 0.3 0.6



.

Clearly,
∨4
µ=1 L(µ)

(1,:) = 1T
9 , i.e., state q1 = δ1

9 is reachable

w.p. 1, which implies that state q1 = δ1
9 is reachable with

random packet loss.

5. Conclusions

In conclusion, the controllability of NFSM with random
channel packet losses is explored, in terms of an algebraic
state space approach. With the help of matrix STP, the
probabilistic logic representation of NFSM with packet loss
rate is proposed, which converts the NFSM with random
channel packet losses to a special probabilistic automaton.
Then, starting from the strict algebraic derivation, some
concise validation conditions for the controllability w.p.

1 are obtained for NFSM. Finally, the numerical example
demonstrates that the proposed model is succinct and
effective.

In future studies, we are planning to address some more
complicated problems. For example, opacity [32, 33] is a
very important concept of security information flow, and
stochastic opacity with random channel packet losses can
be investigated, based on the reachability concept proposed
in this paper.
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