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Abstract: In this paper, a discrete predator-prey model with double Allee effect is discussed. We first simplify the corresponding
continuous predator-prey model, and use the semidiscretization method to obtain a new discrete model. Next, the existence and local
stability of nonnegative fixed points of the new discrete model are studied by using a key lemma. Then, by using the center manifold
theorem and bifurcation theory, the sufficient conditions for the occurrences of transcritical bifurcation and Neimark-Sacker bifurcation
and the stability of closed orbit bifurcated are obtained. Finally, the numerical simulations are presented, which not only verify the

existence of Neimark-Sacker bifurcation but also reveal some new dynamic phenomena of this model.
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1. Introduction

The dynamical analysis of complex ecosystem, such as
food chain, is based on the interaction among species or
between two species, especially the dynamical relationship
between predator and prey [1-4]. The current theory
of predator-prey dynamics must depend on the study of
nonlinear mathematical model [5]. With the continuous
improvement of ecological knowledge like theoretical
research, empirical research and observational research, etc.,
there are more and more basic elements of predation to be
considered. Therefore, modelers add some complexities to
their abstraction in order to obtain authenticity from the
emergence of the far-reaching Lotka-Volterra model [6] and
the modifications introduced by Volterra [5], taking into

account the self-interference of prey populations.

Allee effect, which affects the number of prey, is
one of these factors. It changes the qualitative stability
and quantitative aspects of predator-prey model dynamics.

Because the interaction between predator and prey is

naturally prone to vibration, it is obvious to study this
phenomenon as a potential mechanism for the generation of
population cycles. Lots of researches about predator-prey
models are done with the Allee effect [7-9].

The most popular framework for modeling expert
predator-prey interaction has the following structure:

L = xg(x, k) — yh(x),

iy 1.1
7 = (Ph(x) = o)y,

where x(¢) and y(¢) are the prey and predator population sizes
in the time 7, respectively, p, ¢ > 0 indicate the birth rate and
background mortality rate, respectively, g(x, k) describes the
specific growth rate of the prey in the absence of predator,
and A(x) describes the predator functional response.

Any mechanism leading to a positive correlation between
the components of individual fitness and the number or
density of similar individuals can be regarded as Allee
effect; it describes a scenario in which low population size
is affected by the positive correlation between population
growth rate and density, increasing the possibility of their
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extinction.

Recent ecological studies have shown that two or more
Allee effects can lead to mechanisms acting on a population
at the same time. The combined effects of some of these
phenomena are called multiple (double) Allee effects. The
author’s analysis in [10] showed that the results of strong and
weak Allee effects on the dynamics of Volterra predator-prey
model are similar, which originate from the limit cycle of the
model.

In this paper, we continue to consider the following
predator-prey model with double Allee effect functional
response raised by [10].

dX X\X-M
&= rX(1- 5XM _gxy,
{ dT K7 X+N (12)

& =mX-0y,

where r scales the prey growth rate, K is the intrinsic
carrying capacity for the environment to the prey in the
absence of predator, M is the Allee threshold, and the
auxiliary parameter N satisfies N > 0, g is the prey captured
rate by the predator, p,C > 0 indicate the birth rate and
background mortality rate, respectively.

One can see that the first equation in the model (1.2)
includes double Allee effects, expressed by the first factor
m(X) = X — M, and a second term r(X) = XTN, This can be
interpreted as an approximation of population dynamics, in

which the difference between fertile and non-fertile are not
clearly modeled.

In order to simplify the analysis of system (1.2), we
make a topologically equivalent change of variables and
time rescaling as in [11-14], defining the function ¢, such
that ¢(x,y) = (Kx, c—?y) = (X,Y), -=dT = dt. Then, system

(1.2) is transformed into

{ G = (=00 =m) = (x+ny)x,
(1.3)

% =b(x —c)(x + n)y,

K ¢ . _ M, _N ;
r,pK,m—K,n—K,andK>X>M1s

obtained from equation (1.2), so 1 > m > 0.

where b =

We now use the semidiscretization method, which has
been applied in many studies [15—-18], to study the discrete
model of system (1.3). For this, suppose that [f] denotes
the greatest integer not exceeding ¢. Consider the following

semidiscretization version of (1.3).
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{ %% = (I = x([sD)(x([2]) — m) — (x([z]) + n)y([z]),
ﬁ% = b(x([1]) — o) (x([2]) + n).
(1.4)
It is easy to see that the system (1.4) has piecewise
constant arguments, and that a solution (x(¢),y(t)) of the
system (1.4) for 7 € [0, +00) possesses the following natures:
1. on the interval [0, +c0), x(#) and y(¢) are continuous;
2. when ¢ € [0, +00) except for the points ¢ € {0, 1,2,3,---},
dx@ 4 (o

2 and =5

The following system can be obtained by integrating (1.4)

exist everywhere.

over the interval [n, ] forany 7 € [n,n+1)andn =0, 1,2, --

(1.5)

.x(t) — xne(l_xn)(xn_m)_(xn+”)yn (t — n)’
Y1) = yp =t (; — ),

where x, = x(n) and y,, = y(n). Lettingt — (n + 1)” in
(1.5) produces

Xpal = Xn =X =m)= (X m)yn
(1.6)

Vnsl = Yn eb(xn—c‘)(xnm),

where b,c,n > 0, 1 > m > 0 are the same as in (1.3). We
mainly study the properties of system (1.6) in the sequel.

The rest of the paper is organized as follows: In Section
2, we investigate the existence and stability of fixed points
of the system (1.6). In Section 3, we derive the sufficient
conditions for the transcritical bifurcation and the Neimark-
Sacker bifurcation of the system (1.6) to occur. In Section
4, numerical simulations are performed to verify the above
obtained theoretical results and reveal some new dynamical
properties.

Before we analyze the fixed points of the system (1.6), we

recall the following lemma see [16, 19].

Lemma 1.1. Let F(A) = A>+PA+Q, where P and Q are two
real constants. Suppose 11 and A, are two roots of F(1) = 0.
Then the following statements hold.
@) IfF(1) > 0, then

@@.1) 4] < 1 and |A;| < 1 if and only if F(—1) > 0 and
0<1;

@2) 4y =-land 2y # -1 ifand only if F(—-1) = 0 and
P2

@@.3) |41l < 1 and |Ay| > 1ifand only if F(—1) < 0;
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(i.4) || > 1 and |A3| > 1 if and only if F(—-1) > 0 and
0>1;
(i.5) A1 and A, are a pair of conjugate complex roots
with |41| = || = lifand only if -2 < P <2 and Q = 1;
(i.6) 4y = =—-1ifandonly if F(—1) =0 and P = 2.
(ii) If F(1) = 0, namely, 1 is one root of F(1) = 0O, then the
another root A satisfies |A| = (<,>)1 if and only if |Q] = (<
,>)1.
(i) If F(1) < 0, then F (1) = 0 has one root lying in (1, o).
Moreover,
(iii.1) the other root A satisfies A < (=) — 1 if and only
ifF(=1) < (=)0;
(iii.2) the other root —1 < A < 1 if and only if F(-1) >

2. Existence and stability of fixed points

In this section, we first consider the existence of fixed
points and then analyze the local stability of each fixed point.
The fixed points of the system (1.6) satisfy

X = xe(l—x)(x—m)—(xﬂz)y’

y= yeb(x—c)(x+n)

Considering the biological meanings of the system (1.6),
one only takes into account nonnegative fixed points.
Thereout, one finds that the system (1.6) has and only has
four nonnegative fixed points Ey = (0,0), E; = (1,0),
E;, = (m,0) and E3 = (xg,yo) for m < ¢ < 1, where

(1 -c)c—m)
e = T

The Jacobian matrix of the system (1.6) at any fixed point

E(x,y) takes the following form

[1+x(=2x=y+m+D]e* —x(x+n)e’

J(E) =

b(2x + n — c)yet@=Atm - ghlr=a)xtn) .

where A = e(I=9(=m~(x+my,
The characteristic polynomial of Jacobian matrix J(E)
reads
F)=2-pl+q,

where
p=Tr(J(E)) = [1 + x(=2x =y + m + 1)]e? + PC=o)xn),
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q = Det(J(E)) =[1 +x(2x—-y+m+ D][bx(x+n)2x+n—
C)]eAJrh(x—c)(,Hn)'

For the stability of fixed points Ey, E|, E> and E3, we can
easily get the following Theorems 2.1-2.4 respectively.

Theorem 2.1. The fixed point Eq = (0, 0) of the system (1.6)

is a sink.

Proof. The Jacobian matrix J(Ej) of the system (1.6) at the

0
e~ben :

Obviously, |4;] = e™ < 1 and |4,| = et < 1,80 Ey =
(0,0) is a sink.

fixed point Ey = (0, 0) is given by

J(Eq) = [em
o

Theorem 2.2. The following statements about the fixed
point E1 = (1,0) of the system (1.6) are true.

1. Ifc <1, then E| is a saddle.
2. Ifc =1, then E is non-hyperbolic.
3. Ifc> 1, then E; is a stable node.

Proof. The Jacobian matrix of the system (1.6) at E; = (1,0)
is

0 eb(l—c‘)(1+n)

) = [m —(1+n) ]

Obviously, A; = m and A, = eP1-OU+m,

Note |1;] < 1 is always true. If ¢ < 1, then |1;] > 1, so
E, is a saddle; if ¢ = 1, then |A,| = 1, therefore E; is non-
hyperbolic; if ¢ > 1, implying |1;| < 1, then E; is a stable

node, namely, a sink. The proof is complete.

Theorem 2.3. The following statements about the fixed
point Ey = (m,0) of the system (1.6) are true.

1. Ifc < m, then E; is a source.
2. If c = m, then E; is non-hyperbolic.
3. Ifc > m, then E; is a saddle.

Proof. The Jacobian matrix of the system (1.6) at E, =
(m,0)is

-m*+m+1 —m(m+n)

J(EZ) = 0 eh(m—c)(m+n) :

Obviously, A} = —m? + m + 1 and A, = P~
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Note 0 < m < 1, so |4;| > 1 is always true. If ¢ < m, then
|[A2] > 1, so E, is a source; if ¢ = m, then |A,| = 1, therefore
E; is non-hyperbolic; if ¢ > m, implying |1;| < 1, then E; is
a saddle. The proof is finished.

Theorem 2.4. When (1 — ¢)(c —m) > 0, namely, 0 < m <
¢ < 1, the fixed point E5 = (c, %) is a positive fixed
point of the system (1.6). Let by = m% Then the
following statements are true about the positive fixed point
Es.

29 em
LIfm< %, then,

1. for0 < b < by, Ej5 is a stable node;
2. for b = by, Es is non-hyperbolic;
3. for b > by, E3 is an unstable node.

2 N .
1. If m > “f% then, E5 is an unstable node.

Proof. The Jacobian matrix of the system (1.6) at E5 can be
simplified as follows

1+ —c(chrZC:;:m—m—n) —C(C + Vl)
J(E3) =
b(1 —¢)(c —m) 1
The characteristic polynomial of Jacobian matrix J(E3)
reads as
F) =2 -pl+g, (2.1
where

p =Tr(J(E3)) =2 —boc(1 — c)(c — m)(c + n),
q = Det(J(E3)) = 1 + (b — by)c(1 — ¢)(c — m)(c + n). By
calculating we get

F(1) = bc(1 —c)(c —m)(c +n) >0,
and

F(-1)=22- c2) + 2¢(n(1 = ¢) + mn + n)

c+n
+ bc(1 —c)(c—m)(c+n)>0.

LIf m < €291 then by > 0. So, when 0 < b < by, g < 1.
By Lemma 1.1 (i.1), |[4;] < 1 and |1;| < 1, therefore E3 is
a stable node, i.e., a sink. When b = by, g =1,-2 < p <
2. By Lemma 1.1 (i.5), Eq. (2.1) has a pair of conjugate
complex roots A; and A, with [4;| = |4;| = 1, implying E3
is non-hyperbolic. When b > by <, ¢ > 1. Lemma 1.1 (i.4)
tells us that [4;] > 1 and |4,| > 1, so Ej3 is an unstable node,

i.e., a source.
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IL If m > €290 then by < 0. So, b > 0 > by. Hence
g > 1. Lemma 1.1 (i.4) reads that E3 is an unstable node.
The proof is complete.

3. Bifurcation analysis

In this section, we are in a position to use the Center
Manifold Theorem and bifurcation theorem to analyze the
local bifurcation problems of the fixed points £, E, and Ej3.
For related work, refer to [20-25].

3.1. For fixed point E1 = (1,0)

Theorem 2.2 shows that a bifurcation of E; may
occur in the space of parameters (b,c,m,n) € Sg, =
{(b,c,m,n) ERiIb >0,c>0,1>m>0,n>0}.

Theorem 3.1. Set the parameters (b,c,m,n) € Sg, =
{(b,c,m,n) ERiIb >0,c>0,1>m>0,n>0} Let cg = 1,
then the system (1.6) undergoes a transcritical bifurcation at
E| when the parameter c varies in a small neighborhood of

Cp-

Proof. In order to show the detailed process, we proceed
according to the following steps.

The first step. Let u, = x, —
transforms the fixed point E; = (1,0) to the origin O(0, 0),
and the system (1.6) to

1,v, = y, — 0, which

= (uy + Ve tnltn=m+D=(ntnt vy _ 1

Up+1
(3.1)
Viil = Vneb(u,l—c+1)(un+n+1)'

The second step. Giving a small perturbation ¢* of the
parameter c, i.e., ¢* = ¢ — ¢, with 0 < |c*| < 1, the system
(3.1) is perturbed into

= (u, + 1)efun(urerl)*(u»ﬁrnJrl)vn -1,

Up+1
(3.2)
Virl = Vneb(u,,—c )(u,,+n+l).

Letting ;| = ¢, = ¢*, the system (3.2) can be written as

Upr) = (un + ])e—u,,(u,,—m+l)—(u,,+n+l)vn _ 1’

b(u,—cp)(u,+n+1)
9

(3.3)

Vntl = Vp€

5

—_ *
el = €

c .
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The third step. Taylor expanding of the system (3.3) at

(Un, vu, ¢;) = (0,0, 0) takes the form
Up+l = A100Un T Ao10Vn + Clzoouﬁ + aozovﬁ
+ajotnVn + a3oou,31 + dosovz
+a210uﬁvn + alzounvﬁ + 0(,0%),
Vaet = broottn + bo1ovi + booi ¢ + baoout?
+b020V2+bo0aci? + biiottaVy
+b101unc;‘l + bOllan:, + b300u2 (34)

+b030\/2 + b003C23 + bz]ouﬁvn

+b120unvﬁ + bzmuﬁc;‘, + blozunc,”;z

+b021VZCZ + bmzvnc;z + blllunvnc;

+o(p?),
. .

cn+1 = ¢

ne

VuZ +v2 + ()3,

a0 = m,apro = —(n + 1),

where p; =

1 1
axo = E(m — 1) +m—2,amn0 = E(n +1)%,
ajl=-mn—m-1,
Lon =17+ 2m - 17
azp = —(m— —(m-1)°"—-m,
300 = g 7
1 1
ap = —g(n + 13 a0 = Em(n +1)2+n+1,
1
o =—=m—1>*n+1)—mn—-2m-2n+3,

2

b1oo = boo1 = ba0o = bo2o = booz = b1o1 = b30o
= bozo = boo3 = bioo = b1 = bio2 = b1 =0,

boio = 1,b110 = b(n + 1), bo11 = —b(n + 1),
1 1
b210 =b+ §b2(n + 1)2,b012 = Ebz(l’l + 1)2,

b = —=b - b*(n+2)°.

Let
a0 aopio 0
J(E1) =|b1oo boio O
0 0 1
m —-(m+1) 0
e, JEN=|0 1 o0l
0 0 1

Then, we derive the three eigenvalues of J(E) to be
Ay =m, Az =1,

Mathematical Modelling and Control

and the corresponding eigenvectors

ELnnLen’ =(1,0,007,
(527’727¢2)T = (n + lvm - 170)T7
(&3, 93)" = (0,0, 1)

& & &
The fourth step. Let 7 =|n; 1, n;[,namely,
Y1 2 ¥
1 n+1 O

0 0 1
1+n
I £ 0
then 7' ={0 -L of.
0 0 1

Taking the following transformation
(U, Vi, C:)T =TX,,Y,, 6n)Ty
the system (3.4) is changed into the following form

Xn+l = an + F(Xnv Yn: 6n) + 0@2),
Yn+l = Yn +G(Xn’ Yn,5n)+0(Pg)’ (35)

On+1 = Oy,

where p = /X2 + Y2 + 62,

F(Xy, Yy, 8,) =mogo Xy + moxoYy + mogad,”
+ mllOXnYn + m101X116n
+ mot1 YnOp + m300X; + mo3oY,
+ m0036,13 + mzloxz Yn
+ My X, Y2 + mag; X268,
+ M1 Xy + moo1 Y6y

2
+mo12Y,6," + mi11 X, Y65,

G (X, Y, 8,) =laoo X7 + looo Y7 + load,
+ 110X, Y, + 1101 X0,

+Io11 Yu0n + L300 X, + lo30Y;
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+1o036,> + b10X, Y,
+ 1120X,,Y5 + 1201X,2,(5n
+ 102 X0, + lo1 Y6,

+ lOlZYn6n2 + lllanYn(Sm

ma00 = @200, M300 = A3005
moo2 = Mol = Moo3 = moo1 = myz = 0,
mono = (@200 — b110)(1 + n)* + ago(m — 1)°
+anolm—1(n+1),
mio = a0 — brio)(1 + n) + aro(m — 1),
mo11 = —=bo1 (1 +n),
mo3o = (azo0 — ba1o)(1 + 1)’ + agzo(m — 1)°
+axo(l +n)*(m—1)
+ano(1 +n)(m = 1),
ma10 = (3azpo — b210)(1 + n) + azio(m — 1),
miz = (3aze0 — 2b210)(1 + n)’
+2a210(1 + m)(m — 1) + apo(m — 1)?,
moa1 = =111 (1 +n)?, mopa = —bora(1 + n),
mi = —bin(1 + n),
oo = looa = 0, looo = b11o(1 + 1), 110 = biro,
Lot = 0,lo11 = bor1, 1300 = 0,lo30 = baro(1 + n)?,
loos = 0, 210 = b210, l120 = 2b210(1 + 1),
bo1 = lioa = 0,loo1 = b1 (1 + n), lorz = bora,

L = b
The fifth step. Suppose on the center manifold
Xy = h(Yn,6,) = hoo ¥y} + hi Y,6, + hoady + 0(03),
where p3 = m , then, according to

Xos1 = mh(Y,, 6,) + F(h(Yy, 8,), Yo, 6,) + 0(03),

h(Y 1, 6n41) =haoYyy + h11 Yns1 Ot + hoodi,
+0(p3)
=ha0(Yy + G(h(Y, 6,), Yo, 5,))°
+hi1 (Y, + G(h(Yy, 6,), Y 6,))6,

+ had? + 0(3).

Mathematical Modelling and Control

and X1 = h(Y,1,6,41), we obtain the center manifold

equation to satisfy the following relation

mh(Yy, 6,) + F(h(Yy, 6,), Yy, 6,)

= hao(Yy + G((Y,,6,), Y2, 6,))°

+ hii (Y, + G(A(Y, 62), Yoy 6005, + i, + 0(03).

Comparing the corresponding coefficients of terms with the
same orders in the above center manifold equation, we get

o = (m=2)(1+n)>—=(1+n)(2+n)(m—1)—b(1+n)>?
20 — 9

1-m

2
iy = 2 gy = 0.

1-m
So, the system (3.5) restricted to the center manifold takes

as

Yo = f(Yy, 60) := Yo + G(h(Yy, 6n), Y, 61) +
0(p3)

=Y, +b(1 +n)*Y? = b(1 + n)Y,,6,

+ B (1 = 2m = n = Lb(1 + (1 +m))Y;

+ (M () 4 )Y, 26, + 2631+ n)2Y, 5
+ o(pg).

Therefore one has

of af
(Ynaén)l , = 07 = ’ = 09
! ©0 Y, 10,0) 06, 1(0,0)
0> f
=-b(1+ 0,
o, Lo = PIFTM
*f 2
= 2b(1 +n)* 0.
Y2100

According to (21.1.42)-(21.1.46) in the literature ( [26],
pp.- 507), all the conditions for the occurrence of the
transcritical bifurcation are established, hence, it is valid for
the occurrence of transcritical bifurcation in the fixed point

E,. The proof is over.

3.2. For fixed point Ey = (m,0)

According to Theorem 2.3, the fixed point
E»(m, 0) is non-hyperbolic, the system (1.6) may undergo a
bifurcation (the correspond eigenvalue are 1; = —m? +m+1,
Ay = 1). By using the same method as that in Section 3.2,
we get the following result.

Theorem 3.2. Set the parameters (b,c,m,n) € Sg, =
{(b,c,m,n) € Rilb > 0,c > 0,1 >m > 0,n>0}. Let
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c1 = m, then the system (1.6) undergoes a transcritical
bifurcation at E, when the parameter c varies in a small
neighborhood of cy.

3.3. For fixed point E5 = (c, %)

When m < €291 p = py = St
Theorem 2.4 with Lemma 1.2 (i.5) shows that F(1) > 0,
F(-1) >0, -2 < p<2and g = 1, so 4; and A, are a
pair of conjugate complex roots with |4;] = [1p] = 1. At
this time we derive that the system (1.6) at the fixed point E3
can undergo a Neimark-Sacker bifurcation in the space of
parameters (b, c,m,n) € Sg, = {(b,c,m,n) € Rilb >0,1>

2+2cn—n }

c>m0<m< ]

In order to show the process clearly, we carry out the
following steps.

The first step. Take the changes of variables u, = x, —
X0, Vi = Yu — Yo, Which transform fixed point E3 = (x, o) to
the origin O(0, 0), and the system (1.6) into

Upet = (Uy + XO)e(—un—Xo+1)(un+)m—m)—(un+Xo+n)vnyn - Xo,

b(up+x0—C)(Up+x0+n) _

Vst = (Vg +y0)€ Yo-

(3.6)
The second step. Give a small perturbation b* of the
parameter b, i.e., b* = b — by, then the perturbation of the

system (3.6) can be regarded as follows

Upet = (Uy + xO)e(—un—Xo+1)(un+)m—m)—(un+Xo+n)vnyn - Xo,

Vsl = (Vn + yo)e(b*+b0)(u,,+x0—c)(u,,+x0+n) - 0.

3.7)
The corresponding characteristic equation of the linearized
equation of the system (3.7) at the equilibrium point (0,0)

can be expressed as

FQ) = 2 - p(b")A +q(b*) =0,

where
b =2+ c(—=c* = 2cn+ mn+m+n)
)= c+n ’
and
q(b*) — c[(c?+2cn—mn—m—n)—(b* +bo)(c+n)*(1=c)(c—m)] +1.

—(c+n)
It is easy to derive p?(b*) — 4g(b*) < 0 when b* = 0, and
0 < p(b*) < 2, then the two roots of F(1) = 0 are

pb*) = \p*(b*) — 4q(b*)

A1) = 5

Mathematical Modelling and Control

_ p(b") £ iN4q(b) — p*(b7)

2 bl

which implies

(|/11,2(b*)|)|b*=0 = Vg, _, = 1.
and
(%) o = %c(c +n)(1 =¢)c—m) > 0.

The occurrence of Neimark-Sacker bifurcation requires the

following conditions to be satisfied

d|/11,2(b*)|)

(H1) ( e

(H2) 2),(0)#1,i=1,2,3,4.

: * _ c(=c*=2cn+mn+m+n)
Since  p(bY)|,._, = 2 4+ el
and ¢q(b") b0 = I, we have 1;,(0) =
2(c+n)+c(—c2=2cn+mn+m+n)+i \/4(c+n)2—[2(c+n)+c(—c‘2 —2cn+mn+m+n))?

2(c+n) ’

then it is easy to derive /11,2(0) # 1 foralli = 1,2,3,4.
According to ( [2], pp517-522), they satisfy all of the
conditions for Neimark-Sacker bifurcation to occur.

The third step. In order to derive the normal form of the
system (3.7), we expand the system (3.7) into power series

up to the following third-order form around the origin

_ 2
Upe1 = CloUp + CO1Vn T+ Co0Uy, + C11URV,
2 3 2 2
+Co2V, t+ C3ol;,, + Co1U, vV, + C12UyV,
3 3
+co3v;, + 0(py),
) (3.8)
Vael = diolty + do1vy + doouty, + dyju,vy,

+d02V% + d30u2 + dgluﬁvn + dlzunv%
+do3v; + 0(p3),

where pg = \Ju2 + V2,

c(—=c® = 2cn + mn +m+n)

clo=1+ c+n ’
co1 = —c(c + n),

-2 —2cn+mn+m+n
0 ==e c+n

c(—=c* = 2cn + mn + m + n)?
2(c + n)? ’

o = c(c +n)?
02—
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e = —[2c +n+c(—=c? = 2en + mn +m+ n], where K = W’
C(_CZ —2en +mn +m + I’l) _ \/—c(—62—2c‘n+mn+m+n)[4(c+n)+c(—cz—20n+mn+m+n)]
c3=-1- B= 2(c+n) g
c+n with the corresponding eigenvectors
N (= = 2cn + mn + m + n)?
c(c + n)? . [—C(C +n) Y 0]
—c2 - 3 ’ i - ’
+c( c 2cn+mn+m+n)’ -1k B
6(c +n)’ Let
co3 = —M 0 —c(c+n)
6 ’ T = ' , then,
Y
a1 = =1 = (=c* = 2cn +mn+m+n) B 2
K 1
+C[C+n_—cz—2cn+mn+m+n — T3 B
c+n _ 1 ol
(=c? = 2cn + mn + m + n)? cletn)
a 2(c +n) . Make a change of variables
(¢ + n)?
Clp = 3 + C(C + I’l)[l (l/l, V)T — T(X, Y)T,
—c*—2cn+mn+m+n
+ 2 . then, the system (3.8) is transformed into the following form
_ -2 =2cn+mn+m+n _1 .
dio = - ctn? sdor =1, X - (1+1K)X =Y +FX,Y)+o0(d),
2 2 — 39
dyy = ZC T 2entmntmtn) Y= BX+(1+ 1KY +GXY)+o(0d), G2
2(c +n)*(1 - c)(c—m)
2(=c?* = 2cn+mn+m+n)(1-c)c—m
- ( X X ), where ps = VX2 + Y2,

2(c +n)*(1 = c)(c —m)

—*—2cn+mn+m+n —

di = — , F(X,Y) = e20X? + en XY + enY? + e30X°

1 crnd—oe—m (X, Y) = X" + e enY” + ez
doy = do3 = di2 =0,

(—=c* = 2cn + mn + m + n)?

+ 621X2Y + €12XY2 + €Q3Y3,

G(X,Y) = froX* + fuXY + fooV? + foX°

dzy = 1
30 (c+n)*( —c)c—m) [ + i X2Y + fr XY+ fo3Y°,
—62—20n+mn+m+n]
6(1 —c)(c —m) ’
d (=c* = 2cn +mn+m+n) ! B cofK B cocn K +2c5,din - cnK?
= 20 = > €11 = s
2! (c +n)2(1 = c)c—m) [ 2cq1 2co1
—02—2cn+mn+m+n] . 4631(620K+2C01d20—d11K)
. 02 =
2(1 = c)(c —m) 8co18
. K*(cxK - 2co1011)
Let 8co18 K
Clo  Coi co3BPK (2co1c12 — 3c3 K)BK
J(E3) = ,namely, e = €1 = ,
dyo  dor 2co1 4co
co1c21K — c1nK? + 2dy ¢, N 3cs K3
e =
1+K —c(c+n) 2 8cor
JED=| | : 8¢g,(c30K + 2¢co1d30 — dn K)
e = 16c0.18
It is easy to derive the two eigenvalues of the matrix J(E3) B K*(4ck co1 + co3K* — 2c1012K)
are 16C01ﬁ ’
1 €02 Co2
D2 = (1+ 5K) £ i, fo= aﬁz,fn = cuf = —pK.
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1
= ——enK + 2 g2
foz €01€20 2011 4cor

3co3

Sfro = —ﬂ o = cf - —ﬁ K,

3co3
fi2 = co1c218 — c1ofK + —,BK2

1 1 C
2 2 03 .3
= - = K+ —-cppK— —K".
Joz = c30¢p; 5Co1€21 Zen Seo;
Furthermore,
- coBK
Fxx = —ﬁ,
€o1
— coicn K + 2C(2)ld11 - 602K2
Fxy = ,
2cq
- 3C03 2K
Fxxx = s ,
Co1
f _ 4C(2)1(C2()K + 2¢o1dro — d11 K)
YY dcorp
N K?(cooK — 2co1¢11)
dcoiB |
— 3(‘03,3K2
Fxxy = c12BK - > ,
Co1
— 3C03K3
Fxyy = cpic1 K — 012K2 + 2d21C(2)1 + 2 s
Co1
— 36‘81(C30K + 2co1d30) — dni K
Fyyy =
co18
3K2(4C%1C21 + C03K2 —2cp1¢c12K)
86‘0],8 ’
— 2o cooBK
Gxx = ,Gxy = cnif — ,
Co1 €o1
— C02K2
Gyy = 2co1620 — c11 K + ,
2co1
— 6¢o3 3co3 2K
Gxxx = — h ,Gxxy = 2c1pf8* - Jof K ,
Co1
— 3CQ3ﬁK2
Gxyy = 2co10218 — 2c108K + 2 ,
Co1
— 3 3C()3K3
Gyyy = 66‘306‘%1 —3co1c1 K + —C12K2 -
2 4C()1

The fourth step. In order to ensure that the system (3.9)
has a Neimark-Sacker bifurcation occurring, we need to

calculate the discriminating quantity

(1 —211)12

L= Re( —

@@@—44# \oal” + Re(ada1),
(3.10)
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and L is required not to be zero, where
=
Qo = g[FXX — Fyy +2Gxy +i(Gxx — Gyy
- 2Fxy)l,
- -
{u = Z[FXX + Fyy + i(Gxx + Gyy)l,

o
o2 = g[FXX — Fyy — 2Gxy + i(Gxx — Gyy
+2Fyy)l,
1 — _ _ _
O = E[Fxxx + Fxyy + Gxxy + Gyyy

+i(Gxxx + Gxyy — Fxxy — Fyyy)].

By calculation we get

o= 1( ~ 4k, (c20K + 2co1dao — d11 K)
*7 g 4co 1B
B K?(corK = 2co1¢11) N (2corc11 — CozK)ﬁ)
dco1B o1
1 coa(K? +48%) .
ST,
+ 8< o co1(c20 + dn))l,
G = l(coz,BK . 4cg (c0K + 2co1dao — d1 K)
AN 4co 1B
N K2 (cooK — 2601611))
4coi B
1 cox(4B% + K?) .
S(CeBE R s oien — enK
+ 4( 201 + 2€01C20 — C11 )l,
lor = l( B 46(2)1(6‘20[( + 2co1dro — d11K)
{2 = ¢ ZcoB
_ K*(coaK = 2¢co1¢11) | BepaK — 2001611)ﬁ)
dco1f col
1 Coz(4ﬂ2 - 3K2)
S(P TR K
+ 4( dcor +C11

+ cor(dn — Czo))l',

O = 16(2001(3030001 —cuK + cordar)
+mgﬁ+mw+%@mmi+m%
3K2(4031021 + c3K? — 2cp1c12K)
* 8co18
+ B(2co1021 — 3c12K)
~ 3c31(C3OK + 2co1d30) — dle)l_
co1
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Theorem 3.3. Assume the parameters b, ¢, m, n in the space
Se, = {(b,c,mn) €RLD > 0,1 > ¢ >m,0 < m < 2y
Let by = % and L be defined as above (3.10).
If L # 0 holds and the parameter a varies in the small
neighborhood of by, then the system (1.6) at the fixed point
E5 undergoes a Neimark-Sacker bifurcation. In addition,
if L < (or >)0, then an attracting (or repelling) invariant
closed curve bifurcates from the fixed point E3 for b < (or >

)bo.
4. Numerical simulation

In this section, we use the bifurcation diagrams, phase
portraits and Lyapunov exponents of the system (1.6) to
verify our theoretical results and further reveal some new
dynamical behaviors to occur as the parameters vary by
Matlab software.

Fix the parameter values ¢ = 0.8,m = 0.3,n = 0.8,
let b € (1.5,3.0) and take the initial values (xg,yp) =
(0.55,0.25),(0.80,0.05) in Fig.2 and Fig.3 respectively.
Figure 1(a) shows the bifurcation diagram of (b, x)-plane,
from which the fixed point E3 is stable when b < by = 2.266.
Moreover, the fixed point E3 is unstable when b > by.
Hence, the Neimark-Sacker bifurcation occurs at the fixed
point E3 = (0.800,0.625) when b = by, whose multipliers
are 412 = 0.855 £ 0.519i with [4; 5| = 1.

The corresponding maximum Lyapunov exponent
diagram of the system (1.6) is plotted in Figure 1(b).
Figures 2(a)-2(f) and Figures 3(a)-3(d) show that the
dynamical properties of the fixed point E3 change from
stable to unstable as the value of the parameter b decreases
and there is an occurrence of invariant closed curve around
E3 when b = by, which agrees to the result of Theorem 3.3.

From the phase portraits in Figs 2 and 3, we infer the
stability of E3. Figures 2(d)-2(f) show that the closed curve
is stable outside, while Figures 3(a)-3(d) indicate that the
closed curve is stable inside for the fixed point E3 as long as

the assumptions of Theorem 3.2 hold.

5. Discussion and conclusion

In this paper, we discuss the dynamical behaviors of
a predator-prey model (1.6) of Gause-type with double

Mathematical Modelling and Control

Allee effect affecting the prey population. Under the given
parametric conditions, we completely show the existence
and stability of four nonnegative equilibria £y = (0,0), E; =
(1,0), E; = (m,0) and E5 = (c, W) Then we derive
the sufficient conditions for its transcritical bifurcation and
Neimark-Sacker bifurcation to occur. Meanwhile, it is clear
that the positive equilibrium E3 = (xg, yo) is asymptotically

A +2cn—mn—m—n
(c+n)2(1—c)(c—m)
n—n

.. 2
b > by under the condition m < %

(1.6) undergoes a bifurcation which has been shown to be

stable when b < by = and unstable when

. Hence, the system

a Neimark-Sacker bifurcation when the parameter b goes
through the critical value by. Finally, numerical simulations
illustrate the theoretical analysis results of the system (1.6).

The perturbations of different parameters in this system
may lead to different bifurcations. This demonstrates that
this system is sensitive to its parameters. Especially, the
occurrence of Neimark-Sacker bifurcation implies that the
predator and the prey can coexist under such parametric

conditions.
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