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Abstract: In this paper, a discrete predator-prey model with double Allee effect is discussed. We first simplify the corresponding
continuous predator-prey model, and use the semidiscretization method to obtain a new discrete model. Next, the existence and local
stability of nonnegative fixed points of the new discrete model are studied by using a key lemma. Then, by using the center manifold
theorem and bifurcation theory, the sufficient conditions for the occurrences of transcritical bifurcation and Neimark-Sacker bifurcation
and the stability of closed orbit bifurcated are obtained. Finally, the numerical simulations are presented, which not only verify the
existence of Neimark-Sacker bifurcation but also reveal some new dynamic phenomena of this model.
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1. Introduction

The dynamical analysis of complex ecosystem, such as
food chain, is based on the interaction among species or
between two species, especially the dynamical relationship
between predator and prey [1–4]. The current theory
of predator-prey dynamics must depend on the study of
nonlinear mathematical model [5]. With the continuous
improvement of ecological knowledge like theoretical
research, empirical research and observational research, etc.,
there are more and more basic elements of predation to be
considered. Therefore, modelers add some complexities to
their abstraction in order to obtain authenticity from the
emergence of the far-reaching Lotka-Volterra model [6] and
the modifications introduced by Volterra [5], taking into
account the self-interference of prey populations.

Allee effect, which affects the number of prey, is
one of these factors. It changes the qualitative stability
and quantitative aspects of predator-prey model dynamics.
Because the interaction between predator and prey is

naturally prone to vibration, it is obvious to study this
phenomenon as a potential mechanism for the generation of
population cycles. Lots of researches about predator-prey
models are done with the Allee effect [7–9].

The most popular framework for modeling expert
predator-prey interaction has the following structure:

dx
dt = xg(x, k) − yh(x),

dy
dt = (ph(x) − c)y,

(1.1)

where x(t) and y(t) are the prey and predator population sizes
in the time t, respectively, p, c > 0 indicate the birth rate and
background mortality rate, respectively, g(x, k) describes the
specific growth rate of the prey in the absence of predator,
and h(x) describes the predator functional response.

Any mechanism leading to a positive correlation between
the components of individual fitness and the number or
density of similar individuals can be regarded as Allee
effect; it describes a scenario in which low population size
is affected by the positive correlation between population
growth rate and density, increasing the possibility of their
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extinction.

Recent ecological studies have shown that two or more
Allee effects can lead to mechanisms acting on a population
at the same time. The combined effects of some of these
phenomena are called multiple (double) Allee effects. The
author’s analysis in [10] showed that the results of strong and
weak Allee effects on the dynamics of Volterra predator-prey
model are similar, which originate from the limit cycle of the
model.

In this paper, we continue to consider the following
predator-prey model with double Allee effect functional
response raised by [10].

dX
dT = rX(1 − X

K ) X−M
X+N − qXY,

dY
dT = (pX −C)Y,

(1.2)

where r scales the prey growth rate, K is the intrinsic
carrying capacity for the environment to the prey in the
absence of predator, M is the Allee threshold, and the
auxiliary parameter N satisfies N > 0, q is the prey captured
rate by the predator, p,C > 0 indicate the birth rate and
background mortality rate, respectively.

One can see that the first equation in the model (1.2)
includes double Allee effects, expressed by the first factor
m(X) = X − M, and a second term r(X) = rX

X+N , This can be
interpreted as an approximation of population dynamics, in
which the difference between fertile and non-fertile are not
clearly modeled.

In order to simplify the analysis of system (1.2), we
make a topologically equivalent change of variables and
time rescaling as in [11–14], defining the function φ, such
that φ(x, y) = (Kx, r

q y) = (X,Y), r
x+n dT = dt. Then, system

(1.2) is transformed into
dx
dt = ((1 − x)(x − m) − (x + n)y)x,

dy
dt = b(x − c)(x + n)y,

(1.3)

where b =
pK
r , C

pK , m = M
K , n = N

K , and K > X > M is
obtained from equation (1.2), so 1 > m > 0.

We now use the semidiscretization method, which has
been applied in many studies [15–18], to study the discrete
model of system (1.3). For this, suppose that [t] denotes
the greatest integer not exceeding t. Consider the following
semidiscretization version of (1.3).


1

x(t)
dx(t)

dt = (1 − x([t]))(x([t]) − m) − (x([t]) + n)y([t]),

1
y(t)

dy(t)
dt = b(x([t]) − c)(x([t]) + n).

(1.4)

It is easy to see that the system (1.4) has piecewise
constant arguments, and that a solution (x(t), y(t)) of the
system (1.4) for t ∈ [0,+∞) possesses the following natures:
1. on the interval [0,+∞), x(t) and y(t) are continuous;
2. when t ∈ [0,+∞) except for the points t ∈ {0, 1, 2, 3, · · · },
dx(t)

dt and dy(t)
dt exist everywhere.

The following system can be obtained by integrating (1.4)
over the interval [n, t] for any t ∈ [n, n+1) and n = 0, 1, 2, · · · x(t) = xne(1−xn)(xn−m)−(xn+n)yn (t − n),

y(t) = yneb(xn−c)(xn+n)(t − n),
(1.5)

where xn = x(n) and yn = y(n). Letting t → (n + 1)− in
(1.5) produces xn+1 = xne(1−xn)(xn−m)−(xn+n)yn ,

yn+1 = yneb(xn−c)(xn+n),
(1.6)

where b, c, n > 0, 1 > m > 0 are the same as in (1.3). We
mainly study the properties of system (1.6) in the sequel.

The rest of the paper is organized as follows: In Section
2, we investigate the existence and stability of fixed points
of the system (1.6). In Section 3, we derive the sufficient
conditions for the transcritical bifurcation and the Neimark-
Sacker bifurcation of the system (1.6) to occur. In Section
4, numerical simulations are performed to verify the above
obtained theoretical results and reveal some new dynamical
properties.

Before we analyze the fixed points of the system (1.6), we
recall the following lemma see [16, 19].

Lemma 1.1. Let F(λ) = λ2 +Pλ+Q, where P and Q are two

real constants. Suppose λ1 and λ2 are two roots of F(λ) = 0.

Then the following statements hold.

(i) If F(1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and

Q < 1;

(i.2) λ1 = −1 and λ2 , −1 if and only if F(−1) = 0 and

P , 2;

(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
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(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and

Q > 1;

(i.5) λ1 and λ2 are a pair of conjugate complex roots

with |λ1| = |λ2| = 1 if and only if −2 < P < 2 and Q = 1;

(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and P = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then the

another root λ satisfies |λ| = (<, >)1 if and only if |Q| = (<
, >)1.
(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1,∞).

Moreover,

(iii.1) the other root λ satisfies λ < (=) − 1 if and only

if F(−1) < (=)0;

(iii.2) the other root −1 < λ < 1 if and only if F(−1) >
0.

2. Existence and stability of fixed points

In this section, we first consider the existence of fixed
points and then analyze the local stability of each fixed point.

The fixed points of the system (1.6) satisfy

x = xe(1−x)(x−m)−(x+n)y,

y = yeb(x−c)(x+n).

Considering the biological meanings of the system (1.6),
one only takes into account nonnegative fixed points.
Thereout, one finds that the system (1.6) has and only has
four nonnegative fixed points E0 = (0, 0), E1 = (1, 0),
E2 = (m, 0) and E3 = (x0, y0) for m < c < 1, where

x0 = c, y0 =
(1 − c)(c − m)

c + n
.

The Jacobian matrix of the system (1.6) at any fixed point
E(x, y) takes the following form

J(E) =

[1 + x(−2x − y + m + 1)]eA −x(x + n)eA

b(2x + n − c)yeb(x−c)(x+n) eb(x−c)(x+n)

 .
where A = e(1−x)(x−m)−(x+n)y.
The characteristic polynomial of Jacobian matrix J(E)

reads
F(λ) = λ2 − pλ + q,

where
p = Tr(J(E)) = [1 + x(−2x − y + m + 1)]eA + eb(x−c)(x+n),

q = Det(J(E)) = [1 + x(−2x− y + m + 1)][bx(x + n)(2x + n−

c)]eA+b(x−c)(x+n).

For the stability of fixed points E0, E1, E2 and E3, we can
easily get the following Theorems 2.1-2.4 respectively.

Theorem 2.1. The fixed point E0 = (0, 0) of the system (1.6)
is a sink.

Proof. The Jacobian matrix J(E0) of the system (1.6) at the
fixed point E0 = (0, 0) is given by

J(E0) =

e−m 0
0 e−bcn

 .
Obviously, |λ1| = e−m < 1 and |λ2| = e−bcn < 1, so E0 =

(0, 0) is a sink.

Theorem 2.2. The following statements about the fixed

point E1 = (1, 0) of the system (1.6) are true.

1. If c < 1, then E1 is a saddle.

2. If c = 1, then E1 is non-hyperbolic.

3. If c > 1, then E1 is a stable node.

Proof. The Jacobian matrix of the system (1.6) at E1 = (1, 0)
is

J(E1) =

m −(1 + n)
0 eb(1−c)(1+n)

 .
Obviously, λ1 = m and λ2 = eb(1−c)(1+n).

Note |λ1| < 1 is always true. If c < 1, then |λ2| > 1, so
E1 is a saddle; if c = 1, then |λ2| = 1, therefore E1 is non-
hyperbolic; if c > 1, implying |λ2| < 1, then E1 is a stable
node, namely, a sink. The proof is complete.

Theorem 2.3. The following statements about the fixed

point E2 = (m, 0) of the system (1.6) are true.

1. If c < m, then E2 is a source.

2. If c = m, then E2 is non-hyperbolic.

3. If c > m, then E2 is a saddle.

Proof. The Jacobian matrix of the system (1.6) at E2 =

(m, 0) is

J(E2) =

−m2 + m + 1 −m(m + n)
0 eb(m−c)(m+n)

 .
Obviously, λ1 = −m2 + m + 1 and λ2 = eb(m−c)(m+n).
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Note 0 < m < 1, so |λ1| > 1 is always true. If c < m, then
|λ2| > 1, so E2 is a source; if c = m, then |λ2| = 1, therefore
E2 is non-hyperbolic; if c > m, implying |λ2| < 1, then E2 is
a saddle. The proof is finished.

Theorem 2.4. When (1 − c)(c − m) > 0, namely, 0 < m <

c < 1, the fixed point E3 = (c, (1−c)(c−m)
c+n ) is a positive fixed

point of the system (1.6). Let b0 = c2+2cn−mn−m−n
(c+n)2(1−c)(c−m) . Then the

following statements are true about the positive fixed point

E3.

I. If m < c2+2cn−n
n+1 , then,

1. for 0 < b < b0, E3 is a stable node;

2. for b = b0, E3 is non-hyperbolic;

3. for b > b0, E3 is an unstable node.

II. If m ≥ c2+2cn−n
n+1 , then, E3 is an unstable node.

Proof. The Jacobian matrix of the system (1.6) at E3 can be
simplified as follows

J(E3) =

1 +
−c(c2+2cn−mn−m−n)

c+n −c(c + n)

b(1 − c)(c − m) 1

 .
The characteristic polynomial of Jacobian matrix J(E3)
reads as

F(λ) = λ2 − pλ + q, (2.1)

where
p = Tr(J(E3)) = 2 − b0c(1 − c)(c − m)(c + n),
q = Det(J(E3)) = 1 + (b − b0)c(1 − c)(c − m)(c + n). By
calculating we get

F(1) = bc(1 − c)(c − m)(c + n) > 0,

and

F(−1) = 2(2 − c2) +
2c(n(1 − c) + mn + n)

c + n
+ bc(1 − c)(c − m)(c + n) > 0.

I. If m < c2+2cn−n
n+1 , then b0 > 0. So, when 0 < b < b0, q < 1.

By Lemma 1.1 (i.1), |λ1| < 1 and |λ2| < 1, therefore E3 is
a stable node, i.e., a sink. When b = b0, q = 1, −2 < p <

2. By Lemma 1.1 (i.5), Eq. (2.1) has a pair of conjugate
complex roots λ1 and λ2 with |λ1| = |λ2| = 1, implying E3

is non-hyperbolic. When b > b0 <, q > 1. Lemma 1.1 (i.4)
tells us that |λ1| > 1 and |λ2| > 1, so E3 is an unstable node,
i.e., a source.

II. If m ≥ c2+2cn−n
n+1 , then b0 ≤ 0. So, b > 0 ≥ b0. Hence

q > 1. Lemma 1.1 (i.4) reads that E3 is an unstable node.
The proof is complete.

3. Bifurcation analysis

In this section, we are in a position to use the Center
Manifold Theorem and bifurcation theorem to analyze the
local bifurcation problems of the fixed points E1, E2 and E3.
For related work, refer to [20–25].

3.1. For fixed point E1 = (1, 0)

Theorem 2.2 shows that a bifurcation of E1 may
occur in the space of parameters (b, c,m, n) ∈ S E+

=

{(b, c,m, n) ∈ R4
+|b > 0, c > 0, 1 > m > 0, n > 0}.

Theorem 3.1. Set the parameters (b, c,m, n) ∈ S E+
=

{(b, c,m, n) ∈ R4
+|b > 0, c > 0, 1 > m > 0, n > 0}. Let c0 = 1,

then the system (1.6) undergoes a transcritical bifurcation at

E1 when the parameter c varies in a small neighborhood of

c0.

Proof. In order to show the detailed process, we proceed
according to the following steps.

The first step. Let un = xn − 1, vn = yn − 0, which
transforms the fixed point E1 = (1, 0) to the origin O(0, 0),
and the system (1.6) to un+1 = (un + 1)e−un(un−m+1)−(un+n+1)vn − 1,

vn+1 = vneb(un−c+1)(un+n+1).
(3.1)

The second step. Giving a small perturbation c∗ of the
parameter c, i.e., c∗ = c − c0, with 0 < |c∗| � 1, the system
(3.1) is perturbed into un+1 = (un + 1)e−un(un−m+1)−(un+n+1)vn − 1,

vn+1 = vneb(un−c∗)(un+n+1).
(3.2)

Letting c∗n+1 = c∗n = c∗, the system (3.2) can be written as


un+1 = (un + 1)e−un(un−m+1)−(un+n+1)vn − 1,

vn+1 = vneb(un−c∗n)(un+n+1),

c∗n+1 = c∗n.

(3.3)
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The third step. Taylor expanding of the system (3.3) at
(un, vn, c∗n) = (0, 0, 0) takes the form

un+1 = a100un + a010vn + a200u2
n + a020v2

n

+a110unvn + a300u3
n + a030v3

n

+a210u2
nvn + a120unv2

n + o(ρ3
1),

vn+1 = b100un + b010vn + b001c∗n + b200u2
n

+b020v2
n+b002c∗n

2 + b110unvn

+b101unc∗n + b011vnc∗n + b300u3
n

+b030v3
n + b003c∗n

3 + b210u2
nvn

+b120unv2
n + b201u2

nc∗n + b102unc∗n
2

+b021v2
nc∗n + b012vnc∗n

2 + b111unvnc∗n
+o(ρ3

1),
c∗n+1 = c∗n,

(3.4)

where ρ1 =
√

u2
n + v2

n + (c∗n)2,

a100 = m, a010 = −(n + 1),

a200 =
1
2

(m − 1)2 + m − 2, a020 =
1
2

(n + 1)2,

a110 = −mn − m − 1,

a300 =
1
6

(m − 1)3 +
1
2

(m − 1)2 − m,

a030 = −
1
6

(n + 1)3, a120 =
1
2

m(n + 1)2 + n + 1,

a210 = −
1
2

(m − 1)2(n + 1) − mn − 2m − 2n + 3,

b100 = b001 = b200 = b020 = b002 = b101 = b300

= b030 = b003 = b120 = b201 = b102 = b021 = 0,

b010 = 1, b110 = b(n + 1), b011 = −b(n + 1),

b210 = b +
1
2

b2(n + 1)2, b012 =
1
2

b2(n + 1)2,

b111 = −b − b2(n + 2)2.

Let

J(E1) =


a100 a010 0
b100 b010 0

0 0 1


i.e., J(E1) =


m −(n + 1) 0
0 1 0
0 0 1

 .
Then, we derive the three eigenvalues of J(E1) to be

λ1 = m, λ2,3 = 1,

and the corresponding eigenvectors

(ξ1, η1, ϕ1)T = (1, 0, 0)T ,

(ξ2, η2, ϕ2)T = (n + 1,m − 1, 0)T ,

(ξ3, η3, ϕ3)T = (0, 0, 1)T .

The fourth step. Let T =


ξ1 ξ2 ξ3

η1 η2 η3

ϕ1 ϕ2 ϕ3

 , namely,

T =


1 n + 1 0

0 m − 1 0

0 0 1

 ,

then T−1 =


1 1+n

1−m 0

0 1
m−1 0

0 0 1

 .

Taking the following transformation

(un, vn, c∗n)T = T (Xn,Yn, δn)T ,

the system (3.4) is changed into the following form
Xn+1 = mXn + F(Xn,Yn, δn) + o(ρ3

2),

Yn+1 = Yn + G(Xn,Yn, δn) + o(ρ3
2),

δn+1 = δn,

(3.5)

where ρ2 =
√

X2
n + Y2

n + δ2
n,

F(Xn,Yn, δn) =m200X2
n + m020Y2

n + m002δn
2

+ m110XnYn + m101Xnδn

+ m011Ynδn + m300X3
n + m030Y3

n

+ m003δn
3 + m210X2

nYn

+ m120XnY2
n + m201X2

nδn

+ m102Xnδn
2 + m021Y2

nδn

+ m012Ynδn
2 + m111XnYnδn,

G(Xn,Yn, δn) =l200X2
n + l020Y2

n + l002δn
2

+ l110XnYn + l101Xnδn

+ l011Ynδn + l300X3
n + l030Y3

n
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+ l003δn
3 + l210X2

nYn

+ l120XnY2
n + l201X2

nδn

+ l102Xnδn
2 + l021Y2

nδn

+ l012Ynδn
2 + l111XnYnδn,

m200 = a200,m300 = a300,

m002 = m101 = m003 = m201 = m102 = 0,

m020 = (a200 − b110)(1 + n)2 + a020(m − 1)2

+ a110(m − 1)(n + 1),

m110 = (2a200 − b110)(1 + n) + a110(m − 1),

m011 = −b011(1 + n),

m030 = (a300 − b210)(1 + n)3 + a030(m − 1)3

+ a210(1 + n)2(m − 1)

+ a120(1 + n)(m − 1)2,

m210 = (3a300 − b210)(1 + n) + a210(m − 1),

m120 = (3a300 − 2b210)(1 + n)2

+ 2a210(1 + n)(m − 1) + a120(m − 1)2,

m021 = −b111(1 + n)2,m012 = −b012(1 + n),

m111 = −b111(1 + n),

l200 = l002 = 0, l020 = b110(1 + n), l110 = b110,

l101 = 0, l011 = b011, l300 = 0, l030 = b210(1 + n)2,

l003 = 0, l210 = b210, l120 = 2b210(1 + n),

l201 = l102 = 0, l021 = b111(1 + n), l012 = b012,

l111 = b111.

The fifth step. Suppose on the center manifold

Xn = h(Yn, δn) = h20Y2
n + h11Ynδn + h02δ

2
n + o(ρ2

3),

where ρ3 =
√

Y2
n + δ2

n, then, according to

Xn+1 = mh(Yn, δn) + F(h(Yn, δn),Yn, δn) + o(ρ2
3),

h(Yn+1, δn+1) =h20Y2
n+1 + h11Yn+1δn+1 + h02δ

2
n+1

+ o(ρ2
3)

=h20(Yn + G(h(Yn, δn),Yn, δn))2

+ h11(Yn + G(h(Yn, δn),Yn, δn))δn

+ h02δ
2
n + o(ρ2

3).

and Xn+1 = h(Yn+1, δn+1), we obtain the center manifold
equation to satisfy the following relation

mh(Yn, δn) + F(h(Yn, δn),Yn, δn)

= h20(Yn + G(h(Yn, δn),Yn, δn))2

+ h11(Yn + G(h(Yn, δn),Yn, δn))δn + h02δ
2
n + o(ρ2

3).

Comparing the corresponding coefficients of terms with the
same orders in the above center manifold equation, we get

h20 =
(m−2)(1+n)2−(1+n)(2+n)(m−1)−b(1+n)3

1−m ,

h11 =
b(1+n)2

1−m , h02 = 0.

So, the system (3.5) restricted to the center manifold takes
as

Yn+1 = f (Yn, δn) := Yn + G(h(Yn, δn),Yn, δn) +

o(ρ2
3)

= Yn + b(1 + n)2Y2
n − b(1 + n)Ynδn

+
b(1+n)2

1−m

(
1 − 2m − n − 1

2 b(1 + n)2(1 + m)
)
Y3

n

+
(mb2(1+n)3

1−m − b(1 + n)
)
Yn

2δn + 1
2 b2(1 + n)2Ynδ

2
n

+ o(ρ3
3).

Therefore one has

f (Yn, δn)|(0,0) = 0,
∂ f
∂Yn

∣∣∣∣∣
(0,0)

= 1,
∂ f
∂δn

∣∣∣∣∣
(0,0)

= 0,

∂2 f
∂Yn∂δn

∣∣∣∣∣
(0,0)

= −b(1 + n) , 0,

∂2 f
∂Y2

n

∣∣∣∣∣
(0,0)

= 2b(1 + n)2 , 0.

According to (21.1.42)-(21.1.46) in the literature ( [26],
pp. 507), all the conditions for the occurrence of the
transcritical bifurcation are established, hence, it is valid for
the occurrence of transcritical bifurcation in the fixed point
E1. The proof is over.

3.2. For fixed point E2 = (m, 0)

According to Theorem 2.3, the fixed point
E2(m, 0) is non-hyperbolic, the system (1.6) may undergo a
bifurcation (the correspond eigenvalue are λ1 = −m2 +m+1,
λ2 = 1). By using the same method as that in Section 3.2,
we get the following result.

Theorem 3.2. Set the parameters (b, c,m, n) ∈ S E+
=

{(b, c,m, n) ∈ R4
+|b > 0, c > 0, 1 > m > 0, n > 0}. Let

Mathematical Modelling and Control Volume 2, Issue 4, 282–295



288

c1 = m, then the system (1.6) undergoes a transcritical

bifurcation at E2 when the parameter c varies in a small

neighborhood of c1.

3.3. For fixed point E3 = (c, (1−c)(c−m)
c+n )

When m < c2+2cn−n
n+1 , b = b0 = c2+2cn−mn−n−m

(c+n)2(1−c)(c−m) ,
Theorem 2.4 with Lemma 1.2 (i.5) shows that F(1) > 0,
F(−1) > 0, −2 < p < 2 and q = 1, so λ1 and λ2 are a
pair of conjugate complex roots with |λ1| = |λ2| = 1. At
this time we derive that the system (1.6) at the fixed point E3

can undergo a Neimark-Sacker bifurcation in the space of
parameters (b, c,m, n) ∈ S E+

= {(b, c,m, n) ∈ R4
+|b > 0, 1 >

c > m, 0 < m < c2+2cn−n
n+1 }.

In order to show the process clearly, we carry out the
following steps.

The first step. Take the changes of variables un = xn −

x0, vn = yn − y0, which transform fixed point E3 = (x0, y0) to
the origin O(0, 0), and the system (1.6) into

 un+1 = (un + x0)e(−un−x0+1)(un+x0−m)−(un+x0+n)vnyn − x0,

vn+1 = (vn + y0)eb(un+x0−c)(un+x0+n) − y0.

(3.6)
The second step. Give a small perturbation b∗ of the

parameter b, i.e., b∗ = b − b0, then the perturbation of the
system (3.6) can be regarded as follows un+1 = (un + x0)e(−un−x0+1)(un+x0−m)−(un+x0+n)vnyn − x0,

vn+1 = (vn + y0)e(b∗+b0)(un+x0−c)(un+x0+n) − y0.
(3.7)

The corresponding characteristic equation of the linearized
equation of the system (3.7) at the equilibrium point (0,0)
can be expressed as

F(λ) = λ2 − p(b∗)λ + q(b∗) = 0,

where

p(b∗) = 2 +
c(−c2 − 2cn + mn + m + n)

c + n
,

and

q(b∗) =
c[(c2+2cn−mn−m−n)−(b∗+b0)(c+n)2(1−c)(c−m)]

−(c+n) + 1.

It is easy to derive p2(b∗) − 4q(b∗) < 0 when b∗ = 0, and
0 < p(b∗) < 2, then the two roots of F(λ) = 0 are

λ1,2(b∗) =
p(b∗) ±

√
p2(b∗) − 4q(b∗)

2

=
p(b∗) ± i

√
4q(b∗) − p2(b∗)

2
,

which implies

(|λ1,2(b∗)|)
∣∣∣
b∗=0 =

√
q(b∗)

∣∣∣
b∗=0 = 1,

and (d|λ1,2(b∗)|
db∗

)∣∣∣∣∣
b∗=0

=
1
2

c(c + n)(1 − c)(c − m) > 0.

The occurrence of Neimark-Sacker bifurcation requires the
following conditions to be satisfied

(H.1)
(d|λ1,2(b∗)|

db∗
)∣∣∣∣∣

b∗=0
, 0;

(H.2) λi
1,2(0) , 1, i = 1, 2, 3, 4.

Since p(b∗)
∣∣∣
b∗=0 = 2 +

c(−c2−2cn+mn+m+n)
c+n

and q(b∗)
∣∣∣
b∗=0 = 1, we have λ1,2(0) =

2(c+n)+c(−c2−2cn+mn+m+n)±i
√

4(c+n)2−[2(c+n)+c(−c2−2cn+mn+m+n)]2

2(c+n) ,
then it is easy to derive λi

1,2(0) , 1 for all i = 1, 2, 3, 4.
According to ( [2], pp517-522), they satisfy all of the
conditions for Neimark-Sacker bifurcation to occur.

The third step. In order to derive the normal form of the
system (3.7), we expand the system (3.7) into power series
up to the following third-order form around the origin

un+1 = c10un + c01vn + c20u2
n + c11unvn

+c02v2
n + c30u3

n + c21u2
nvn + c12unv2

n

+c03v3
n + o(ρ3

4),

vn+1 = d10un + d01vn + d20u2
n + d11unvn

+d02v2
n + d30u3

n + d21u2
nvn + d12unv2

n

+d03v3
n + o(ρ3

4),

(3.8)

where ρ4 =
√

u2
n + v2

n,

c10 = 1 +
c(−c2 − 2cn + mn + m + n)

c + n
,

c01 = −c(c + n),

c20 = −c +
−c2 − 2cn + mn + m + n

c + n

+
c(−c2 − 2cn + mn + m + n)2

2(c + n)2 ,

c02 =
c(c + n)2

2
,
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c11 = −[2c + n + c(−c2 − 2cn + mn + m + n)],

c30 = −1 −
c(−c2 − 2cn + mn + m + n)

c + n

+
(−c2 − 2cn + mn + m + n)2

c(c + n)2

+
c(−c2 − 2cn + mn + m + n)3

6(c + n)3 ,

c03 = −
c(c + n)3

6
,

c21 = −1 − (−c2 − 2cn + mn + m + n)

+ c[c + n −
−c2 − 2cn + mn + m + n

c + n

−
(−c2 − 2cn + mn + m + n)2

2(c + n)
],

c12 =
(c + n)2

2
+ c(c + n)[1

+
−c2 − 2cn + mn + m + n

2
],

d10 = −
−c2 − 2cn + mn + m + n

(c + n)2 , d01 = 1,

d20 =
(−c2 − 2cn + mn + m + n)2

2(c + n)3(1 − c)(c − m)

−
2(−c2 − 2cn + mn + m + n)(1 − c)(c − m)

2(c + n)3(1 − c)(c − m)
,

d11 = −
−c2 − 2cn + mn + m + n

(c + n)(1 − c)(c − m)
,

d02 = d03 = d12 = 0,

d30 =
(−c2 − 2cn + mn + m + n)2

(c + n)4(1 − c)(c − m)
[
1

−
−c2 − 2cn + mn + m + n

6(1 − c)(c − m)
]
,

d21 =
(−c2 − 2cn + mn + m + n)

(c + n)2(1 − c)(c − m)
[
1

−
−c2 − 2cn + mn + m + n

2(1 − c)(c − m)
]
.

Let

J(E3) =

c10 c01

d10 d01

 , namely,

J(E3) =

1 + K −c(c + n)
−K

c(c+n) 1

 .
It is easy to derive the two eigenvalues of the matrix J(E3)
are

λ1,2 = (1 +
1
2

K) ± βi,

where K =
c(−c2−2cn+mn+m+n)

c+n ,

β =

√
−c(−c2−2cn+mn+m+n)[4(c+n)+c(−c2−2cn+mn+m+n)]

2(c+n) ,

with the corresponding eigenvectors

v1,2 =

−c(c + n)

− 1
2 K

 ± i

0
β

.
Let

T =

0 −c(c + n)

β − 1
2 K

 , then,

T−1 =

− K
2c(c+n)β

1
β

− 1
c(c+n) 0

 .
Make a change of variables

(u, v)T = T (X,Y)T ,

then, the system (3.8) is transformed into the following form
X → (1 + 1

2 K)X − βY + F(X,Y) + o(ρ3
5),

Y → βX + (1 + 1
2 K)Y + G(X,Y) + o(ρ3

5),
(3.9)

where ρ5 =
√

X2 + Y2,

F(X,Y) = e20X2 + e11XY + e02Y2 + e30X3

+ e21X2Y + e12XY2 + e03Y3,

G(X,Y) = f20X2 + f11XY + f02Y2 + f30X3

+ f21X2Y + f12XY2 + f03Y3,

e20 =
c02βK
2c01

, e11 =
c01c11K + 2c2

01d11 − c02K2

2c01
,

e02 =
4c2

01(c20K + 2c01d20 − d11K)
8c01β

+
K2(c02K − 2c01c11)

8c01β
,

e30 =
c03β

2K
2c01

, e21 =
(2c01c12 − 3c03K)βK

4c01
,

e12 =
c01c21K − c12K2 + 2d21c2

01

2
+

3c03K3

8c01
,

e03 =
8c3

01(c30K + 2c01d30 − d21K)
16c01β

−
K2(4c2

01c21 + c03K2 − 2c01c12K)
16c01β

,

f20 =
c02

c01
β2, f11 = c11β −

c02

c01
βK,
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f02 = c01c20 −
1
2

c11K +
c02

4c01
K2,

f30 =
c03

c01
β3, f21 = c12β

2 −
3c03

2c01
β2K,

f12 = c01c21β − c12βK +
3c03

4c01
βK2,

f03 = c30c2
01 −

1
2

c01c21K +
1
4

c12K2 −
c03

8c01
K3.

Furthermore,

FXX =
c02βK

c01
,

FXY =
c01c11K + 2c2

01d11 − c02K2

2c01
,

FXXX =
3c03β

2K
c01

,

FYY =
4c2

01(c20K + 2c01d20 − d11K)
4c01β

+
K2(c02K − 2c01c11)

4c01β
,

FXXY = c12βK −
3c03βK2

2c01
,

FXYY = c01c21K − c12K2 + 2d21c2
01 +

3c03K3

4c01
,

FYYY =
3c3

01(c30K + 2c01d30) − d21K
c01β

−
3K2(4c2

01c21 + c03K2 − 2c01c12K)
8c01β

,

GXX =
2c02β

2

c01
,GXY = c11β −

c02βK
c01

,

GYY = 2c01c20 − c11K +
c02K2

2c01
,

GXXX =
6c03β

3

c01
,GXXY = 2c12β

2 −
3c03β

2K
c01

,

GXYY = 2c01c21β − 2c12βK +
3c03βK2

2c01
,

GYYY = 6c30c2
01 − 3c01c21K +

3
2

c12K2 −
3c03K3

4c01
.

The fourth step. In order to ensure that the system (3.9)
has a Neimark-Sacker bifurcation occurring, we need to
calculate the discriminating quantity

L = −Re
( (1 − 2λ1)λ2

2

1 − λ1
ζ20ζ11

)
−

1
2
|ζ11|

2 − |ζ02|
2 + Re(λ2ζ21),

(3.10)

and L is required not to be zero, where

ζ20 =
1
8

[FXX − FYY + 2GXY + i(GXX −GYY

− 2FXY )],

ζ11 =
1
4

[FXX + FYY + i(GXX + GYY )],

ζ02 =
1
8

[FXX − FYY − 2GXY + i(GXX −GYY

+ 2FXY )],

ζ21 =
1
16

[FXXX + FXYY + GXXY + GYYY

+ i(GXXX + GXYY − FXXY − FYYY )].

By calculation we get

ζ20 =
1
8

(
−

4c2
01(c20K + 2c01d20 − d11K)

4c01β

−
K2(c02K − 2c01c11)

4c01β
+

(2c01c11 − c02K)β
c01

)
+

1
8

(c02(K2 + 4β2)
2c01

− 2c01(c20 + d11)
)
i,

ζ11 =
1
4

(c02βK
c01

+
4c2

01(c20K + 2c01d20 − d11K)
4c01β

+
K2(c02K − 2c01c11)

4c01β

)
+

1
4

(c02(4β2 + K2)
2c01

+ 2c01c20 − c11K
)
i,

ζ02 =
1
8

(
−

4c2
01(c20K + 2c01d20 − d11K)

4c01β

−
K2(c02K − 2c01c11)

4c01β
+

(3c02K − 2c01c11)β
c01

)
+

1
4

(c02(4β2 − 3K2)
4c01

+ c11K

+ c01(d11 − c20)
)
i,

ζ21 =
1

16

(
2c01(3c30c01 − c21K + c01d21)

+ c12(
1
2

K2 + 2β2)
)

+
1

16

(3c03β(K2 + 2β2)
c01

+
3K2(4c2

01c21 + c03K2 − 2c01c12K)
8c01β

+ β(2c01c21 − 3c12K)

−
3c3

01(c30K + 2c01d30) − d21K
c01β

)
i.
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Theorem 3.3. Assume the parameters b, c, m, n in the space

S E+
= {(b, c,m, n) ∈ R4

+|b > 0, 1 > c > m, 0 < m < c2+2cn−n
n+1 }.

Let b0 = c2+2cn−mn−m−n
(c+n)2(1−c)(c−m) and L be defined as above (3.10).

If L , 0 holds and the parameter a varies in the small

neighborhood of b0, then the system (1.6) at the fixed point

E3 undergoes a Neimark-Sacker bifurcation. In addition,

if L < (or >)0, then an attracting (or repelling) invariant

closed curve bifurcates from the fixed point E3 for b < (or >

)b0.

4. Numerical simulation

In this section, we use the bifurcation diagrams, phase
portraits and Lyapunov exponents of the system (1.6) to
verify our theoretical results and further reveal some new
dynamical behaviors to occur as the parameters vary by
Matlab software.

Fix the parameter values c = 0.8,m = 0.3, n = 0.8,
let b ∈ (1.5, 3.0) and take the initial values (x0, y0) =

(0.55, 0.25), (0.80, 0.05) in Fig.2 and Fig.3 respectively.
Figure 1(a) shows the bifurcation diagram of (b, x)-plane,
from which the fixed point E3 is stable when b < b0 = 2.266.
Moreover, the fixed point E3 is unstable when b > b0.
Hence, the Neimark-Sacker bifurcation occurs at the fixed
point E3 = (0.800, 0.625) when b = b0, whose multipliers
are λ1,2 = 0.855 ± 0.519i with |λ1,2| = 1.

The corresponding maximum Lyapunov exponent
diagram of the system (1.6) is plotted in Figure 1(b).
Figures 2(a)-2(f) and Figures 3(a)-3(d) show that the
dynamical properties of the fixed point E3 change from
stable to unstable as the value of the parameter b decreases
and there is an occurrence of invariant closed curve around
E3 when b = b0, which agrees to the result of Theorem 3.3.

From the phase portraits in Figs 2 and 3, we infer the
stability of E3. Figures 2(d)-2(f) show that the closed curve
is stable outside, while Figures 3(a)-3(d) indicate that the
closed curve is stable inside for the fixed point E3 as long as
the assumptions of Theorem 3.2 hold.

5. Discussion and conclusion

In this paper, we discuss the dynamical behaviors of
a predator-prey model (1.6) of Gause-type with double

Allee effect affecting the prey population. Under the given
parametric conditions, we completely show the existence
and stability of four nonnegative equilibria E0 = (0, 0), E1 =

(1, 0), E2 = (m, 0) and E3 = (c, (1−c)(c−m)
c+n ). Then we derive

the sufficient conditions for its transcritical bifurcation and
Neimark-Sacker bifurcation to occur. Meanwhile, it is clear
that the positive equilibrium E3 = (x0, y0) is asymptotically
stable when b < b0 = c2+2cn−mn−m−n

(c+n)2(1−c)(c−m) and unstable when
b > b0 under the condition m < c2+2cn−n

n+1 . Hence, the system
(1.6) undergoes a bifurcation which has been shown to be
a Neimark-Sacker bifurcation when the parameter b goes
through the critical value b0. Finally, numerical simulations
illustrate the theoretical analysis results of the system (1.6).

The perturbations of different parameters in this system
may lead to different bifurcations. This demonstrates that
this system is sensitive to its parameters. Especially, the
occurrence of Neimark-Sacker bifurcation implies that the
predator and the prey can coexist under such parametric
conditions.
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