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Abstract: In this paper, a deterministic ordinary differential equations model for the transmission dynamics of maize streak virus disease
(MSVD) in maize plants is proposed and analyzed qualitatively. Using the next generation matrix approach, the basic reproduction
number, R0 with respect to the MSVD free equilibrium is found to be 4.7065 ≈ 5. The conditions for local stability of the disease-
free equilibrium and endemic equilibrium points were established. From the results, the disease-free equilibrium point was found to
be unstable whenever R0 > 1 and the endemic equilibrium point was found to be locally asymptotically stable whenever R0 > 1.
The sensitivity indices of various parameters with respect to the MSVD eradication or spreading were determined. It was found that
b , β1 , β11 , and β2 are the parameters that are directly related to R0, and H2, µ, µ1 and γ are inversely related to R0. Numerical simulation
was performed and displayed graphically to justify the analytical results.
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1. Introduction

Maize is one of the most important cereal crops cultivated
worldwide and it represents a staple food for a significant
proportion of the world’s population. There is no native
toxins reported for the genus Zea [1]. Maize was first
introduced by Portuguese merchants in the 16th century
to Africa through Ghana [2]. In Sub-Saharan Africa,
maize provides staple food for about 50% of the population
and provides 50% of basic calories [3]. Maize serves
as a major staple food for many Ghanaian households.
It is predominantly cultivated under rain-fed agriculture
by poorly resourced subsistence farmers in the coastal
Savannah, forest, transition and guinea Savannah zones [4].

The production of maize in Ghana accounts for about 50%
of the total cereals produced, with an estimated 30% losses
due to pests and diseases [5].

Fuller et al [6] described the disease condition as ”mealic
variegation” at the beginning of the twentieth century which
was later renamed maize streak virus. The Maize Streak
Virus Disease (MSVD) is one of the common diseases
of maize. MSVD is caused by a virus known as the
maize streak virus (MSV), a species of genus Mastrevirus
of the family Geminiviridae [7]. MSVD is transmitted
by the vector of genus cicadulina mbila Naude of the
leafhopper species [2]. MSVs have single-component,
spherical, single-stranded DNA genomes of approximately
2700 bases in MSV and all associated grass mastreviruses,
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encapsulated in 22 × 38nm geminate particles consisting
of two incomplete T=1 icosahedra with 22 pentameric
capsomers composed of a single acapsid protein of 32kD
[2]. They have characteristically twinned (geminate) particle
morphology that is stable at pH 4-8 [2]. Geminiviruses have
agronomic importance globally [8]. They were responsible
for the major economic crisis for many subsistence farmers
in Sub-Saharan Africa [9]. Epidemics resulting in economic
losses have been reported in over 20 African countries
including Nigeria, Sudan, Ghana, Cameroon, Togo, Burkina
Faso, Tanzania, Benin and Ethiopia. The MSV-A is the
common strain of the virus responsible for causing MSVD
in Ghana and throughout Sub-Saharan Africa [10]. Apart
from the Strain MSV-A, there are 10 other known strains of
the virus MSV-B-MSV-K causing MSVD in wheat, barley,
oat, millet and many other wild grass species [2]. A survey
conducted in November/December, 2010 across the forest
and transition zones in Ghana on virulence of the MSV-A
shows that, in 79 well-distributed maize farms, the mean
MSV incidence was 18.544% and the symptom results
score was 2.956 (1-no symptom and 5-extremely severe
symptom) [10]. This shows that, there is no correlation
between these two variables. 51 genome sequences were
determined through phylogenetic analysis of clone MSV-A
isolates [10]. Environmental factors are the main causes of
MSVD epidemics.

MSVD affects mainly the leaves, the younger leaves to
be precise. Matured leaves remain healthy throughout the
infection period. Symptoms of the disease include minute,
pale and circular spots on the lower and exposed portions
of the younger leaves. Maize plants infected at an early
stage usually become stunted in growth causing bareness,
interveinal necrosis, chlorosis and consequently, death of
affected plants. However, the effect is less pronounced when
it affects matured plants.

Various methods have been used to control the incidence
of MSVD. These include early planting when virus
inoculum loads are low, the use of chemicals/insecticides
such as carbofuran with its residual effects, development
and use of streak-resistant variety of maize [2], suppression
through biological agents to control the pathogens [11],
physical removal of diseased plants and use of ultraviolet
(UV) radiation [12] among others.

Maize streak virus disease (MSVD) in maize plants, like
many other plant diseases is still a major problem in Ghana
and Sub-Saharan Africa despite efforts made to reduce the
incidence of the disease. The disease has caused reduced
crop yield and worsened the economic lives of many families
that depend on farming for their survival in the country [4].

Over the years, researchers have used mathematical
models as a stop-gap measure in dealing with infectious
diseases as they provide better understanding of the
dynamics of diseases. Several models have since been
proposed and used to study the dynamics of MSVD.

Shi, et al [13] developed a Susceptible-Infected-Removed
(SIR) compartmental deterministic epidemic model which
describes the MSVD with the aim to investigate the effect
of insect vectors on the spread of the disease. Using the
next generation matrix method, the formula for the basic
reproduction number, R0 was obtained and this helped to
establish the stability of the disease-free equilibrium and the
endemic equilibrium. From the results of the study, the
disease-free equilibrium is globally asymptotically stable
whenever R0 ≤ 1 and the unique endemic equilibrium is
globally asymptotically stable provided that R0 > 1.

Alemneh, et al [14] proposed and analyzed qualitatively
an eco-epidemiological deterministic model for the
transmission dynamics of maize streak virus(MSV) disease
in maize plant using the stability theory of differential
equations. In the model formulation, two populations
were considered; the maize population and the leafhopper
vector population. These populations were sub-divided into
susceptible and infected. The susceptible and infected maize
densities at time, t were S(t) and I(t) respectively while
that of the leafhopper vector are H(t) and Y(t) respectively.
From the results of the study, control intervention strategies
reduce the disease infection of maize population. The
model shows that the spread of the disease largely depends
on the infection and predation rates β1 and β2; therefore
efforts should be made to minimize the contact of infected
maize and susceptible leafhopper and MSV infected maize
should be treated either using insecticide chemical to reduce
the infection rate of leaf hoppers and it should be done
before the arrival of leafhopper or uprooting and burning
the infected maize from the field.

Similarly, in an attempt to deal with MSVD, [15]
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developed a mathematical model on optimal control and
cost-effectiveness analysis of maize streak virus pathogen
interaction with pest invasion in maize plants. The
model was formulated based on Susceptible(S)-Infected(I)
and Susceptible(H)-Exposed(Y)-Infected(P) compartmental
deterministic model for the maize host and leafhopper vector
populations respectively. Prevention (u1), quarantine (u2)
and chemical control (u3) were used as the maize streak
virus control strategies. It was found that the combination
of prevention and quarantine is the best effective strategies
in terms of cost as well as health benefits.

Alemneh, et al [16] formulated and analyzed an optimal
deterministic eco-epidemiological model for the dynamics
of maize streak virus (MSV) and examined the best
strategy to fight maize population from maize streak disease
(MSD). Three control interventions, namely prevention u1,
quarantine u2 and chemical control u3 were incorporated
into the model to determine the best control strategies
for MSD. Similarly, from the perspective of cost-effective
strategy, the combination of prevention and quarantine was
found to be the best cost-effective strategy from the other
integrated strategies. Another interesting study of MSVD
can be found in [17].

To the best of our knowledge, no consideration was
given to the latent period before infection in the literature.
This paper draws its motivation from the works in [14–
16] to present a compartmental deterministic model that
incorporates this period called exposed period to describe
the spread and control of Maize Streak Virus Disease
(MSVD).

The organization of this paper is as follows; Section 2
presents of the proposed model. Section 3 presents the
qualitative analysis of the model. Section 4 contains results
of numerical simulations performed to support analytical
results. Section 5 presents the summary and conclusion
based on the findings of the paper.

2. Model formulation

In the model formulation, both the maize host plant
population and the transmission vector, brownish white
leafhopper are considered. Based on Susceptible (S),
Exposed (E) and Infected (I) compartmental model, the

proposed model for this study is SEI for the study of the
dynamics of MSVD in maize host population and SI model
for the study of the dynamics of MSVD in leafhopper vector
population. The total population of the maize host M(t) is
put into three compartments at time t, namely, Susceptible
maize plants (S), Exposed maize plants (E) and Infected
maize plants (I). On the other hand, the total population
of leafhoppers L(t) vector is put into two compartments
at time, t namely, Susceptible leafhopper (Q) and Infected
leafhopper (P). Therefore, M(t) = S (t) + E(t) + I(t) and
L(t) = Q(t) + P(t).

In the absence of the leafhopper vector, the maize host
population grows logistically with intrinsic growth rate r1.
Susceptible maize plants with natural resistance to viral
infections do not become infected after the pathogens have
been deposited on them by the infected leafhopper vector.
Those without any immunity, become exposed at a rate β1

in the presence of infected leafhoppers. Exposed maize
plants become infectious at a rate, δ. Similarly, Infected
Leafhopper becomes infectious at a rate β11. Once infected,
the maize plants are removed and burnt at a rate γ. Infected
maize plants die naturally at a rate µ. Young and susceptible
leafhopper recruited by birth into the environment at a rate b,
become infected at a rate, β2 after coming into contact with
an infected maize host.

Susceptible and infected leafhoppers have natural death
rates µ1. It is further assumed that only healthy maize
seeds are sowed in the farmland of carrying capacity, K,
no deaths as a result of infection before harvesting and
the infected leafhopper vectors remain infectious after they
become infected with the virus.

Considering the above assumptions, the model is given by
the following equations ;

dS
dt = r1λ S − β1S P

H1+S −
β11S I
H1+S ,

dE
dt = r2λ E +

(β1P+β11I)S
H1+S − δE

dI
dt = δ E − (γ + µ)I,
dQ
dt = b − β2IQ

H2+I − µ1Q,
dP
dt =

β2IQ
H2+I − µ1P,

λ =
(
1 − S +E+I

K

)
,

with nonnegative initial conditions.


(2.1)

The equations of the total population of the maize plants
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and the total population of the leafhopper vectors are

dM
dt = (r1S + r2E)

(
1 − M

K

)
− (γ + µ)I,

dL
dt = b − µ1L.

 (2.2)

The dynamics of the spread of MSVD is depicted in
Figure 1.

P

S E

I

Q

(β1P+β11I)S
H1+S

δ

β2IQ
H2+I

µ1

r1 λ S

r 2λ
E

µ + γ

µ1

b

Figure 1. Schematic Diagram of the MSVD
Model (2.1)

The model parameters are summarized in Table 1.

Table 1. Description of the Maize streak virus
disease model parameters.

Parameter Description
b Birth rate of susceptible leafhopper
K Carrying capacity of the farm
β1 Predation and Infection rate of Infected

Leafhopper on Susceptible Maize plant
β11 Predation and Infection rate of Exposed

maize plant on Infected Leafhopper
β2 Predation and Infection rate of Susceptible

Leafhopper on Infected Maize plant
H1 Half saturation rate of Susceptible maize

with Infected plant
H2 Half saturation rate of Susceptible

Leafhopper with Infected Maize plant
µ Natural death rate of infected maize plant
γ Removal rate of infected maize plant
µ1 Natural death rate of susceptible leafhopper
δ Rate at which exposed maize plants

become infectious
r1 Growth rate of Susceptible Maize
r2 Growth rate of Exposed Maize

3. Qualitative analysis of the model

3.1. Positivity of solutions

For the MSVD model (2.1) above to be epidemiologically
meaningful, it is important to prove that all solutions of
the system with non-negative initial data in φ will remain
positive for all times (t ≥ 0).

Theorem 3.1. Let φ=(S,E,I,Q,P) ∈ R5
+ : S (0) > 0, E(0) >

0, I(0) > 0, Q(0) > 0, P(0) > 0. Then the solution set

(S (t), E(t), I(t),Q(t), P(t)) of the system (2.1) is positive for

all t ≥ 0.

Proof. From the first equation of (2.1),

dS
dt = r1S

(
1 − S +E+I

K

)
−

β1S P
H1+S −

β11S I
H1+S

≤ r1S
(
1 − S

K

) (3.1)

so that we have

dS
dt
≤ r1S

(
1 −

S
K

)
.

Separating variables and solving the above inequality gives

S (t) ≤
KS (0)

e−r1t(K − S (0)) + S (0)

As t approaches∞, we obtain 0 ≤ S (t) ≤ K.
Also, using the same procedure, we obtained

E(t) ≤ KE(0)
e−r2 t(K−E(0))+E(0) ,

I(t) ≥ I(0)e−(γ+µ)t ≥ 0,
Q(t) ≥ Q(0)e−µ1t ≥ 0,
P(t) ≥ P(0)e−µ1t ≥ 0.


(3.2)

Since the initial conditions for the system (2.1) above are
all nonnegative, they have positive solutions. Therefore, the
model is epidemiologically meaningful and well posed. �

3.2. Feasible region

The solution sets of the MSVD model with nonnegative
initial data in R5 are feasible for all t > 0 if they enter
the invariant region φ = φm × φl ⊂ R3

+ × R2
+ where

φm =
{
(S (t), E(t), I(t)) ∈ R3

+ : M(0) ≤ M(t) ≤ K
}

and φl ={
(Q(t), P(t)) ∈ R2

+ : L(0) ≤ L(t) ≤ b
µ1

}
Mathematical Modelling and Control Volume 2, Issue 4, 153–164
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Proof. Let φ = (S , E, I,Q, P) ∈ R5
+ be any solution of

the MSVD model system (2.1) with nonnegative initial
conditions. The total maize plant population can be shown
to satisfy; dM

dt ≤ (r1S + r2E)
(
1 − M

K

)
≤ rM

(
1 − M

K

)
, where

r = max {r1, r2}

=⇒
dM
dt
≤ rM

(
1 −

M
K

)
Separating the variables gives

dM

M
(
1 − M

K

) ≤ rdt (3.3)

=⇒

 1
M

+
1

K(1 − M
K )

 dM ≤ rdt (3.4)

Integrating and evaluating 3.4 at t = 0,M = M(0), we have

M(t) ≤
KM(0)

e−rt(K − M(0)) + M(0)

Hence,
M(t) ≤

KM(0)
e−rt(K − M(0)) + M(0)

As t approaches∞, we obtain 0 ≤ M(t) ≤ K.
The population of the maize plants will increase to K as
t → ∞. Then M(0) ≤ M(t) ≤ K for all t. Therefore,

φm =
{
(S (t), E(t), I(t)) ∈ R3

+ : M(0) ≤ M(t) ≤ K
}

Similarly, for leafhopper population, L(Q,R) = Q(t) + R(t).
After differentiating L with respect to t and substituting
dQ/dt, dR/dt, we have

dL
dt

= b − µ1Q − µ1P ≤ b − µ1L (3.5)

=⇒
dL
dt

+ µ1L ≤ b (3.6)

Solving and evaluating 3.6 at t = 0, L(0) = L0, we obtained.

L(t) ≤
b
µ1

+ (L0 −
b
µ1

)e−µ1t

Then b
µ1
≤ L(t) ≤ L(0) for all t when L(0) ≥ b

µ1
. This means

the leafhopper population L(t) reduces to the equilibrium
b
µ1

as t → ∞. However, for L(0) ≤ b
µ1

, the leafhopper
vector population L(t) increases to b

µ1
as t → ∞. Then,

L(0) ≤ L(t) ≤ b
µ1

for all t. The feasible solution set
of the leafhopper vector population enters the region φl ={
(Q(t), P(t)) ∈ R2

+ : L(0) ≤ L(t) ≤ b
µ1

}
.

Therefore, the feasible solutions set for the MSVD model
given by φm × φl is positively invariant, epidemiologically
meaningful and mathematically well-posed in the domain φ.
Hence, every solution of the model system (2.1) with initial
conditions in φ remain in φ for all t > 0. �

3.3. Equilibrium points of the model

The equilibrium points are obtained by setting the right-
hand-sides of the model equation (2.1) to zero and finding
the state variables. Let E∗ = (S ∗, E∗, I∗,Q∗, P∗) be a typical
equilibrium point. Therefore the endemic equilibrium E∗ =

(S ∗, E∗, I∗, Q∗, P∗) is such that

S ∗ = K
2

(
1 − (γ+µ+δ)E∗+H1

K(γ+µ)

)
± K∆

2r1
,

I∗ = δ
γ+µ

E∗,

Q∗ =
b[H2(γ+µ)+δ E∗]

δ(β2+µ1)E∗+µ1H2(γ+µ) ,

P∗ =
bδβ2E∗

µ1[δ(β2+µ1)E∗+µ1H2(γ+µ)] .


(3.7)

where E∗ is obtained by solving equation (3.8).

µ1r2 (γ + µ)
[
ξ5 + δ (β2 + µ1) E∗

] [
ξ2 + Φ(E∗)

] [
ξ3 − Φ(E∗)

]
−2

[
ξ4 + δ2β11µ1 (β2 + µ1) E∗

] [
ξ1 + Φ(E∗)

]
= 0,

(3.8)
where

ξ1 = 1 − H1
K(γ+µ) , ξ2 = ξ1 + 2H1

K ,

ξ3 = ξ1 + 2
r2

(δ − r2) , ξ4 = δ (bβ1β2 + H2β11µ1) (γ + µ) ,

Φ(E∗) = −
(γ+µ+δ)E∗

K(γ+µ) ±
∆
r1
,

∆ =

√
r2

1∆2
1 −

4r1
K ∆2 +

4r2
1 H1

K ∆3,

∆1 =
[
1 − (γ+µ+δ)E∗+H1(γ+µ)

K(γ+µ)

]
,

∆2 =

(
bδβ1β2E∗

µ1[δ(β2+µ1)E∗+µ1H2(γ+µ)] +
δβ11
γ+µ

E∗
)
,

∆3 =
(
1 − (γ+µ+δ)E∗

K(γ+µ)

)
.


(3.9)

The following result hold for the model.

Theorem 3.2. The model (2.1) exhibits at least one endemic

equilibrium point if

r2
1∆2

1 −
4r1

K
∆2 +

4r2
1H1

K
∆3 > 0.

The Disease-Free Equilibrium Point (DFE), E0 is
obtained by setting E∗ = 0 in (3.7), yielding E0 =(
K, 0, 0, b

µ1
, 0

)
Mathematical Modelling and Control Volume 2, Issue 4, 153–164
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3.4. The basic reproduction number R0

Using the next generation matrix method, the analytical
formula and numerical value for R0 is obtained, and this
will inform the decision on the presence or otherwise of
disease-free equilibrium and endemic equilibrium [18]. It
will also help us to determine the spread or otherwise of the
disease. To achieve this, the equations are rewritten with
newly infective classes as follows;

dE
dt = r2E

(
1 − S +E+I

K

)
+

(β1P+β11I)S
H1+S − δE,

dI
dt dIt = δE − (γ + µ)I,
dP
dt dPt =

β2IQ
H2+I − µ1P.

 (3.10)

Using the next generation matrix method, we have

R0 = RM0 +

√
R2

M0 + 4RL0RM10,

where
RM0 =

K β11
2(H1+K)(γ+µ) , RM10 =

Kβ1
(H1+K)(γ+µ) and RL0 =

bβ2

H2µ
2
1
.

3.5. Stability analysis of equilibrium points

The stability analysis is done using the characteristic
equation obtained from the Jacobian matrix of the model
equation (2.1). Here, stability analysis of the disease-free
equilibrium is performed.

3.5.1. Local stability of disease-free equilibrium(DFE)

Theorem 3.3. The disease-free equilibrium is locally

asymptotically stable whenever R0 < 1 and unstable if

R0 > 1.

Proof. The Jacobian matrix of the system (2.1) is given by:

J =



Λ1
−r1S

K
−r1S

K −
S β11
H1+S 0 −

β1S
H1+S

Λ2 Λ3
r2E
K +

β11S
H1+S 0 β1S

H1+S

0 δ −(γ + µ3) 0 0
0 0 β2H2Q

(H2+I)2
β2I

H2+I − µ4 0

0 0 β2H2Q
(H2+I)2

β2I
H2+I −µ5


Λ1 = r1(1 − 2S +E+I

K ) − β1H1P
(H1+S )2 −

β11H1I
(H1+S )2 ,

Λ2 = − r2E
K +

(β1P+β11I)H1
(H1+S )2 ,

Λ3 = r2(1 − S +2E+I
K ) − δ

Evaluating the Jacobian at the disease-free equilibrium, E0 =

(K, 0, 0, b
µ1
, 0), we have

J (E0) =



−r1 −r1 −r1 −
Kβ11

H1+K 0 −
Kβ1

H1+K

0 −δ Kβ11
H1+K 0 Kβ1

H1+K

0 δ −γ − µ 0 0
0 0 −

bβ2
H2µ1

−µ1 0

0 0 bβ2
H2µ1

0 −µ1


Clearly, two of the eigenvalues of J (E0) are −r1 and −µ1 and
the remainder of the eigenvalues are those of the following
sub-matrix;

J1 (E0) =


−δ Kβ11

H1+K
Kβ11

H1+K

δ −γ − µ 0
0 bβ2

H2µ1
−µ1

 .
Equivalently, this can be rewritten in terms of
RL0,RM0,RM10 as

J1 (E0) =


−δ 2RM0(γ + µ) RM10(γ + µ)
δ −γ − µ 0
0 RL0µ1 −µ1

 .
The characteristic equation of J1 (E0) is given by

x3 + a1x2 + a2x + a3 = 0,

where
a1 = δ + γ + µ + µ1,

a2 = δγ + δµ + δµ1 + γµ1 + µµ1 − 2RM0δγ − 2RM0δµ,
a3 = δγµ1 + δµµ1 − 2RM0δγ.
By the Routh-Hurwitz criteria, the characteristic polynomial
has all its zeros in the left half of the plane if a1 > 0, a2 >

0, a3 > 0 and a1a2 > a3.

Clearly, the first condition is satisfied and the other two
are satisfied whenever R0 ≤ 1. Therefore, all the eigenvalues
of the matrix J1 (E0) have negative real parts whenever R0 <

1. Therefore, the disease-free equilibrium point (DFE), E0

is locally asymptotically stable if R0 < 1 and unstable if
otherwise, concluding the proof. �

3.6. Sensitivity analysis of model parameters

Sensitivity analysis is used to determine parameters with
the most influence on the basic reproduction number. This
will inform us on the significance of each parameter on
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the disease transmission. To achieve this, the normalized
forward sensitivity index which is defined as

Υ
p
R0

=
∂R0

∂p
×

p
R0

for R0 which differentiably depends on parameter p is used.
The sensitivity indices are computed and presented in Table
2.

Table 2. Sensitivity indices for the basic
parameters.

Parameter Sensitivity indices
b 0.4370
K 0
β1 0.4370
β11 0.1259
β2 0.4370
H1 0
H2 -0.4370
µ -0.1185
µ1 -0.4370
δ 0
r1 0
r2 0
γ -0.4444

From Table 2, it can be seen that varying the infection
and predation rates of maize and leafhoppers, β1, β11 and
β2 respectively, and the birth rate of susceptible leafhopper
b, have a direct relationship with the basic reproduction
number, R0, while the basic reproduction number, R0 has
an inverse relationship with the death rate of infected maize,
µ, death rates of susceptible and infected leafhopper, µ1 and
removal rate of infected maize plants γ when they are varied.

3.7. Bifurcation analysis

Let v = [v1, v2, v3, v4, v5] and w = [w1, w2, w3, w4, w5]T

respectively be the left and right eigenvectors for the
jacobian J (E0). Then

w1 = −
(H1+K)r1w2(γ+µ)+δw2((β1β2b+β11)K+(H1+K)r1)

(γ+µ)(H1+K)r1
,

w3 = δw2
γ+µ

,w4 = −
β2bδw2

µ1
2H2(γ+µ) ,w5 =

β2bδw2

µ2
1H2(γ+µ)

v1 = 0, v3 = v2, v4 = 0, v5 =
β1Kv2

(H1+K)µ1

where w2 and v2 are selected such that w · v = 1.
The bifurcation coefficients are thus obtained using:

a =

n∑
i, j, k=1

vkwiw j
∂2 fk
∂xi∂β∗

and b =

n∑
i, k=1

vkwi
∂2 fk
∂xi∂β∗

.

Hence

a = −2 v2w2

{
η1

(
δ β11H1(µ2

1H2−β2b)
µ2

1H2(H1+K)2(γ+µ)
−

r2
K

)
+

w2r2(γ+µ+δ)
K(γ+µ)

+
β1Kδ2w2β2b(µ1+β2)
(H1+K)(γ+µ)2µ3

1H2
2

}
< 0,

and

b = v2w2

(
δ (µ2

1H2+β2b)β1H1

µ2
1H2(γ+µ)(H1+K)2 − 2 η β1H1

(H1+K)2 +
η r2
K

−
r2(4 γ+4 µ+Kδ)

K2(γ+µ) −
((2 µ1+β2)b−µ2

1H2)β1Kδ β2

µ3
1H2

2(H1+K)(γ+µ)

)
.

Where
η1 =

(H1+K)r1w2µ
2
1H2(γ+µ)+δw2(β1Kβ2b+(r1H1+r1K+β11K)µ2

1H2)
µ2

1H2(γ+µ)(H1+K)r1

η =
µ2

1H2(γ+µ)(H1+K)r1+δ (β1Kβ2b+(r1H1+r1K+β11K)µ2
1H2)

µ2
1H2(γ+µ)(H1+K)r1

Clearly a < 0 and therefore, the nature of the bifurcation
depends on the sign of b. The following hold concerning b.

1. b > 0 if and only if

δ (µ2
1H2+β2b)β1H1

µ2
1H2(γ+µ)(H1+K)2 +

η r2
K > 2 η β1H1

(H1+K)2

+
r2(4 γ+4 µ+Kδ)

K2(γ+µ) +
((2 µ1+β2)b−µ2

1H2)β1Kδ β2

µ3
1H2

2(H1+K)(γ+µ) .

2. b < 0 if and only If

δ (µ2
1H2+β2b)β1H1

µ2
1H2(γ+µ)(H1+K)2 +

η r2
K < 2 η β1H1

(H1+K)2

+
r2(4 γ+4 µ+Kδ)

K2(γ+µ) +
((2 µ1+β2)b−µ2

1H2)β1Kδ β2

µ3
1H2

2(H1+K)(γ+µ)

The following results establish theorem 3.4.

Theorem 3.4. Whenever b > 0 the system exhibits forward

bifurcation and whenever b < 0 the system exhibits

backward bifurcation.

3.8. Numerical simulation

In order to show the impact of each parameter on the
spread or otherwise of the disease, simulation on the basic
parameters is performed by varying the values of the rate
of predation and infection of susceptible maize plants by
infected leafhopper, β1 , rate of predation and infection of
exposed maize plants by infected leafhopper, β11 , rate of
infection of leafhopper by infected maize, β2 , natural death
rate in leafhoppers, µ1 , removal rate of infected maize, γ
and recruitment rate of susceptible leafhoppers, b , while
keeping all other parameter values constant. The results of
the simulations are presented in Figures 2, 3, 4, 5, 6, 7 and
8. Figure 2 shows a time series plot of susceptible, exposed,
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infected maize, and susceptible and infected leafhopper . It
is observed that the susceptible maize population decreases
exponentially towards the endemic equilibrium point as the
population of exposed and infected plants increases. The
exposed maize population however, increases exponentially
towards the endemic equilibrium point. This is due to the
presence of the disease in maize and leafhopper population.
Again, the infected maize population marginally increases
with time.

The susceptible leafhopper population decreases
exponentially to the endemic equilibrium point due to
natural death and infections from infected maize and
MSV from the environment. The infected leafhopper
population on the other hand, increases exponentially to
form a parabolic curve to the endemic equilibrium point
and then decreases over time. Figure 3 shows time series

Table 3. Parameter values for the MSVD model.

Parameter Symbol Value day−1 Source
b 0.02 [14]
K 10000 [14]
β1 0.45 [15]
β11 0.04 Assumed
β2 0.04 [15]
H1 0.4 [14]
H2 0.6 [14]
µ 0.008 [15]
µ1 0.0303 [14]
δ 0.018 [15]
r1 0.005 [14]
r2 0.002 Assumed
γ 0.03 [19]

plots of susceptible, exposed and infected maize plants with
different values of the rate of predation and infection of
susceptible maize plants by infected leafhopper β1. It is
observed that, increasing (decreasing) the infection rate of
infected leafhopper on susceptible maize plant β1, decreases
(increases) the susceptible, but increases (decreases) the
exposed and infected populations. Figure 4 shows time
series plots of susceptible, exposed and infected maize
with different values of the rate of predation and infection
of exposed maize plants by infected leafhopper, β11. It

Figure 2. Time series plots of Susceptible,
Exposed and Infected maize as well as Susceptible
and Infected Leafhopper.

Figure 3. Time series plots of Susceptible,
Exposed and Infected maize with different values
of β1.
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Figure 4. Time series plots of Susceptible,
Exposed and Infected maize with different values
of β11.

can be seen that, increasing (decreasing) infection rate of
exposed maize plant on infected leafhopper also decreases
(increases) the susceptible, but increases (decreases) the
exposed and infected populations.

Figure 5 shows time series plots of susceptible, exposed
and infected maize with different values of the removal
rate of infected maize, γ. It is observed that increasing
(decreasing) the value of γ increases (increases) the
population of susceptible maize plants but decreases
(increases) the population of the exposed and infected maize
plants. Figure 6 shows time series plots of susceptible,
exposed and infected maize with different values of the
recruitment rate of susceptible leafhoppers, b. It is observed
that increasing (decreasing) b reduces (raises) the population
of susceptible maize plants but increases (decreases) the
population of exposed and infected maize plants.

Figure 7 shows time series plots of susceptible, exposed
and infected maize plants with different values of the rate of
infection of leafhopper by infected maize, β2. It is observed
that, increasing (decreasing) the infection rate of Susceptible
leafhopper on infected maize plant β2 increases (decreases)

Figure 5. Time series plots of Susceptible,
Exposed and Infected Maize with different values
of γ.

Figure 6. Time series plots of Susceptible,
Exposed and Infected Maize with different values
of b.
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Figure 7. Time series plots of Susceptible,
Exposed and Infected Maize with different values
of β2.

the population of exposed and infected maize plants but it
leads to a decrease in the population of susceptible maize
plants.

Figure 8 shows time series plots of susceptible, exposed
and infected maize with different values of natural death
rate in leafhoppers, µ1. It is observed that, increasing
(decreasing) the death rate of susceptible leafhopper
increases (decreases) the population of susceptible maize but
decreases the population of both the exposed and infected
maize. There will be same effect when the death rate of the
infected leafhopper is varied.

4. Summary and conclusions

The study proposed and analyzed a mathematical model
of the dynamics of maize streak virus disease (MSVD).
It showed that the system was uniformly bounded and
positive. The disease-free and endemic equilibrium points
and their local stability analysis was also carried out. In
the model analysis, sensitivity analysis of each parameter
was carried out to give a clear picture of the impact of each

Figure 8. Time series plots of Susceptible,
Exposed and Infected maize with different values
of µ1.

factor on the spread or otherwise of the disease. Finally,
analytical results were confirmed by numerical simulations
with realistic parameter values. It showed that varying the
infection and predation rates of maize and leafhoppers, β1,
β11 and β2 respectively, and the birth rate of susceptible
leafhopper b, have a direct relationship with the basic
reproduction number R0, while varying the death rate of
infected maize, µ, death rate of susceptible and infected
leafhopper, µ1 and removal rate of infected maize plants
have an inverse relationship with the basic reproduction
number R0. The model shows that the spread of the disease
largely depends on how these parameters are manipulated.
We conclude that parameters which are directly related
to the reproduction number must be minimized while we
consider increasing those that are inversely related to the
reproduction number.

Data availability

The data used in this study are from literature and they
have been duly cited in Table 2 and relevant places in this
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