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Abstract: DNA and mRNA are essential aspects of cells. They are responsible for much of the genomic activity that takes place
in a cell, and are significant macromolecules for research in cell and molecular biology. DNA and mRNA are polymers, molecules
that are composed of repeating subunits known as monomers. In the past, a number of theoretical models that elucidate the physical
properties of polymers have been proposed to the scientific community. These models include the Freely-Jointed Chain, Freely-Rotating
Chain, Worm-Like Chain, and Gaussian Chain Models. In this paper, I make use of such theoretical models in polymer physics, and
derive a number of theoretical models that correlate DNA, its respective pre-mRNA strand, and the corresponding post-mRNA strand
in a eukaryotic cell. Furthermore, graphical representations of some of the mathematical models derived in the paper are also rendered.
Based on this, the theoretical models formulated in this paper can be applied to research in the fields of mathematical biology, biophysics,
biochemistry, and cell/molecular biology.
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1. Introduction

DNA and RNA are essential concepts in molecular
biology and genomics. DNA, which stands for
deoxyribonucleic acid, serves as the genetic basis for
all living organisms [1–3]. DNA is a polymer, and is made
up of monomers known as nucleotides. Each nucleotide
consists of a nitrogenous base, deoxyribose sugar, and a
phosphate group. The sequence of nitrogenous bases in the
DNA strand determine the genetic code in organisms. From
DNA, a process called transcription produces a molecule
known as messenger ribonucleic acid (mRNA) from a
template DNA strand [3, 4]. mRNA is very similar in
structure to DNA, except that it is single stranded and is
usually shorter than the template DNA strand. The strand of
mRNA produced immediately after transcription is known
as the pre-mRNA strand. After the pre-mRNA strand is
transcribed, it goes through a series of post-transcriptional

modifications [5]. These post-modificational transcriptions
are mRNA splicing, the addition of a 5’ guanine cap,
and the addition of a 3’ poly-A tail. The pre-mRNA
strand, after it has gone through the post-transcriptional
modifications, is referred to as the post-mRNA strand.
This post-mRNA strand then enters a ribosome, where it
is translated to a polypeptide, which ultimately allows for
the expression of the original DNA strand in the organism’s
phenotype. Several research articles have proposed distinct
mathematical models for DNA and mRNA. For example,
in [6], the author uses concepts from M-theory and string
theory in order to derive mathematical models for DNA with
regards to interactions between free and bound electrons.
Furthermore, in [7], the author mathematically models DNA
replication as a data communication model. And in [8],
the authors discuss the use of stochastic modeling and
computer simulations to model eukaryotic DNA replication.
Therefore, in this article, a distinct approach is taken, and
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DNA replication is modelled through the use of theoretical
models in the field of polymer physics. As discussed, DNA,
and therefore RNA, are both polymers. There are a number
of theoretical models that have been developed to elucidate
the physical properties of polymers [9, 10]. The simplest
model for a polymer is known as the Freely Jointed Chain

(FJC) model [11, 12]. The FJC model describes a polymer
as a simple chain, where each monomer has a constant
length throughout the overall chain. Using the FJC model,
and fixing the angle at which each monomer is bonded in
the overall chain, gives the Freely Rotating Chain (FRC)
model [13]. The FRC model provides a more advanced
model for polymers than the FJC model. If the bond angle in
the FRC model is θ, then taking the limit θ → 0 gives rise to
the Worm-Like Chain (WLC) model [14]. The WLC model
makes use of the length of the overall polymer chain, as well
as a value of the polymer chain known as the persistence
length. The WLC model serves as one of the most advanced
models in polymer physics. Finally, the Gaussian Chain

Model (GCM) renders a stochastic model for polymers [15].
It gives the probability distribution for the conformation
of a polymer chain, based on several properties of the
chain. The GCM allows for the probabilistic analysis of
a polymer. Comprehensively, the FJC, FRC, WLC, and
GCM serve as fundamental models in polymer physics that
theoretically delineate a number of physical properties of
a polymer [16, 17]. This paper makes use of all of these
models, and derives theoretical models that correlate the
physical properties of a DNA strand, its corresponding
pre-mRNA strand, and the resulting post-mRNA strand with
each other.

2. Theoretical models for DNA

Here, I propose theoretical models for DNA as a single
strand, making them relevant to describe the template DNA
strand from which the pre-mRNA strand is transcribed.
Suppose that a DNA strand has N total bonds between its
nucleotides. This results in the DNA strand having N + 1
total nucleotides. Suppose that each nucleotide in the DNA
strand has an approximate length of b. Based on this, the
extension of the DNA strand can be denoted as that of the

FJC:

RDNA = b
√

N (2.1)

From this, the entropic spring constant of the DNA strand is
given to be:

kDNA =
3kBT
Nb2 (2.2)

And the radius of gyration of the DNA strand can be given
through the Debye Result for the strand:

GDNA = b

√
N
6

(2.3)

Now, as done in the freely-rotating chain, suppose that the
nucleotides are bound to each other at a fixed angle θ. From
this, the extension of the DNA strand can also be written as:

RDNA = b

√
N

(
1 + cos(θ)
1 − cos(θ)

)
(2.4)

Letting LDNA denote the length of the DNA strand also gives:

LDNA = N · b (2.5)

Denoting lp as the persistence length of the DNA strand:

lp =
−b

ln(cos(θ))
, (2.6)

gives the extension of the DNA strand based on the worm-
like chain model:

RDNA =

√
2lpLDNA − 2l2p(1 − e−

LDNA
lp ) (2.7)

From the Gaussian chain, the probability distribution for the
conformation of the DNA strand is also written as:

P(RDNA) =

(
3

2πNb2

) 3
2

exp
−3R2

DNA

2Nb2

 , (2.8)

where RDNA denotes the extension of the DNA strand, and
can be written through any of the formulations in equations
2.1, 2.4, and 2.7. This summarizes the theoretical models of
DNA based on the FJC, FRC, WLC, and the GCM. Based
on this, the mathematical models for mRNA are derived and
proposed.
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3. Theoretical models for pre-mRNA: Difference
treatment

Here, I provide theoretical models that correlate a
DNA strand and its corresponding pre-mRNA strand based
on a ”difference treatment.” Furthermore, I also provide
some visualizations of my mathematical models, rendered
in section 8. The transcribed mRNA strand by RNA
polymerase during the process of transcription only works
with a certain number of nucleotides from the overall DNA
strand. Suppose that from the template DNA strand, t

nucleotides are not used in the pre-mRNA transcript. This
results in there being a total of N + 1 − t nucleotides in
the pre-mRNA strand. Therefore, there are a total of N − t

bonds in the pre-mRNA strand. Assuming that the length of
each nucleotide remains approximately b, the extension of
the pre-mRNA strand based on equation 2.1 is:

RpmRNA = b
√

N − t (3.1)

From equation 2.2, the entropic spring constant of the pre-
mRNA strand can also be found as:

kpmRNA =
3kBT

b2(N − t)
=

3kBT
b2N − tb2 (3.2)

Furthermore, the radius of gyration for the pre-mRNA strand
can be found from equation 3 as:

GpmRNA = b

√
N − t

6
(3.3)

Assuming that the bond angles between the nucleotides in
the pre-mRNA molecule remain the same as that of the
template DNA strand, at a value of θ, gives another formula
for the extension of the pre-mRNA chain:

RpmRNA = b

√
(N − t)

(
1 + cos(θ)
1 − cos(θ)

)
(3.4)

Since b remains constant between the template DNA strand
and pre-mRNA strand, and so does θ, therefore, the
persistence length of the pre-mRNA strand is equal to that
the DNA strand. However, since the number of bonds is
distinct between the DNA and pre-mRNA strands, therefore,
the length of the pre-mRNA strand is written as:

LpmRNA = b(N − t) (3.5)

Therefore, the extension of the pre-mRNA strand based on
equation 2.7 is:

RpmRNA =

√
2lpLpmRNA − 2l2p(1 − e−

LpmRNA
lp ) (3.6)

=

√
2lpb(N − t) − 2l2p(1 − e−

b(N−t)
lp ) (3.7)

Then, the probability distribution for the conformation of the
pre-mRNA strand is also given from equation 2.8, and is
written as:

P(RpmRNA) =

(
3

2πb2(N − t)

) 3
2

exp

−3R2
pmRNA

2b2(N − t)

 (3.8)

4. Theoretical models for pre-mRNA: Fractional
treatment

Here, I derive further mathematical models to correlate
a DNA strand and its corresponding pre-mRNA strand in
a cell. However, this time, I make use of a ”fractional
treatment.” Visualizations of some of the theoretical models
in this section are also rendered in section 8 of the paper.
Suppose here that f nucleotides from the original template
DNA strand are used in the pre-mRNA strand. Therefore,
the fraction of bonds in the pre-mRNA strand and DNA
strand is given by:

bondsDNA

bondspmRNA
=

f − 1
N

(4.1)

As before, the extension of the pre-mRNA strand is written
as:

RpmRNA = b
√

f − 1, (4.2)

and so from this, the extensions of the pre-mRNA strand and
DNA strand are correlated as:

RpmRNA

RDNA
=

b
√

f − 1

b
√

N
=

√
f − 1

N
(4.3)

The FRC model’s correlation is also equal to the value in
the equation above, and therefore, there is no need to restate
it. From this, a fractional correlation between the entropic
spring constants of the pre-mRNA strand and DNA strand
can also be formulated as:

kpmRNA

kDNA
=

3kBT
b2( f − 1)

·
Nb2

3kBT
=

N
f − 1

(4.4)
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The radius of gyration can also be correlated between the
pre-mRNA strand and DNA strand, the result being the same
as that of equation 4.3:

GpmRNA

GDNA
=

√
f − 1

N
(4.5)

Then, a fractional correlation between the extensions of the
pre-mRNA strand and DNA strand can be derived using the
WLC model, and is given as:

RpmRNA

RDNA
=

√√√√√2lpb( f − 1) − 2l2p(1 − e−
b( f−1)

lp )

2lpbN − 2l2p(1 − e−
bN
lp )

=

√√√√
b( f − 1) − lp(1 − e−

b( f−1)
lp )

bN − lp(1 − e−
bN
lp )

(4.6)

Finally, the fractional correlation of the probability
distributions of the pre-mRNA and DNA strands based on
the GCM model is given by:

P(RpmRNA)
P(RDNA)

=

(
3

2πb2( f−1)

) 3
2 exp

(
−3R2

pmRNA

2b2( f−1)

)
(

3
2πNb2

) 3
2 exp

(
−3R2

DNA
2Nb2

)
=

(
N

f − 1

) 3
2

exp

−3R2
pmRNA

2b2( f − 1)
+

3R2
DNA

2Nb2


=

(
N

f − 1

) 3
2

exp

 3
2b2

R2
DNA

N
−

R2
pmRNA

f − 1


(4.7)

5. Theoretical models from pre-mRNA to post-mRNA:
Difference treatment

Using the same “difference” treatment as that of section
3, theoretical models for the post-mRNA strand after post-
transcriptional modifications from the pre-mRNA strand can
be formulated. Suppose that ω nucleotides are spliced from
the pre-mRNA strand. Then, suppose that a nucleotides are
added in the poly-A tail to the pre-mRNA strand, and ρ

nucleotides are added via the 5’ cap to the pre-mRNA strand
to finally give the post-mRNA strand. This results in the
total bonds in the post-mRNA strand being:

bonds f mRNA = N − t − ω + a + ρ (5.1)

Due to this, the extension of the post-mRNA strand based on
the FJC model is:

R f mRNA = b
√

N − t − ω + a + ρ (5.2)

Then, the extension based on the FRC model is given to be:

R f mRNA = b

√
(N − t − ω + a + ρ)

(
1 + cos(θ)
1 − cos(θ)

)
(5.3)

The entropic spring constant of the post-mRNA strand can
be written as:

k f mRNA =
3kBT

b2(N − t − ω + a + ρ)
(5.4)

The radius of gyration is again given by the Debye Result:

R f mRNA = b

√
N − t − ω + a + ρ

6
(5.5)

The extension of the strand based on the WLC model is
given as:

R f mRNA =

√
2lpb(N − t − ω + a + ρ) − 2l2p(1 − e

−b(N−t−ω+a+ρ)
lp )

(5.6)
And finally, the probability distribution for the conformation
of the post-mRNA strand is formulated:

P( f mRNA) =
(

3
2πb2(N−t−ω+a+ρ)

) 3
2 exp

(
−3R2

f mRNA

2b2(N−t−ω+a+ρ)

)
6. Theoretical models from pre-mRNA to post-mRNA:

Fractional treatment

Using the treatment discussed in section 4, fractional
models correlating the pre-mRNA and post-mRNA strands
can be derived. Suppose that after the post-transcriptional
modifications to the pre-mRNA strand, µ nucleotides
remain. Therefore, the post-mRNA strand has µ − 1 bonds.
From this, the fractional correlation between the extensions
of the pre-mRNA strand and post-mRNA strand is given as:

R f mRNA

RpmRNA
=

b
√
µ − 1

b
√

f − 1
=

√
µ − 1
f − 1

(6.1)

As discussed, the fractional correlations between the pre-
mRNA strand and the post-mRNA strand for the FRC model
is exactly the same as that of equation 6.1. Furthermore,
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the fractional correlation of the entropic spring constant
between the pre-mRNA and post-mRNA strand is:

k f mRNA

kpmRNA
=

f − 1
µ − 1

(6.2)

From section 4, it can be seen that the fractional correlation
for the radius of gyration between two strand is simply the
same as that of the extension. Therefore, the fractional
correlation for the radius of gyration between the pre-
mRNA and post-mRNA strand is equal to equation 6.1, and
therefore does not need to be rewritten. Then, the fractional
correlation for the extension of the pre-mRNA strand and
post-mRNA strand with regards to the WLC model can be
written as:

R f mRNA

fpmRNA
=

√√√√
b(µ − 1) − lp(1 − e−

b(µ−1)
lp )

b( f − 1) − lp(1 − e−
b( f−1)

lp )
(6.3)

And finally, the fractional correlation between the
probability distributions for the conformations of the pre-
mRNA strand and post-mRNA strand is given by:

P(R f mRNA)
P(RpmRNA)

=

(
f − 1
µ − 1

) 3
2

exp

 3
2b2

R2
pmRNA

f − 1
−

R2
f mRNA

µ − 1


(6.4)

7. Conclusions

This paper formulates a number of theoretical models
correlating a DNA strand, its corresponding pre-mRNA
strand, and the corresponding post-mRNA strand to each
other. Using the freely-jointed chain, freely-rotating chain,
worm-like chain, and Gaussian chain models, mathematical
models with regards to the physical properties of DNA
are laid out in section 2 of the paper. Then, using
the theoretical models for DNA, simple mathematical
manipulations result in a number of mathematical models
for the respective pre-mRNA strand, and are laid out in
section 3 and 4 of the paper. The difference treatment
and fractional treatment allow for two alternative means
to correlate the physical properties of a DNA strand
and its corresponding pre-mRNA strand. Then, further
mathematical manipulations of the theoretical models for the
pre-mRNA strand yield a number of additional theoretical
models for the corresponding post-mRNA strand that has

undergone post-transcriptional modifications. Furthermore,
the paper also provides graphical visualizations of the
equations derived and rendered in this paper for certain
parameters Together, the derived equations in this paper
provide a theoretical and mathematical means to correlate
a DNA strand and its corresponding pre-mRNA and post-
mRNA strands. Through this, the mathematical models
derived in the paper can be applied to research in the field of
mathematical/theoretical biology, biochemistry/biophysics,
as well as in cell/molecular biology.

8. Figures

Figure 1. Visualization of the theoretical model
for the extension of the pre-mRNA strand based
on equation 3.1, for b = 1.
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Figure 2. Visualization of the theoretical model
for the entropic spring constant of the pre-mRNA
strand based on equation 3.2. Here, T is set to
310.15 K, the ideal temperature of the human
body, and b = 1 again.

Figure 3. Visualization for the radius of gyration
model for the pre-mRNA strand based on equation
3.3. b is set to 1 here as well.

Figure 4. Visualization for the extension of the
pre-mRNA strand based on equation 3.6. Here,
lp = 6.95212 since θ = 30◦, and b = 1.

Figure 5. Plot for the Probability Distribution of
the Conformation of the pre-mRNA strand based
on equation 3.8. Here, b = 1, N = 100, and t = 50
are the parameters for the plot.
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Figure 6. Three-dimensional visualization for
the fractional correlation between the pre-mRNA
strand and DNA strand based on equation 4.3.

Figure 7. Three-dimensional visualization for
the fractional correlations of the entropic spring
constants between the pre-mRNA strand and DNA
strand based on equation 4.4.

Figure 8. Three-dimensional visualization for
the fractional correlation of the extension between
the pre-mRNA strand and DNA strand based on
equation 23. The parameters for the plot are the
same as that of figure 4.

Figure 9. Three-dimensional visualization for the
probability distribution between the pre-mRNA
strand and DNA strand based on the fractional
treatment in equation 26. As done previously in
figure 5, N = 100, f = 50, and b = 1.
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