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Abstract: Ecological models have become paramount for assessing the pesticides effect on the function and structure of aquatic
ecosystems. The most paramount concerns are assessments of pesticides/toxicants that have the potential to change from one form to
another when they are released into the aquatic ecosystem. Optimal control model is formulated from the nonlinear mathematical model
for assessing dual-level toxicity of pesticides effect on aquatic species with the goal to minimizing the pesticides concentration in the
aquatic species environment and maximizing the aquatic species population. Two control functions were introduced to represent a policy
of not allowing pesticides concentration into the aquatic species environment and the removal of those pesticides that are already in the
aquatic environment. The resulting optimal controls are characterized in terms of the optimality system and it was solved quantitatively
for different scenarios using both forward and backward sweep iterative method with Runge-Kutta fourth order scheme. The result of
the system showed different levels of the aquatic species population stability due to the different levels of the pesticides influx. It was
also observed that the degradation of pesticides concentration causes pesticides concentration to vary significantly between the water
body and the sediment region with significant level effect on the aquatic species.
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1. Introduction and Preliminaries

The global increase demand for food security and
commercial values of agricultural products have led to
upsurge of pesticide usage due to global increased in
agricultural activities has undoubtedly reduced crop loss and
improved crop yield [1]. Thus, contamination of aquatic
environment are usually emanated from off-site movement
of pesticides either through leaching, spray drift and runoff

[2,3]. The danger of pesticides and other toxicants to aquatic
organisms or species have resulted to subject of numerous
studies in the past several centuries [4, 5]. Quite numbers of
ecotoxicological studies have proved that biological species
in both terrestrial and aquatic habitats are negatively affected

by pesticides application in their environment [6–8].

There are a lot of evidences that pesticides are major
threat to aquatic life and humans [9–11]. More so, Pesticides
concentration contaminate various region of biological
species habitat such as soil, sediments and water and enter
food chain, and these pesticides will finally get to humans
through feeding on aquatic organisms and consumption
of food products [1]. When some pesticides enter into
the aquatic ecosystem they undergo different processes
and thereby changing from one form to another such as
degradation (photo, biological, microbiological or chemical)
to simpler compounds which may be as toxic as the parent
compounds or more toxic and more persistent than the
parent compounds [12–14]. Some levels of pesticides
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have been found in surface water, sediments and aquatic
environment and along with their attendant degradation
products [9, 15, 16].

The increase in cancer reported cases prevalence
has linked to different types of pollution such as
organochlorine, heavy metals, 3-methycholanthrene (PAH),
aromatic hydrocarbons, organic pollutants (e.g. genotoxic
persistent organic pollutants, mutagenic PAHs, POPs) and
some non-essential metallic elements such as cadmium and
arsenic [17].

A thorough knowledge of the links between cancer and
pollution in aquatic animals allows using different species as
sentinels for the contamination of aquatic ecosystems with
oncogenic chemicals for preventing an impact on human
health and other biological organisms [14, 17].

The needs for pollution control in both aquatic and
terrestrial habitats cannot be overstated. Recently, the
United Nation project entitled: From Pollution to Solution
- A global assessment of marine litter and plastic pollution
provides the needs for the following guidelines, which
include governance, legislation, coordination, cooperation,
business solution, environmentally sounds technologies and
innovations, research and development [18] that need to be
observed and implemented in order to combat pollution. The
aim of this said assessment is to provide evidence that will
enable policymakers and the wider society to understand the
magnitude and severity of the risk associated with pesticides
pollution and to safeguard human and ecological health.
However, pollution in aquatic environments are projected to
nearly triple by 2040 without meaningful control in place.

The issue of pollution in our present day society has
become a great concern. The needs for everybody in our
society to gain the understanding of dangers and control
of pollution are of utmost needs and paramount in this
study. A novel mathematical model has been developed
by authors in [19] to assess the dual-level toxicity effects
of biodegradable pesticides to aquatic biological species.
However, in this study, we are interested on how the just
said assessed pesticides risks should be reduced/eliminated
from the aquatic species environment. To do this, an optimal
control version of the model in [19] becomes indispensable.
Ability to carry out a well-defined and structured optimal
control model version in [19] is of utmost important to

maintain a sound aquatic ecosystem as well as maintaining
human health by avoiding consumption of poisonous aquatic
fish or animals. The outcome of this study will also serves as
guidelines for government and non-governmental agencies
on how different forms of obnoxious pollutants released into
our society can be reduced to barest minimum.

The global increase understanding of environmental
preservation has call for the need to evaluate the effects
of pesticides in aquatic ecosystem. Ecotoxicological risk
assessment of pesticides in aquatic habitat is one of
the most essential areas for the assessment of pesticide
effects for the preservation of biodiversity [20, 21]. The
paramount goal of ecotoxicological risk assessment for
toxin is to provide knowledge that can be used to protect
the components of ecosystems from chemical pressure
[22]. With respect to this, ecological models have
been widely used as tools for assessing the ecological
quagmire for predicting pesticides/toxicants effects on
biological population’s environment. The authors in [23–
25] developed different mathematical models to examine
the effects of toxicants/pollutants on biological species.
Both the qualitative and the numerical results showed that
the total biological species population decreases while the
deformed biological species population increases due to
increase of toxicants/pollutants influx. Also, study [26]
developed a mathematical approach to study the effect of
pollutants/toxicants in aquatic environment. It was found
that toxicity in the nutrient pool causes increase equilibrium
level of resource and fish populations. These mathematical
models serve as tools for illustrating the connection as well
as assumptions and likelihoods in the extrapolation between
endpoints [2, 3].

Many mathematical models have been applied widely to
find out the effect of pesticides or toxicants on biological
species. Study [23] worked on the external toxicant effect
on the population density and deformity of biological
species and reported that when emission of the external
toxicant increased, the total population density of the
biological species will also decreased and the density of the
deformed subclass populations increased. A model designed
by [25] reported that as the collective rates of emission
and formation of toxicant into the biological species
environment increased, the densities of the population and
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its resources did also decreased.

Recently the authors in [19] studied the use of ecological
model to evaluate the effects of dual-level toxicity of
biodegradable pesticides on aquatic species. It was reported
that the aquatic species will completely die with time in
the case of pesticides excesses in the aquatic environment,
the population of the aquatic population will remain under
some certain conditions, the pesticides will persist in the
aquatic environment and there will be a periodic oscillation
in the population of the aquatic species over time. Study
[27] designed a mathematical model to find out the role
of rain in confiscation of air pollutants and its long term
effects on human population. The result of the model
analysis showed that rain serves as a cleaning agent of air
pollution. In addition to aforementioned studies, another
interesting study was conducted by [7] which proposed and
analyzed a model that investigates the effect of pollutant
on biological species. From the result of the analysis, it
was reported that the population density of the biological
species population settled down to its equilibrium level
and the magnitude hinged on the equilibrium levels of
emission and washout rates of pollutant as well as on
the rate of outrider accumulation and its abatement. The
rate of outrider accumulation showed to be harmful in
affecting the biological species population. The result also
established that the survival of the biological species would
be jeopardized if the concentration of pollutant increases
uncontrollably. Currently, a mathematical model to assess
the effect of toxicant in an aquatic ecosystem was carried
out by [26] and it was reported that the emission of high
concentration of toxicant high than its equilibrium level lead
to a total wipe off of the biological species population.

Recently many mathematical models that give insight
on model equilibrium analysis, applications and some that
were formulated based on optimal control approach of
some infectious diseases that are life threatening have been
carefully studied [28–31]. Some of their methods of
analyses are adopted in this study.

However, various numbers of studies have been
conducted on the effect of toxicants or pesticides on aquatic
biological population, but based on our investigation; none
of the existing models have considered the assessment
of minimizing of dual-level pesticides toxicity effects

(presence of pesticides in water and sediments) to aquatic
populations using a model with time dependent controls.
Therefore, in this paper, we proposed and analyzed an
optimal control mathematical model that assesses the effect
of two pesticides on the population of aquatic species where
both pesticides are available in water and sediments with
one of the pesticides capable of biodegrading into the other
but not vice versa by [19]. The optimal control model will
be based on the mathematical model in [19].

The organization of this paper is as follows. In Section
2, we present a nonlinear model that study the impact of
the dual-level toxicity (water and sediments) on aquatic
species by [19] and carried out review of some mathematical
analysis of the formulated model. In Section 3, we
formulated the optimal control model and carried out the
qualitative analysis. In Section 4, We provide the numerical
solutions of the optimal control model. Results of the model
are discussed in Section 5 and we conclude in Section 6.

2. Mathematical model

In order to formulate the optimal control model that
assesses the effects of biodegradable pesticides on the
aquatic population, we will first of all present model [19]
upon which its optimal control model will be build. The
model [19] has seven compartments, namely: F(t) which
stands the population of the aquatic species (e.g. fish, frogs)
at time t; Pw1(t) stands for the concentration of pesticide 1 in
water at time t; Pw2(t) is the concentration of pesticide 2 in
water at time t; Ps1(t) is the concentration of pesticide 1 in
sediments at time t; Ps2(t) is the concentration of pesticide 2
in sediments at time t; C f 1(t) stands the uptake concentration
of pesticide 1 in both water and sediments at time t; and
C f 2(t) represents the uptake concentration of pesticide 2 in
both water and sediments at time t.

2.1. Descriptions of model equations

The aquatic population (fish) is increased by its birth
rate r0 and r(C f 1,C f 2) is decrease in birth rate as a
result of pesticides concentration uptake. The total aquatic
population is decreased by r0F2

K(Pw1,Pw2,Ps1,Ps2) due to pesticides
concentration in the aquatic species environment. The
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equation is given by

dF
dt

= r(C f 1,C f 2)F −
r0F2

K(Pw1, Pw2, Ps1, Ps2)
.

The pesticide 1 in water is increased by concentration
of pesticide 1, Q1, fraction of the dead aquatic species
concentration added back to the aquatic environment, πw1,
and the conversion of pesticide 1 in sediment to pesticide 1
in water, ξs1. It is decreased by natural depletion rate, δw1,
the uptake concentration rate, αw1, conversion of pesticide
1 in water to pesticide 1 in sediment rate, φw1, and the rate
at which pesticide 1 in water is converted to pesticide 2 in
water, θw1. The equation is given by

dPw1

dt
=Q1 − δw1Pw1 − αw1Pw1F + πw1V1FC f 1

− φw1Pw1 + ξs1Ps1 − θw1Pw1.

The pesticide 2 in water is increased by concentration
of pesticide 2, Q2, fraction of the dead aquatic species
concentration added back to the aquatic environment, πw2,
the conversion of pesticide 2 in sediment to pesticide 2 in
water, ξs1, and the rate at which pesticide 1 in water is
converted to pesticide 2 in water, θw1. It is decreased by
natural depletion rate, δw2, the uptake concentration rate,
αw2, conversion of pesticide 2 in water to pesticide 2 in
sediment rate, φw2. The equation is given by

dPw2

dt
=Q2 − δw2Pw2 − αw2Pw2F + πw2v2FC f 2

− φw2Pw2 + ξs2Ps2 + θw1Pw1.

The pesticide 1 in sediments is increased its
concentration, Q3, fraction of the dead aquatic species
concentration added back to the aquatic environment, πs1,
and the rate at which pesticide 1 in water settled down to
form sediment, ξs1. It is decreased by natural depletion rate,
δs1, the uptake concentration rate, αs1, conversion rate of
pesticide 1 in sediments to pesticide 1 in water, ξs1, and the
rate at which pesticide 1 in sediments converted to pesticide
2 in sediments, θs1. The corresponding equation becomes

dPs1

dt
=Q3 − δs1Ps1 − αs1Ps1F + πs1v1FC f 1 − ξs1Ps1

− θs1Ps1 + φw1Pw1.

The pesticide 2 in sediments is increased its
concentration, Q4, fraction of the dead aquatic species

concentration added back to the aquatic environment, πs2,
the rate at which pesticide 1 in sediments is converted to
pesticide 2 in sediments, θs1, and the rate at which pesticide
2 in water settled down to form pesticide 2 sediment, ξs2.
It is decreased by natural depletion rate, δs2, the uptake
concentration rate, αs2, and the rate at which pesticide
2 in sediments changes to pesticide 2 in water, ξs2. The
corresponding equation is given by

dPs2

dt
=Q4 − δs2Ps2 − αs2Ps2F − ξs2Ps2 + πs2v2FC f 2

+ θs1Ps1 + φw2Pw2.

The uptake concentration 1 is increased by the rate of
uptake concentration 1 in water, αw1 and the rate of uptake
concentration of pesticide 1 in sediment, αs1. It is decreased
by the natural depletion rate coefficient of C f 1, β1, and some
members of the aquatic population that died as a result of
the pesticide 1 toxicity in both water and sediments, v1. The
equation is given by

dC f 1

dt
= −β1C f 1 + αw1Pw1F + αs1Ps1F − v1FC f 1,

The uptake concentration 2 is increased by the rate of
uptake concentration 2 in water, αw2 and the rate of uptake
concentration of pesticide 2 in sediment, αs2. It is decreased
by the natural depletion rate coefficient of C f 2, β2, and some
members of the aquatic population that died as a result of
the pesticide 2 toxicity in both water and sediments, v2. The
equation becomes

dC f 2

dt
= −β2C f 2 + αw2Pw2F + αs2Ps2F − v2FC f 2,
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The combined model equations is given below.

dF
dt

=r(C f 1,C f 2)F −
r0F2

K(Pw1, Pw2, Ps1, Ps2)
,

dPw1

dt
=Q1 − δw1Pw1 − αw1Pw1F + πw1v1FC f 1

− φw1Pw1 + ξs1Ps1 − θw1Pw1,

dPw2

dt
=Q2 − δw2Pw2 − αw2Pw2F + πw2v2FC f 2

− φw2Pw2 + ξs2Ps2 + θw1Pw1,

dPs1

dt
=Q3 − δs1Ps1 − αs1Ps1F + πs1v1FC f 1 − ξs1Ps1

− θs1Ps1 + φw1Pw1,

dPs2

dt
=Q4 − δs2Ps2 − αs2Ps2F − ξs2Ps2 + πs2v2FC f 2

+ θs1Ps1 + φw2Pw2,

dC f 1

dt
= − β1C f 1 + αw1Pw1F + αs1Ps1F − v1FC f 1,

dC f 2

dt
= − β2C f 2 + αw2Pw2F + αs2Ps2F − v2FC f 2,

(2.1)

F(0) = F0 ≥ 0, Pw1(0) = Pw10 ≥ 0, Pw2(0) = Pw20 ≥ 0,

Ps1(0) = Ps10 ≥ 0, Ps2(0) = Ps20 ≥ 0,C f 1(0) = C f 10 ≥ cF,

C f 2(0) = C f 20 ≥ cF, c > 0, 0 ≤ πw1, πw2, πs1, πs2 ≤ 1,

The function r(C f 1,C f 2) is the growth rate of the
biological populations in the presence of pesticides, r(0, 0) =

r0 > 0 is the growth rate of biological populations in
the absence of pesticide in the population, c > 0 is a
proportionality constant determining the measure of initial
pesticides concentration in the population at t = 0. The
function K(Pw1, Pw2, Ps1, Ps2) in model (2.1) denotes the
maximum population size of the aquatic species that the
environment can support and it decreases when the pesticide
concentration increases; K(Pw1, Pw2, Ps1, Ps2) satisfies the
following properties:

K(0, 0, 0, 0) = K0 > 0,

dK
dt

< 0,
(2.2)

for Pw1, Pw2, Ps1, Ps2 > 0, where K0 represents the pesticides
free carrying capacity of the aquatic biological species.

All the parameters in the model (2.1) are assumed to be
positive constants and they are defined in Table 1. The
equilibria of the dynamics of the non-linear model (2.1) are
considered under two cases as follows:

2.1.1. Case 1: Q1 = Q2 = Q3 = Q4 = 0

This is a case where there is no discharge of pesticides into
the aquatic environment. Hence, the model system (2.1) has
a non-negative equilibrium, E1,

E1(F++, P++
w1 , P

++
w2 , P

++
s1 , P

++
s2 ,C

++
f 1 ,C

++
f 2 ) = (K0, 0, 0, 0, 0, 0, 0),

The E1 equilibrium was reported to be a state whereby
the population of the aquatic species will thrive and
remain perpetually in the absence of pesticides in aquatic
environment [19].

Investigating the local asymptotic stability (LAS) of the
equilibrium, E1 was tedious due to the size of the Jacobian of
the system evaluated at E1, it was mathematically intractable
to do so. Readers should see [19] for details of the qualitative
results.

2.1.2. Case 2: Q1 > 0,Q2 > 0,Q3 > 0,Q4 > 0

Under this case there is a constant influx of pesticides into
the aquatic habitat. The model (2.1) has two equilibria, E2

and E3,

E2 = (F∗, P∗w1, P
∗
w2, P

∗
s1, P

∗
s2,C

∗
f 1,C

∗
f 1)

=

(
0,R1,T,

Q3 + φw1R1

ξs1 + δs1 + θs1
,R3, 0, 0

)
,

where,

R1 =
ξs1(Q1 + Q3) + Q1(δs1 + θs1)

(δw1 + θw1)(ξs1 + δs1 + θs1) + φw1(δs1 + θs1)
,

R2 =(ξs1 + δs1 + θs1)(ξs2 + δs2)Q2 + (ξs1 + δs1 + θs1)ξs2Q4

+ ξs2θs1Q3,

R3 =
(ξs1 + δs1 + θs1)Q4 + θs1(Q3 + φw1R1)R4

ξs1 + δs1 + θs1

+
φw2(R2 + PR1)(ξs1 + δs1 + θs1)

(ξs2 + δs1)R2
,

R4 =(ξs1 + δs1 + θs1)(ξs2 + δs2)(δw2 + φw2) − ξs2

+ φw2(ξs1 + δs1 + θs1),

P =ξs2θs1φw1 − (ξs1 + δs1 + θs1)(ξs2 + δs2)θw1,

T =
R2 + PR1

R1
,

and E3 is given as:

E3 = (F∗∗, P∗∗w1, P
∗∗
w2, P

∗∗
s1, P

∗∗
s2,C

∗∗
f 1,C

∗∗
f 2),

Mathematical Modelling and Control Volume 2, Issue 3, 100–121



105

where,

F∗∗ =
r(C∗∗f 1,C

∗∗
f 2)K(P∗∗w1, P

∗∗
w2, P

∗∗
s1, P

∗∗
s2)

r0
,

P∗∗w1 =
Q1 + ξs1P∗∗s1 + πw1v1F∗∗C∗∗f 1

δw1 + φw1 + θw1 + αw1F∗∗
,

P∗∗w2 =
Q2 + ξs2P∗∗s2 + πw2v2F∗∗C∗∗f 2 + θw1P∗∗w1

δw2 + φw2 + αw2F∗∗
,

P∗∗s1 =
Q3 + φw1P∗∗w1 + πs1v1F∗∗C∗∗f 1

ξs1 + δs1 + θs1 + αs1F∗∗
,

P∗∗s2 =
Q4 + φw2P∗∗w2 + θs1P∗∗s1 + πs2v2F∗∗C∗∗f 2

ξs2 + δs2 + αs2F∗∗
,

C∗∗f 1 =
(αw1P∗∗w1 + αs1P∗∗s1)F∗∗

β1 + v1F∗∗
,

C∗∗f 2 =
(αw2P∗∗w2 + αs2P∗∗s2)F∗∗

β2 + v2F∗∗
,

The steady state, E2 is a steady state where the aquatic
population is totally wiped off while the pesticides remain
indefinite. The steady state, E3 is a steady state that
shows the continuous existence of the aquatic population
in both water and sediments; hence,the aquatic population
remains for all time in the presence of pesticides in the
environment [19]. The steady state E2 was reported to
be unstable provided the growth rate r0 remains positive.
Hence, orbits cannot approach it with initial conditions in
the neigbourhood of E2. The steady state E3 is stable
under some certain conditions and unstable if otherwise
[19]. Readers should check [19] for details of the qualitative
results.

The system (2.1) undergoes a Hopf bifurcation
phenomenon when the pesticide emission rate passes a
critical level (see 1 for more details).

2.2. Convergence properties of system (2.1)

In general, system (2.1) is of the form

u(k+1) = g(u(k)), (2.3)

where g:<n → <n. A solution is a discrete collection of
points u(k) ∈ <n, in which the superscript, k = 0, 1, 2, 3, 4, ...
are non-negative integer values.

Definition 2.1. An equilibrium or a fixed point of a discrete

dynamical system (2.3) is a vector u∗ ∈ <n such that

g(u∗) = u∗.

It is easy to see that every equilibrium of the system gives
a constant solution to the discrete dynamical system u(k) =

u∗ for all k. More so, it is easy to prove that any convergent
solution necessarily converges to a fixed point.

Proposition 2.1. If a solution to a discrete dynamical system

converges, limk→+∞ u(k) = u∗, then the limit u∗ is a fixed

point.

Proof: This is a simple consequence of the continuity of
g. We get

u∗ = lim
k→+∞

u(k+1) = lim
k→+∞

g(u(k)) = g( lim
k→+∞

u(k)) = g(u∗),

Th continuity of g is due to the last two equality.
In summary, system (2.1) converges when the system

fixed or equilibrium point is

(i) asymptotically stable,
(ii) stable.

However, system (2.1) diverges when the system fixed point
is unstable.

3. Optimal control model formulation and analysis

The goal of this work is to propose and analyse an
optimal control model that will assists us in minimizing the
level of concentration of pesticides entering into the aquatic
bio-species population environment. For us to control the
rate at which the pesticides Pw1, Pw2, Ps1 and Ps2 are
introduced into the aquatic environment and the uptake of
their concentration by the fish population, C f 1 and C f 2, we
introduce control functions, u1(t) and u2(t) respectively into
model (2.1). The u1(t) and u2(t) are bounded Lebesgue
measurable functions, where the control, u1(t) is a control
policy that prevents pesticides from findings their way into
the aquatic environment. The effort that maintains such
policy is denoted by 1 − u1(t). u1(t) near zero indicates that
the policy is “not adequately adhered”, it does not prevent
introduction of harmful pesticides from entering the aquatic
organisms environment, while u1(t) near 1 indicates an
“adequate adherence” policy that prevent harmful pesticides
from increasing the concentration of pesticides in aquatic
environment. The control, u2(t) is a case finding control that
reduces the concentration of pesticides that already found
their ways into the water body.
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We also want to maximize the aquatic bio-species. Hence,

Minimize T (u1, u2) =

∫ U

0

(
C f 1(t) + C f 2(t) + Pw1(t)

+ Pw2(t) + Ps1(t) + Ps2(t) − F(t)

+
A
2

u2
1(t) +

B
2

u2
2(t)

)
dt,

(3.1)

subject to:

dF
dt

=r(C f 1,C f 2)F −
r0F2

K(Pw1, Pw2, Ps1, Ps2)
,

dPw1

dt
= (1 − u1(t)) Q1 − δw1Pw1 − αw1Pw1F

+ πw1v1FC f 1 − φw1Pw1 + ξs1Ps1 − θw1Pw1,

dPw2

dt
= (1 − u1(t)) Q2 − δw2Pw2 − αw2Pw2F

+ πw2v2FC f 2 − φw2Pw2 + ξs2Ps2 + θw1Pw1,

dPs1

dt
= (1 − u1(t)) Q3 − δs1Ps1 − αs1Ps1F + πs1v1FC f 1

− ξs1Ps1 − θs1Ps1 + φw1Pw1,

dPs2

dt
= (1 − u1(t)) Q4 − δs2Ps2 − αs2Ps2F − ξs2Ps2

+ πs2v2FC f 2 + θs1Ps1 + φw2Pw2,

dC f 1

dt
= − β1C f 1 + (1 − u2(t))αw1Pw1F

+ (1 − u2(t))αs1Ps1F − v1FC f 1,

dC f 2

dt
= − β2C f 2 + (1 − u2(t))αw2Pw2F

+ (1 − u2(t))αs2Ps2F − v2FC f 2,

F(0) = F0 ≥ 0, Pw1(0) = Pw10 ≥ 0, Pw2(0) = Pw20 ≥ 0,

Ps1(0) = Ps10 ≥ 0, Ps2(0) = Ps20 ≥ 0,C f 1(0) = C f 10 ≥ cF,

C f 2(0) = C f 20 ≥ cF, c > 0, 0 ≤ πw1, πw2, πs1, πs2 ≤ 1.

(3.2)

All the parameters and the state variables in model (3.2) are
assumed to be positive and they are defined in Table 1. In
addition, we assumed that the above two cost are nonlinear
and follow a quadratic form. The coefficients, A and B are
balancing cost factors [32]. Therefore, we seek to find from
our objective function, an optimal control pair, u∗1 and u∗2,
such that

T
(
u∗1, u

∗
2
)

= minT
(
u∗1, u

∗
2
)
∈ Ω,

where Ω = {(u1, u2) ∈ {L′(0,U)}2|ai ≤ ui ≤ bi} and ai, bi,
i = 1, 2, are fixed non-negative constants.

The necessary conditions that the optimal control pair, u∗1
and u∗2 must satisfy is obtained from Pontryagin’s Maximum
Principle [33].

By constructing Hamiltonian function and adjoint
functions, λ1, λ2, λ3, λ4, λ5, λ6, λ7 as

L = C f 1 +C f 2 +Pw1 +Pw2 +Ps1 +Ps2−F + A
2 u2

1(t)+ B
2 u2

2(t)

+λ1

(
r
(
C f 1,C f 2

)
F − r0F2

K(Pw1,Pw2,Ps1,Ps2)

)
+λ2 ((1 − u1(t)) Q1 − δw1Pw1 − αw1Pw1F

+πw1v1FC f 1 − φw1Pw1 + ξs1Ps1 − θw1Pw1

)
+λ3 ((1 − u1(t)) Q2 − δw2Pw2 − αw2Pw2F

+πw2v2FC f 2 − φw2Pw2 + ξs2Ps2 + θw1Pw1

)
+λ4 ((1 − u1(t)) Q3 − δs1Ps1 − αs1Ps1F

+πs1v1FC f 1 − ξs1Ps1 − θs1Ps1 + φw1Pw1

)
+λ5 ((1 − u1(t)) Q4 − δs2Ps2 − αs2Ps2F

−ξs2Ps2 + πs2v2FC f 2 + θs1Ps1 + φw2Pw2

)
+λ6

(
−β1C f 1 + (1 − u2(t))αw1Pw1 F

+ (1 − u2(t))αs1Ps1F − v1FC f 1

)
+λ7

(
−β2C f 2 + (1 − u2(t))αw2Pw2F

+ (1 − u2(t))αs2Ps2F − v2FC f 2

)
,

The partial derivative of the Lagragian function with
respect to each variable of the compartment gives the adjoint
functions λi for i = 1, 2, ..., 7 corresponding to the system
(4.2) with functions

r(C f 1,C f 2) =r0 − (r1C f 6 + r2C f 7),

K(Pw1, Pw2, Ps1, Ps2) =K0 − (
b11Pw1

1 + b12Pw2
+

b21Pw2

1 + b22Pw2

+
b31Ps1

1 + b32Ps2
+

b41Ps2

1 + b42Ps2
),

We therefore state the following theorem:

Theorem 3.1. There exists an optimal control

pair, u∗1 and u∗2 and corresponding solution,

F∗, P∗w1, P
∗
w2, P

∗
s1, P

∗
s2,C

∗
f 1,C

∗
f 2, that minimizes T (u1, u2)

over Ω. Therefore, there exists adjoint functions,

λ1, λ2, λ3, λ4, λ5, λ6, λ7, such that
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λ̇1 = −
∂L
∂F

=1 − λ1(r0 − (r1C∗f 1 + r2C∗f 2)

+
2r0F∗

(K0 − ( b11P∗w1
1+b12P∗w1

+
b21P∗w2

1+b22P∗w2
+

b31P∗s1
1+b32P∗s1

+
b41P∗s2

1+b42P∗s2
))

− λ2

(
πw1v1C∗f 1 − αw1P∗w1

)
− λ3

(
πw2v2C∗f 2 − αw2P∗w2

)
− λ4

(
πs1v1C∗f 1 − αs1P∗s1

)
− λ5

(
πs2v2C∗f 2 − αs2P∗s2

)
− λ6

((
1 − u∗2(t)

)
αw1P∗w1 +

(
1 − u∗2(t)

)
αs1P∗s1 − v1C∗f 1

)
− λ7

((
1 − u∗2(t)

)
αw2P∗w2 +

(
1 − u∗2(t)

)
αs2P∗s2 − v2C∗f 2

)
,

(3.3a)

λ̇2 = −
∂L
∂Pw1

= − 1 − λ2 (−δw1 − αw1F∗ − φw1 − θw1)

− λ3θw1 − λ4φw1 − λ6
(
1 − u∗2(t)

)
αw1F∗

− λ1


F∗2( b11b12P∗w1

(1+b12P∗w1)2 −
b11

1+b12P∗w1
)r0(

K0 −

(
b11P∗w1

1+b12P∗w1
+

b21P∗w2
1+b22P∗w2

+
b31P∗s1

1+b32P∗s1
+

b41P∗s2
1+b42P∗s2

))2

 ,
(3.3b)

λ̇3 = −
∂L
∂Pw2

= − 1 − λ3 (−δw2 − αw2F∗ − φw2)

− λ5φw2 − λ7
(
1 − u∗2(t)

)
αw2F∗

− λ1


F∗2( b21b22P∗w2

(1+b22P∗w2)2 −
b21

1+b22P∗w2
)r0(

K0 −

(
b11P∗w1

1+b12P∗w1
+

b21P∗w2
1+b22P∗w2

+
b31P∗s1

1+b32P∗s1
+

b41P∗s2
1+b42P∗s2

))2

 ,
(3.3c)

λ̇4 = −
∂L
∂Ps1

= − 1 − λ2ξs1 − λ4 (−δs1 − αs1F∗ − ξs1 − θs1)

− λ5θs1 − λ6
(
1 − u∗2(t)

)
αs1F∗

− λ1


F∗2( b31b32P∗s1

(1+b22P∗s1)2 −
b31

1+b32P∗s1
)r0(

K0 −

(
b11P∗w1

1+b12P∗w1
+

b21P∗w2
1+b22P∗w2

+
b31P∗s1

1+b32P∗s1
+

b41P∗s2
1+b42P∗s2

))2

 ,
(3.3d)

λ̇5 = −
∂L
∂Ps2

= − 1 − λ3 (ξs2) − λ5 (−δs2 − αs2F∗ − ξs2)

− λ7
(
1 − u∗2(t)

)
αs2F∗

− λ1


F∗2( b41b42P∗s2

(1+b42P∗s2)2 −
b41

1+b42P∗s2
)r0(

K0 −

(
b11P∗w1

1+b12P∗w1
+

b21P∗w2
1+b22P∗w2

+
b31P∗s1

1+b32P∗s1
+

b41P∗s2
1+b42P∗s2

))2

 ,
(3.3e)

λ̇6 = −
∂L
∂C f 1

= − 1 − λ1r1F∗ − λ2πw1v1F∗ − λ4πs1v1F∗

− λ6 (−β1 − v1F∗) ,

(3.3f)

λ̇7 = −
∂L
∂C f 2

= − 1 − λ1r2F∗ − λ3πw2v2F∗

− λ5πs2v2F∗ − λ7 (−β2 − v2F∗) ,

(3.3g)

with transversality conditions

λi (U) = 0, i = 1, 2, ..., 7, (3.4)

The following characterizations implies:

u∗1 (t) =min
(
max

(
a1,

1
A

(λ2Q1 + λ3Q2 + λ4Q3 + λ5Q4)
)
, b1

)
,

u∗2 (t) =min
(
max

(
a2,

1
B

[
λ6(αw1P∗w1 + αs1P∗s1)

+λ7(αw2P∗w2 + αs2P∗s2)
]

F∗
)
, b2

)
,

(3.5)

Proof When the Pontryagin’s Maximum Principle is
applied, we have that

λ̇1 = −
∂L
∂F

, λ1 (U) = 0, λ̇2 = −
∂L
∂Pw1

, λ2 (U) = 0,

λ̇3 = −
∂L
∂Pw2

, λ3 (U) = 0, λ̇4 = −
∂L
∂Ps1

, λ4 (U) = 0,

λ̇5 = −
∂L
∂Ps2

, λ5 (U) = 0, λ̇6 = −
∂L
∂C f 1

, λ6 (U) = 0,

λ̇7 = −
∂L
∂C f 2

, λ7 (U) = 0,

(3.6)

We evaluate the optimal control pair, u1 and u2 with
corresponding states, we then obtain the results in the stated
adjoint system (3.3a − 3.3g) and (3.4). We consider the
optimality conditions,

∂L
∂u1

= 0,
∂L
∂u2

= 0,
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and solving for u∗1, u∗2, subject to the state variables,the
characterizations in (3.5) can be obtained, taking into
account the bounds on the control.

Based on this, we have

∂L
∂u1

= Au1 − λ2Q1 − λ3Q2 − λ4Q3 − λ5Q4

=⇒ u∗1 (t) =
1
A

(λ2Q1 + λ3Q2 + λ4Q3 + λ5Q4) ,

on the set {t|0 < u∗1(t) < 1}.
To obtain the optimal control, u∗2(t), we have

∂L
∂u2

=Bu2 − [λ6(αw1Pw1 + αs1Ps1)

+λ7(αw2Pw2 + αs2Ps2)] F,

=⇒ u∗2 (t) =
1
B

[
λ6(αw1P∗w1 + αs1P∗s1)

+λ7(αw2P∗w2 + αs2P∗s2)
]

F∗,

on the set {t|0 < u∗2(t) < 1}.
We observe that the optimality conditions (taking

derivatives of the Hamiltonian function, L with respect to
control variables) only hold in the interior of the control set.
Hence the proof.

4. Numerical simulations

In this section, we carried out the simulation of the
optimal control version of system (2.1). The optimality
of the two control strategy is obtained by analyzing
the optimality system which consist of seven ordinary
differential equations from the state and adjoint equations.
The optimality system is analyzed with the aid of an iterative
method and a Runge-Kutta fourth order scheme. The state
system, with an intial values, is analyzed forward in time,
with a guess for the controls over the simulated time while
the adjoint equations with values at final time t f is analyzed
backward in time using the current iteration values of the
state equations. Then the controls are updated by using
convex combination of the previous controls and the value
from the characterization. The implicit functions in model
(2.1)are given as:

r(C f 1,C f 2) =r0 − (r1C f 6 + r2C f 7),

K(Pw1, Pw2, Ps1, Ps2) =K0 − (
b11Pw1

1 + b12Pw2
+

b21Pw2

1 + b22Pw2

+
b31Ps1

1 + b32Ps2
+

b41Ps2

1 + b42Ps2
),

with numerical values:
b11 = 0.02, b12 = 1, b21 = 0.01, b22 = 2, b31 = 0.005,
b32 = 4, b41 = 0.0025, b42 = 8, r1 = 0.0009, r2 = 0.0006.

In this simulation, we make use of the parameter values
in Table 3.3. For the simulation, the weights parameters
are chosen to be A = 0.2; B = 0.3. We chose
our initial conditions of the model state variables as:
F(0) = 100; Pw1(0) = 1.3675; Pw2(0) = 15.6841; Ps1(0) =

1.2356; ps2(0) = 12.6578; C f 1(0) = 0.0817; C f 2(0) =

1.4550.

We also vary some parameters that will inform important
decision about the control strategies we setup in our model
system (4.1). The parameters to vary include:
θw1, θs1, φw1, φw2, ξw1, ξw2, πw1, πw2,Q1,Q2,Q3,Q4, δw1, v1.
These parameter symbols have been defined previously in
Table 1.

The parameters values of model (2.1) are given in Table
2.

We shall make use of the parameter values in Table 2
for all the simulations. The unit of the emission rate, Q is
measure in moles/Litre and K0 is measure in metre square
(m2).

5. Results

The increase of pesticides emission rate causes the
aquatic species population to decrease. The aquatic initial
population was varied from 500 to 3000. It was observed
that the aquatic population achieved equilibrium at a higher
population level than the initial carrying capacity in the
presence of dual-level pesticides emission rates. Varying the
initial value of the aquatic species, the aquatic population
still achieved equilibrium at a higher population level than
the initial carrying capacity in the presence of higher dual-
level pesticides emission rates.

Interestingly, we saw from the foregoing that for a high
value of the θw1, which allows for more bio-degradation
of pesticide 2, control 1 had to be sustained much longer
than control 2 unlike for low θw1 value. However, we
observed that for high value of θs1, at the initial stage,
control 2 was needed for effective clear up of the aquatic
environment, before control 1 now gradually aided clean up
of the environment. In summary, control 1 is needed for high
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θw1 than for high θs1 whereas control 2 is needed for high θs1

than for high θw1.

We found that for a high rate of φw1 which allows the
bio-degradation of pesticide 1 to settled down to sediment,
control 1 was required for a long period of time while control
2 later kicked in. Control 2 was needed at a high rate of φw2

that implies the settled down of pesticide 2 to sediment than
control 1. In summary, control 1 is needed for high value of
φw1 than for high value of φw2 whereas control 2 is needed
for high value of φw2 than for high value of φw1.

In particular, we saw from the simulations that for a
high value of ξw1, which allows for more bio-degradation
of pesticide 2 in sediment to water, control 2 had to be
sustained much longer than control 1 unlike for low ξw1

value. Moreover, we also observed that for high value of
ξs1, at the initial stage, control 2 was needed for effective
cleanup of the aquatic environment, before control 1 now
gradually aided the implementation of the formulated policy.
In summary, control 2 is needed for high value of ξw1 than
for high value of ξs1 whereas control 1 is needed for high
value of ξs1 than for high value of ξw1.

We observed from the simulations that for a high value of
πw1, which allows for more decayed of dead aquatic species
adding more concentration to pesticide 1 in water, control 2
had to be sustained much longer than control 1 unlike for low
πw1 value. In addition, we also observed that for high value
of πs1, at the initial stage, control 1 was needed for effective
policy implementation, before control 2 now gradually aided
cleanup of the environment. In summary, control 2 is needed
for high πw1 than for high πs1 whereas control 1 is needed for
high πs1 than for high πw1.

Specifically, we found that for a high value of Q1, which
allows for more pesticide 1 into water body, control 1 had to
be sustained much longer than control 2 unlike for low Q1

value. More so, we also observed that for high values of Q2,
at the initial stage, control 2 was needed for effective clear up
of the aquatic environment, before control 1 later aided clean
up of the aquatic environment. In summary, control 1 is
needed for high Q1 and high Q2 whereas control 2 is needed
for gradual aiding of clean up of the aquatic environment.

We also found out that for a high value of Q3, which
allows for more pesticide 1 into sediment, control 1 had to
be sustained much longer than control 2 unlike for low Q3

value. More so, we also observed that for high values of
Q4, at the initial stage, control 2 was needed for effective
clean up of the aquatic environment, before control 1 later
aided clean up of the aquatic environment. In summary,
control 1 is needed for high Q3 and high Q4 whereas control
2 is needed for gradual aiding of clean up of the aquatic
environment.

More importantly, we observed that for a high value of
δw1, which allows for more natural depletion rate of pesticide
1 in water body, control 2 was needed much longer than
control 1 unlike for low δw1 value. Finally, we observed
that for a high value of v1, which allows for more natural
depletion of the uptake concentration 1, control 1 is needed
but control 2 is required for much longer.

5.1. Summary of the results

Control 1 is needed more when:

1. There is a bio-degradation of pesticide 1 in water to
pesticide 2 in water.

2. Pesticide 1 in water settled down to sediment.

3. The dead aquatic species decayed to add extra
concentration to pesticide 2 in water.

4. There are emission rates of pesticides 1 and 2 in water
and the pesticides 1 and 2 in sediment.

Control 2 is needed more when:

1. There is a bio-degradation of pesticide 1 in sediment to
pesticide 2 in sediment.

2. Pesticide 2 in water settled down to sediment.

3. pesticide 1 in sediment biodegraded to water body.

4. pesticide 2 in sediment biodegraded to water body.

5. The dead aquatic species decayed to add more
concentration to pesticide 1 in water.

6. There is a natural depletion rate of pesticide 1 in water.

7. There is a natural depletion rate of the uptake
concentration 1.
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6. Discussion

An optimal control analysis of a mathematical model
for assessing the impact of dual-level toxicity on
aquatic biospecies was designed for minimizing dual-
level biodegradable pesticides toxicity effects to aquatic
populations where two pesticides are present in both water
body and sediment and one of the pesticides is capable of
biodegrading into the other pesticide but not vice versa is
examined in this study.

The goal of the model is to minimize the level of
concentration of pesticides that are entering into the aquatic
species’ environment. Two u1 and u2 that represent control
policy that will prevents pesticides from finding their ways
into the aquatic species population’s environment and the
case finding that reduces the concentration of pesticides
that had already found their ways and those that have
entered the environment as a result of weak control policy
respectively was considered. A detailed qualitative analysis
was carried out on the model equations and the control
functions equations were obtained. A step by step method
of solving the optimal control model numerically algorithm
was designed and implemented with the use of MATLAB
Version 7.5 using ode45 function. In particular, a Forward-
Backward Sweep method using the fourth-order Runge-
Kutta method was adopted. The objective function (3.1) and
the system (3.2) converge as the two control functions, u1(t)
and u2(t) approach u∗1(t) and u∗2(t) respectively.

One of the interesting results showed that the increase
in populations of the aquatic species lead to a decrease
of pesticides concentration. This result is applicable
to a situation when the pesticides concentration in the
aquatic species environment become difficult to remove,
then the manual control measure is to increase the aquatic
species populations so that the pesticides concentration
can be minimized. In the model assumption, it was
assumed that some aquatic species populations that died
as a result of up-taking pesticides concentration decayed to
add more concentration to the aquatic species populations’
environment. But in our simulation, a significant difference
was not observed at different values of the decay parameter
values.

Finally, we observed the simulation of the varying

degradation parameters values of the model equation and
we found out that degradation of pesticides concentration
causes pesticides concentration to vary significantly between
the water body and the sediment region.

7. Conclusions

The optimal control model puts into consideration the
control of pesticides concentration in the aquatic species
population’s environment was thoroughly formulated and
analyzed for possible ecological advice on how pesticides or
toxicants risk can be minimized in an ecological setting. The
optimal control model was qualitatively analyzed and the
two control functions equations were obtained. Numerical
simulation was carried out on the optimal control model
and the control functions and the pesticides concentration
variable were varied at different values. In our simulations, it
was found that some biodegradable parameters of the model
had significant effects on the aquatic population while few
of them show less effects on the aquatic population. On
the whole, the result showed that pesticides concentration
entering the environment and those that are already in the
environment can be control if the law enforcement agencies
can implement and monitor the control policies proposed in
this work.
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Table 1. Description of the model parameters.

Parameter Interpretation

δw1 Natural depletion rate coefficient of Pw1

δw2 Natural depletion rate coefficient of Pw2

δs1 Natural depletion rate coefficient of Ps1

δs2 Natural depletion rate coefficient of Ps2

αw1 Rate of uptake of Pw1 by the aquatic species
αw2 Rate of uptake of Pw2 by the aquatic species
αs1 Rate of uptake of Ps1 by the aquatic species
αs2 Rate of uptake of Ps2 by the aquatic species
Q1 Emission rate of pesticide 1 in water
Q2 Emission rate of pesticide 2 in water
Q3 Emission rate of pesticide 1 in sediment
Q4 Emission rate of pesticide 2 in sediment
v1 Depletion rate coefficient of C f 1 due to

decay of some members of F

v2 Depletion rate coefficient of C f 2 due to
decay of some members of F

πw1 Fraction of C f 1 that re-enter the environment
as a result of Pw1 uptake

πw2 Fraction of C f 2 that re-enter the environment
as a result of Pw2 uptake

πs1 Fraction of C f 1 that re-enter the environment
as a result of Ps1 uptake

πs2 Fraction of C f 2 that re-enter the environment
as a result of Ps2 uptake

β1 Natural depletion rate coefficient of C f 1

β2 Natural depletion rate coefficient of C f 2

θw1 Degradation coefficient of Pw1 to Pw2

θs1 Degradation coefficient of Ps1 to Ps2

ξs1 Rate at which Ps1 enters the water body, from
the sediments due to disturbance on the water
body

ξs2 Rate at which Ps2 enters the water body,
from the sediments due to disturbance on the
water body

φw1 Rate at which Pw1 settle down to sediments
φw2 Rate at which Pw2 settle down to sediments

Table 2. Description of the model parameters’
values

Parameter Value Source

Q1,Q2,Q3,Q4 0.05, 0.02, 0.05, 0.08 Assumed
δw1 0.08 [6]
δw2 0.06 [26]
δs1 0.08 [19]
δs2 0.06 [19]
αw1 0.0002 [26]
αw2 0.0002 [6]
αs1 0.0001 [19]
αs2 0.0001 [19]
V1 0.0002 [6]
V2 0.001 [19]
πw1 0.0003 [26]
πw2 0.0002 [19]
πs1 0.0001 [19]
πs2 0.001 [19]
β1 0.08 [26]
β2 0.07 [19]
θw1 0.023 [19]
θs1 0.020 [19]
ξs1 0.002 [19]
ξs2 0.006 [19]
φw1 0.0002 [19]
φw2 0.0001 [19]
r0 0.4, 0.9 [19]
K0 1000 [19]

Figure 1. Growth of aquatic population over time.
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Figure 2. Spiral sink phase plots of the aquatic population with concentrations uptake at different initial values
of aquatic population.

Figure 3. Spiral sink phase plots of the aquatic population with concentrations uptake at different initial values
of aquatic population.
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Figure 4. Varying values of degradation
coefficient parameter of Pw1 to Pw2. Figure 5. Varying values of degradation

coefficient parameter of Ps1 to Ps2.
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Figure 6. Varying value of biodegradable
parameter rate at which Pw1 settle down to
sediments.

Figure 7. Varying value of biodegradable
parameter rate at which Pw2 settle down to
sediments.
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Figure 8. Varying value of biodegradable
parameter rate at which Ps1 enters the water body
from the sediments.

Figure 9. Varying value of biodegradable
parameter rate at which Ps2 enters the water body
from the sediments.
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Figure 10. Plot of varying value of parameter rate
πw1.

Figure 11. Plot of varying value of parameter rate
πw2.
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Figure 12. Plot of varying parameter value of
emission rate Q1 of pesticide 1 in water.

Figure 13. Plot of varying parameter value of
emission rate Q2 of pesticide 2 in water.
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Figure 14. Plot of varying parameter value of
emission rate Q3 of pesticide 1 in sediment.

Figure 15. Plot of varying parameter value of
emission rate Q4 of pesticide 2 in sediment.
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Figure 16. Plot of varying parameter value of the
natural depletion rate of pesticide 1 in water, δw1.

Figure 17. Plot of varying parameter value of the
natural depletion rate (v1) coefficient C f 1 due to
decay of aquatic species.
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