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Abstract: The paper deals with some control problems related to the Kolmogorov system for two interacting populations. For the first
problem, the control acts in time over the per capita growth rates of the two populations in order for the ratio between their sizes to
follow a prescribed evolution. For the second problem, the control is a constant which adjusts the per capita growth rate of a single
population so that it reaches the desired size at a certain time. For the third problem the control acts on the growth rate of one of the
populations in order that the total population to reach a prescribed level. The solution of the three problems is done within an abstract
scheme, by using operator-based techniques. Some examples come to illustrate the results obtained. One refers to a system that models
leukemia, and another to the SIR model with vaccination.
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1. Introduction

The control of differential equations is the subject of
numerous studies in the literature. Generally speaking,
it consists in determining some of the parameters of
the equation or system of equations so that the solution
satisfies certain conditions, other than those imposed by
the well-posed problems, such as the initial or boundary
conditions [1].

In [2] we have introduced a controllability principle for a
general control problem related to operator equations, in the
framework of fixed point theory. We reproduce it here for
the convenience of the reader. It consists in finding (w, λ) , a
solution to the following systemw = H0 (w, λ) ,

w ∈ W, λ ∈ Λ, (w, λ) ∈ D,
(1.1)

associated to the fixed point equation w = H0 (w, λ) . Here
w is the state variable, λ is the control variable, W is the

domain of the states, Λ is the domain of controls andD is the
controllability domain, usually given by means of a certain
condition/property imposed to w, or to both w and λ. Notice
the very general formulation of the control problem, in terms
of sets, where W,Λ and D ⊂ W × Λ are not necessarily
structured sets and H0 is any mapping from W × Λ to W.

In this context, we say that the equation w = H0 (w, λ)

is controllable in W × Λ with respect to D, providing that
problem (1.1) has a solution (w, λ). If the solution is unique
we say that the equation is uniquely controllable.

Let Σ be the set of all possible solutions (w, λ) of the
fixed point equation and Σ1 be the set of all w that are first
components of some solutions of the fixed point equation,
that is

Σ = {(w, λ) ∈ W × Λ : w = H0 (w, λ)} ,

Σ1 = {w ∈ W : there is λ ∈ Λ with (w, λ) ∈ Σ} .

Clearly, the set of all solutions of the control problem (1.1)
is given by Σ ∩D.
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Consider the set-valued map F0 : Σ1 → Λ defined as

F0 (w) = {λ ∈ Λ : (w, λ) ∈ Σ ∩D} .

Roughly speaking, F0 gives the ‘expression’ of the control
variable in terms of the state variable.

We have the following general principle for solving the
control problem (1.1).

Proposition 1.1. If for some extension F : W → Λ of F0

from Σ1 to W, there exists a fixed point w ∈ W of the set-

valued map

H (w) := H0 (w, F (w)) ,

i.e.,

w = H0 (w, λ) , (1.2)

for some λ ∈ F (w) , then the couple (w, λ) is a solution of

the control problem (1.1).

Proof. Clearly (w, λ) ∈ Σ. Hence w ∈ Σ1 and so F (w) =

F0 (w) . Then λ ∈ F0 (w) and from the definition of F0, it
follows that (w, λ) ∈ D. Therefore (w, λ) solves (1.1). �

The mappings F0 and F can in particular be single-valued
maps and in many cases the extension F can be done using
the expression of F0.

From a theoretical perspective, the method leading to
fixed point equations with composed operators is suitable
to be related to advanced research in fixed point theory
for single-valued and multi-valued operators, especially for
operators of the decomposable type as considered in [3].

The applicability of this general principle is tested in [2]
on a system modeling cell dynamics related to leukemia and
in [4] on a control problem for the Lotka-Volterra predator-
prey system (see [5] for potential new applications). Also
in [4] there are presented two problems apparently without
a control but which can be treated as control problems
accordingly to the above principle. The first is the Stokes
system for which the control is given by the pressure
and comes from the necessity to adjust the flow rate of
the incompressible fluid through the porous medium, and
the second one is a boundary value problem where the
unknown value of the solution at some point takes over the
function of a control variable in order for the solution to
satisfy a boundary condition. It must be said that the fixed

point method is known in the literature where it is applied
to specific control problems related to various differential
equations (see, e.g., [6–11], the monograph [12] and the
references therein).

The aim of this paper is to present some control problems
related to the Kolmogorov system [13] that we investigate
using the general operator-based technique from above.
Introduced as a generalization of the well-known Volterra’s
model in population dynamics (see [14]), Kolmogorov’s
system takes into account general per capita rates of two
interacting populations and reads as follows: x′ = x f (x, y) ,

y′ = yg (x, y) .

Such models also come from other fields, for example
from economics, chemistry, biology and medicine, when the
variables x and y can be attributed the meaning of density
of some ‘quantities’ (species, populations, economic units,
chemicals, medicines etc.) and when growth rates can be
best understood per capita (x′/x, y′/y) , or as logarithmic

growth rates ((ln x)′ = x′/x, (ln y)′ = y′/y).
Naturally, when studying the interaction between two

given quantities, the two rates f and g must be made explicit
in terms of some parameters. Some of these parameters are
specific to the two quantities and do not support changes,
others can be influenced, even added, in order to control the
evolution and achieve a desired balance.

2. Preliminaries

This section is devoted to a brief presentation of some
notions and results that will be used in the next section.
It is intended for those less familiar with the theoretical
framework in which we place ourselves.

We say that an integral equation is of Volterra type if the
involved integral is on a variable interval as is the case of an
equation of the form

x (t) = ϕ (t) +

∫ t

a
ψ (t, s, x (s)) ds, t ∈ [a, b] (2.1)

and that it is of Fredholm type if the involved integral is given
on a fixed interval, as in the equation

x (t) = ϕ (t) +

∫ b

a
ψ (t, s, x (s)) ds, t ∈ [a, b] .

Mathematical Modelling and Control Volume 2, Issue 3, 90–99
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In case that the equation involves both types of integral, we
say that it is of Volterra-Fredholm type.

When dealing with Volterra type equations it is convenient
that instead of the max-norm on the space C [a, b] given
by ‖x‖ = maxt∈[a,b] |x (t)| , to consider an equivalent norm
defined by

‖x‖θ = max
t∈[a,b]

(
|x (t)| e−θ(t−a)

)
,

for some suitable number θ > 0. Such a norm is called
a Bielecki norm and it is equivalent to the max-norm, as
follows from the inequalities

e−θ(b−a)
‖x‖ ≤ ‖x‖θ ≤ ‖x‖ (x ∈ C [a, b]) .

The trick of using Bielecki norms consists in the possibility
to choose suitable large enough θ in order to make constants
smaller, for example the Lipschitz constant of ψ to guarantee
the contraction property of the integral operator N :
C [a, b] → C [a, b] given by the right side of equation (2.1).
Indeed, if ψ is such that

|ψ (t, s, x) − ψ (t, s, y)| ≤ L |x − y| for all x, y ∈ R; t, s ∈ [a, b]

and some constant L > 0, then for any functions x, y ∈

C [a, b] , we have

|N (x) (t) − N (y) (t)| ≤
∫ t

a
|ψ (t, s, x (s)) − ψ (t, s, y (s))| ds

≤ L
∫ t

a
|x (s) − y (s)| ds.

Furthermore∫ t

a
|x (s) − y (s)| ds =

∫ t

a
|x (s) − y (s)| e−θ(s−a)eθ(s−a)ds

≤ ‖x − y‖θ

∫ t

a
eθ(s−a)ds

=
1
θ
‖x − y‖θ

(
eθ(t−a)

− 1
)

≤
1
θ
‖x − y‖θ eθ(t−a).

It follows that

|N (x) (t) − N (y) (t)| ≤
L
θ
‖x − y‖θ eθ(t−a).

Multiplying by e−θ(t−a) and taking the maximum for t ∈ [a, b]
yields

‖N (x) − N (y)‖θ ≤
L
θ
‖x − y‖θ .

Thus, choosing any θ > L we have that N is a contraction
with respect to the Bielecki norm ‖·‖θ .

However, it can be observed that the above reasoning
does not work if instead of the integral

∫ t
a one considers

the integral
∫ b

a . Thus we may conclude that the trick based
on Bielecki norms do not apply in case of Fredholm and
Volterra-Fredholm integral equations.

We conclude these preliminaries by recalling two basic
fixed point theorems which are used in this paper (see, e.g.,
[15] and [16]).

Theorem 2.1 (Banach contraction principle). Let (X, d) be

a complete metric space and N : X → X be a contraction.

Then N has a unique fixed point x, and Nk (y)→ x as k → ∞

for each y ∈ X.

Theorem 2.2 (Schauder fixed point theorem). Let X be a

Banach space, D ⊂ X a nonempty convex bounded closed

set and N : D → D be a completely continuous operator.

Then N has at least one fixed point.

3. Main results

3.1. First control problem

Let us consider the following control problem for the
general Kolmogorov system under initial conditions

x′(t) = x(t) ( f (x, y) − λ(t)) ,

y′(t) = y(t) (g(x, y) − cλ(t)) ,

x(0) = x0, y(0) = y0,

(3.1)

where λ(t) is the control function and c is a positive
correction factor, c , 1. We want to find a positive solution
(x, y) so that

y(t)
x(t)

= r(t), (3.2)

where r is a given positive continuous function on some
interval [0,T ] .

Thus the problem consists in finding how to change the
per capita growth rates for the ratio of the two species to
follow a desired evolution giving by r (t) on a fixed time
interval [0,T ] . The correction factor c expresses the fact
that the effect of the control intervention on the two rates
is manifested differently in the two species.

We have the following result.
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Theorem 3.1. Assume that f , g ∈ C1
(
R2

+

)
, r ∈ C1 [0,T ] ,

r > 0 on [0,T ] and that the functions

x · fx(x, y), y · fy(x, y), x · gx(x, y), y · gy(x, y) (3.3)

are bounded on R2
+. Then the control problem (3.1) has a

unique solution (x, y, λ) with x, y > 0.

Proof. We look for a positive solution (x, y) , so we may take
them under the form

x = eu, y = ev.

Then the controllability condition (3.2) becomes

v(t) − u(t) = ln r(t) (3.4)

and system (3.1) reduces to
u′(t) = f (eu(t), ev(t)) − λ(t),

v′(t) = g(eu(t), ev(t)) − cλ(t),

u(0) = u0, v(0) = v0,

where u0 = ln x0, v0 = ln y0. The problem is now equivalent
to the integral system u(t) = u0 +

∫ t
0 f (eu(s), ev(s))ds −

∫ t
0 λ(s)ds,

v(t) = v0 +
∫ t

0 g(eu(s), ev(s))ds − c
∫ t

0 λ(s)ds.
(3.5)

Replacing in the controllability condition (3.4) yields the
expression on

∫ t
0 λ (s) ds, namely∫ t

0
λ(s)ds =

u0 − v0 + ln r (t)
1 − c

(3.6)

+
1

1 − c

∫ t

0

(
f (eu(s), ev(s)) − g(eu(s), ev(s))

)
ds

which by differentiation gives the form of the control
function in terms of the state variables

λ(t) =
r′(t)

(1 − c)r(t)
+

1
1 − c

(
f (eu(t), ev(t)) − g(eu(t), ev(t))

)
.

(3.7)
Using (3.6) in (3.5) we obtain the fixed point equations

u (t) =
v0 − cu0 − ln r(t)

1 − c

+
1

1 − c

∫ t

0
(−c f (eu(s), ev(s)) + g(eu(s), ev(s)))ds,

v (t) =
v0 − cu0 − c ln r(t)

1 − c

+
1

1 − c

∫ t

0
(−c f (eu(s), ev(s)) + g(eu(s), ev(s)))ds.

Consider the operators A and B given by

A(u, v)(t) =
v0 − cu0 − ln r(t)

1 − c
(3.8)

+
1

1 − c

∫ t

0
(−c f (eu(s), ev(s)) + g(eu(s), ev(s)))ds,

B(u, v)(t) =
v0 − cu0 − c ln r(t)

1 − c

+
1

1 − c

∫ t

0
(−c f (eu(s), ev(s)) + g(eu(s), ev(s)))ds.

We apply Banach’s fixed point theorem to the operator
H = (A, B) on the space C

(
[0,T ];R2

)
endowed with a

suitable Bielecki norm. This is possible since the integral
equations are of Volterra type and the functions f (eu, ev) and
g(eu, ev) are Lipschitz continuous on the whole space R2.

Indeed, their partial derivatives are

∂ f (eu, ev)
∂u

=
∂ f (eu, ev)

∂x
· eu,

∂ f (eu, ev)
∂v

=
∂ f (eu, ev)

∂y
· ev,

and the similar ones for g, and they are bounded based on
our assumption on functions (3.3).

We now show that the operators A and B are Lipschitz
continuous with respect to a suitable Bielecki norm so that
H = (A, B) is a contraction. Let u, v, u, v ∈ C [0,T ] be
arbitrary. We have

|A(u, v)(t) − A(ū, v̄)(t)| (3.9)

≤
c

|1 − c|

∫ t

0

∣∣∣∣ f (eu(s), ev(s)) − f
(
eu(s), ev(s)

)∣∣∣∣ ds

+
1
|1 − c|

∫ t

0

∣∣∣∣g(eu(s), ev(s)) − g
(
eu(s), ev(s)

)∣∣∣∣ ds.

If we denote by M a bound for the absolute value of
functions (3.3), then using Lagrange’s mean value theorem
we find∫ t

0

∣∣∣∣ f (eu(s), ev(s)) − f
(
eu(s), ev(s)

)∣∣∣∣ ds (3.10)

≤

∫ t

0

(∣∣∣∣ f (eu, ev) − f
(
eu, ev

)∣∣∣∣ +
∣∣∣∣ f (

eu, ev
)
− f

(
eu, ev

)∣∣∣∣) ds

≤ M
∫ t

0
(|u (s) − u (s)| + |v(s) − v̄(s)|) ds.

Now for a positive number θ we introduce the Bielecki norm
‖·‖θ on C [0,T ] given by

‖u‖θ = max
t∈[0,T ]

(
|u (t)| e−θt

)
,
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and a similar norm on C
(
[0,T ] ;R2

)
defined by

‖(u, v)‖θ = ‖u‖θ + ‖v‖θ .

Then ∫ t

0
(|u (s) − u (s)| + |v(s) − v̄(s)|) ds (3.11)

=

∫ t

0

(
|u (s) − u (s)| e−θseθs + |v(s) − v̄(s)| e−θseθs

)
ds

≤ (‖u − u‖θ + ‖v − v‖θ)
∫ t

0
eθsds

≤
1
θ

(‖u − u‖θ + ‖v − v‖θ) eθt

=
1
θ
‖(u, v) − (u, v)‖θ eθt. (3.12)

A similar estimate is valid for g.Now (3.9), (3.10) and (3.11)
give

|A(u, v)(t) − A(ū, v̄)(t)| ≤
M
θ

c + 1
|1 − c|

‖(u, v) − (u, v)‖θ eθt.

Dividing by eθt and taking the maximum for t ∈ [0,T ] gives

‖A(u, v) − A(ū, v̄)‖θ ≤
M
θ

c + 1
|1 − c|

‖(u, v) − (u, v)‖θ .

Similarly

‖B(u, v) − B(ū, v̄)‖θ ≤
M
θ

c + 1
|1 − c|

‖(u, v) − (u, v)‖θ .

Summing up we obtain

||H(u, v) − H(ū, v̄)||θ ≤
2M
θ

c + 1
|1 − c|

‖(u, v) − (u, v)‖θ . (3.13)

Hence choosing a large enough θ, namely θ > 2M(c+1)
|1−c| , the

operator H becomes a contraction on the space C
(
[0,T ];R2

)
endowed with the norm ‖·‖θ . The conclusion now follows
from Banach contraction theorem. �

If the hypothesis on the boundedness of functions (3.3) is
removed, we however have the following result.

Theorem 3.2. Assume that f , g ∈ C1
(
R2

+

)
, r ∈ C1 [0,T ] ,

r > 0 on [0,T ] and that the function

−
c

1 − c
f (x, y) +

1
1 − c

g (x, y) (3.14)

is bounded above on R2
+. Then the control problem (3.1) has

a unique solution (x, y, λ) with x, y > 0.

Proof. Step 1: Existence and uniqueness in a subset. We
shall use Banach contraction theorem, this time in a closed
subset of C

(
[0,T ];R2

)
, again with respect to a Bielecki

norm. As in the proof of the previous theorem, we have to
find a fixed point (u, v) of the operator H = (A, B) , where
A and B are given by (3.8). Let M0 be an upper bound
of function (3.14). Then there is a number ρ > 0 such
that for every u, v ∈ C [0,T ] and t ∈ [0,T ] , the following
inequalities hold:

A(u, v)(t) ≤
|v0 − cu0 − ln r(t)|

|1 − c|
+ M0T ≤ ρ, (3.15)

B(u, v)(t) ≤
|v0 − cu0 − c ln r(t)|

|1 − c|
+ M0T ≤ ρ.

Thus, denoting

Dρ :=
{
(u, v) ∈ C

(
[0,T ] ;R2

)
: u, v ≤ ρ on [0,T ]

}
,

we have H
(
Dρ

)
⊂ Dρ. Hence there is a chance to apply

Banach contraction theorem to the operator H on the
closed subset Dρ of C

(
[0,T ] ;R2

)
. It remains to guarantee

the contraction property for H. The functions (3.3) being
continuous they are bounded for x, y ∈ [0, eρ] . Let M be their
bound. Then, the estimation in (3.10) is valid for any couple
(u, v) ∈ Dρ and consequently contraction inequality (3.13)
can be obtained in the same way for a large enough θ. Thus,
with respect to the metric on Dρ induced by the norm ‖·‖θ
on C

(
[0,T ] ;R2

)
, the operator H is a contraction. Therefore

Banach contraction theorem applies and proves the existence
and uniqueness of the solution in Dρ. It remains to prove that
this solution does not depend on the choice of the bound ρ.

Step 2: Uniqueness. The above reasoning is valid for
any number ρ sufficiently large that inequalities (3.15) hold.
Thus according to the result at Step 1, the solution obtained
in Dρ̃ for any ρ̃ larger than ρ must coincide with the solution
obtained in Dρ. Thus the solution (u, v) is unique. �

3.2. Second control problem

We consider the problem of controllability of the
Kolmogorov system

x′(t) = x(t)[ f (x, y) − λ],

y′(t) = y(t) · g(x, y),

x(0) = x0, y(0) = y0,

(3.16)
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where λ is a constant. We want to find a solution so that
x(T ) = x1

Thus the problem is to change constantly the per capita

rate of only one of the two populations for it to reach a
desired threshold in a given time.

Theorem 3.3. Let f , g ∈ C
(
R2

+

)
.

(a) If f and g are bounded on R2
+, then for every T > 0, the

control problem has a solution (x, y, λ) with x, y > 0.

(b) If x0, y0, x1 ≥ 1, then for each ρ0 > max {x0, x1, y0} ,

there exists Tρ0 > 0 such that for any T ∈ (0,Tρ0 ], the

control problem has a solution (x, y, λ) with 0 < x, y ≤

ρ0.

Proof. Here again looking for positive solutions we let

x = eu, y = ev

and we denote u0 = u(0) = ln x(0), v0 = v(0) = ln y(0) and
u1 = ln x1. Making substitution and integration yields the
Volterra-type integral system u(t) = u0 +

∫ t
0 f (eu(s), ev(s))ds − λt,

v(t) = v0 +
∫ t

0 g(eu(s), ev(s))ds

and using the controllability condition x(T ) = x1 gives the
expression of the control parameter in terms of the state
variables,

λ =
1
T

(
u0 − u1 +

∫ T

0
f (eu(s), ev(s))ds

)
.

Thus we arrive to the Volterra-Fredholm type integral system
u (t) = u0 +

∫ t
0 f (eu(s), ev(s))ds

− t
T

(
u0 − u1 +

∫ T
0 f (eu(s), ev(s))ds

)
,

v(t) = v0 +
∫ t

0 g(eu(s), ev(s))ds,

which can be seen as a fixed point equation in C
(
[0,T ] ;R2

)
for the operator H = (A, B) , where

A (u, v) (t) =

(
1 −

t
T

)
u0

+
t
T

u1 +

(
1 −

t
T

) ∫ t

0
f (eu(s), ev(s))ds

−
t
T

∫ T

t
f (eu(s), ev(s))ds,

B (u, v) (t) = v0 +

∫ t

0
g(eu(s), ev(s))ds.

The system being of Volterra-Fredholm type, the Bielecki
technique of equivalent norms does not apply. Thus
in C [0,T ] , we are forced to use the max-norm ‖u‖ =

maxt∈[0,T ] |u (t)| .
In virtue of the Arzelà-Ascoli theorem, the operator H is

completely continuous.
(a) Let M > 0 be such that | f (x, y)| , |g (x, y)| ≤ M for all

x, y ∈ R+. Then using the fact that a convex combination
of any nonnegative numbers is less or equal than their
maximum, we obtain

‖A (u, v)‖ ≤ max {|u0| , |u1|} + T M,

‖B (u, v)‖ ≤ |v0| + T M.

Hence, if ρ := max {|u0| , |u1| , |v0|} + T M, and

Dρ :=
{
(u, v) ∈ C

(
[0,T ] : R2

+

)
: ‖u‖ , ‖v‖ ≤ ρ

}
,

then H
(
Dρ

)
⊂ Dρ and Schauder’s fixed point theorem

applies and gives the result.
(b) Let M > 0 be such that | f (x, y)| , |g (x, y)| ≤ M for

all x, y ∈
[
0, ρ0

]
and let ρ := ln ρ0. Obviously ρ > 0. The

invariance condition H
(
Dρ

)
⊂ Dρ still holds provided that

max {|u0| , |u1|} + T M ≤ ρ, |v0| + T M ≤ ρ,

that is max {|u0| , |u1| , |v0|} + T M ≤ ρ, which happens for

T ≤ Tρ0 :=
1
M

(ρ −max {|u0| , |u1| , |v0|}) .

The result follows again from Schauder’s fixed point
theorem. �

3.3. Third control problem

The problem consists in changing the growth rate (not
the per capita rate) of one of the two populations so that at
time T, the total population reaches a desired level γ. More
exactly we consider the problem

x′(t) = x(t) f (x(t), y(t)) − λ,
y′(t) = y(t)g(x(t), y(t)),
x(0) = x0, y(0) = y0,

x(T ) + y(T ) = γ.

(3.17)
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Theorem 3.4. Let ρ > max {|x0| , |y0| , |y0 − γ|} ; f , g ∈

C1
([
−ρ, ρ

]2
)

; Mρ a bound of |x f (x, y)| , |yg(x, y)| on[
−ρ, ρ

]2 ; and Mρ a bound of the absolute value of the

partial derivatives of the functions x f (x, y) , yg (x, y) on[
−ρ, ρ

]2 . If T is such that

T ≤
ρ −max {|x0| , |y0 − γ|}

2Mρ
, T ≤

ρ − |y0|

Mρ
, T <

1

3Mρ

,

(3.18)
then the control problem has a unique solution (x, y, λ) with

|x| , |y| ≤ ρ.

Proof. Integration leads to the integral system x(t) = x0 +
∫ t

0 x(s) f (x(s), y(s))ds − λt,

y(t) = y0 +
∫ t

0 y(s)g(x(s), y(s))ds.
(3.19)

Using the controllability condition we find the expression of
λ, namely

λ =
1
T

(x0 + y0 − γ) (3.20)

+
1
T

∫ T

0
(x (s) f (x (s) , y (s)) + y (s) g (x (s) , y (s))) ds.

Replacing λ by the expression given by (3.20) in (3.19)
we obtain a Volterra-Fredholm integral system which can
be seen as a fixed point equation in C

(
[0,T ] ;R2

)
for the

operator H = (A, B) , where

A (x, y) (t) =

(
1 −

t
T

)
x0 −

t
T

(y0 − γ)

+

(
1 −

t
T

) ∫ t

0
x(s) f (x(s), y(s))ds

−
t
T

∫ T

t
x(s) f (x(s), y(s))ds

−
t
T

∫ T

0
y(s)g(x(s), y(s))ds,

B (x, y) (t) = y0 +

∫ t

0
y(s)g(x(s), y(s))ds.

The system being of Volterra-Fredholm type, the Bielecki
technique of equivalent norms does not apply. Thus
in C [0,T ] , we are forced to use the max-norm ‖x‖ =

maxt∈[0,T ] |x (t)| and in C
(
[0,T ] ;R2

)
, the norm ‖(x, y)‖ =

‖x‖ + ‖y‖ .

We shall apply Banach contraction theorem on the set

Dρ :=
{
(x, y) ∈ C

(
[0,T ] ;R2

)
: ‖x‖ , ‖y‖ ≤ ρ

}
.

To this aim we have to guarantee (a) the invariance condition
H

(
Dρ

)
⊂ Dρ and (b) the contraction property of H in Dρ.

(a) For any (x, y) ∈ Dρ we have

|A (x, y) (t)| ≤ max {|x0| , |y0 − γ|} + 2T Mρ,

|B (x, y) (t)| ≤ |y0| + T Mρ.

Hence the condition H
(
Dρ

)
⊂ Dρ is satisfied provided that

max {|x0| , |y0 − γ|} + 2T Mρ ≤ ρ, |y0| + T Mρ ≤ ρ.

(b) For any (x, y) , (x, y) ∈ Dρ, using estimates of the
following type∫ t

0
|x(s) f (x(s), y(s)) − x (s) f (x (s) , y (s))| ds

≤

∫ t

0
|x(s) f (x(s), y(s)) − x (s) f (x (s) , y (s))| ds

+

∫ t

0
|x (s) f (x (s) , y (s)) − x (s) f (x (s) , y (s))| ds

≤ T Mρ (‖x − x‖ + ‖y − y‖) ,

we deduce that

‖A (x, y) − A (x, y)‖ ≤ 2T Mρ (‖x − x‖ + ‖y − y‖) ,

‖B (x, y) − B (x, y)‖ ≤ T Mρ (‖x − x‖ + ‖y − y‖) .

Hence

‖H (x, y) − H (x, y)‖ ≤ 3T Mρ ‖(x, y) − (x, y)‖ .

Thus H is a contraction on Dρ if 3T Mρ < 1.
Therefore Banach contraction theorem applies and gives

the result. �

4. Applications

4.1. Example 1

This example illustrates Theorem 3.1. Consider the
following self-limiting system

x′ =

(
a

1 + x2 + y2 − λ(t)
)

x,

y′ =

(
b

1 + x2 + y2 − λ(t)c
)

y,

under the control condition (3.2).

Mathematical Modelling and Control Volume 2, Issue 3, 90–99



97

Here

f (x, y) =
a

1 + x2 + y2 , g(x, y) =
b

1 + x2 + y2

and functions (3.3) are

x · fx(x, y) = −
2ax2(

1 + x2 + y2)2 ,

y · fy(x, y) = −
2ay2(

1 + x2 + y2)2 ,

x · gx(x, y) = −
2bx2(

1 + x2 + y2)2 ,

y · gy(x, y) = −
2by2(

1 + x2 + y2)2 .

Obviously their absolute values are bounded on R2
+ by 2 |a|

and 2 |b| , respectively.
From Theorem 3.1, it turns out that the system is uniquely

controllable. The expression of the control function λ (t) is
given by formula (3.7) in terms of the state variables.

4.2. Example 2

Consider the following control problem related to a
system modelling leukemia introduced in [17],

x′ =

(
a
(
1 −

gx + y
A

)
− λ(t)

)
x,

y′ =

(
b
(
1 −

x + y
B

)
− cλ(t)

)
y,

with 0 < a < b, 0 < c < 1, g ≥ 1 and A, B > 0, again under
the control condition (3.2) expressing the desired evolution
of the ratio between the density y (t) of leukemic cells and
the density x (t) of healthy cells over a period of time. The
problem is motivated by the need to develop a treatment
scheme for chronic leukemia patients.

Here

f (x, y) = a
(
1 −

gx + y
A

)
, g(x, y) = b

(
1 −

x + y
B

)
,

for which obviously, the boundedness condition on functions
(3.3) does not hold. However,

−c f (x, y) + g(x, y) = b − ac −
(

b
B
−

acg
A

)
x −

(
b
B
−

ac
A

)
y,

which is bounded above on R2
+ by b − ac, if

acg
A
≤

b
B
. (4.1)

Thus, according to Theorem 3.2, if condition (4.1) holds,
then the system is controllable. Solving numerically the
problem yields an approximation of the control function λ (t)

which can be put in connexion with the dose of medicine.

4.3. Example 3

We consider another example of Kolmogorov system,
namely the well-known SIR epidemiologic model

S ′ = −aS I,

I′ = aS I − bI,

R′ = bI.

Here S (t), I (t) and R (t) are the numbers of susceptible,
infectious and recovered/immunized individuals at time t,

respectively, in a closed population of size N. Hence S (t) +

I(t) + R(t) = N, which allows to reduce the study to the
bidimensional system S ′ = −aS I,

I′ = aS I − bI.

Let S 0, I0 and R0 = N − (S 0 + I0) be the initial values of the
three functions.

Introducing a constant vaccination rate λ, the system
becomes  S ′ = −aS I − λ,

I′ = aS I − bI.

The control problem consists in finding the vaccination rate
λ so that at time T, the size of immunized population is pN

for a target value p ∈ (0, 1) , that is

S (T ) + I (T ) = (1 − p) N.

This is a particular case of the general control problem
(3.17). Here ρ = N, γ = (1 − p) N, x = S , y = I, f (S , I) =

−aI and g (S , I) = aS − b. Simple calculation shows that
MN = MN = aN + b. Thus Theorem 3.4 guarantees that
the system is uniquely controllable in time T if T is small
enough in the sense of inequalities (3.18). However, if an
upper bound λ for the vaccination rate λ is imposed, then a
lower bound of T is also required. Indeed, from (3.20), since
I ≤ N, we have

λ ≥ λ
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=
1
T

(S 0 + I0 − (1 − p) N)

+
1
T

∫ T

0
(−aS I + (aS − b) I) ds

=
1
T

(S 0 + I0 − (1 − p) N) −
b
T

∫ T

0
Ids

≥
1
T

(S 0 + I0 − (1 − p) N) − bN

=
1
T

(pN − R0) − bN,

whence

T ≥
pN − R0

bN + λ
.

5. Conclusions

Through this work the controllability of the general
Kolmogorov system that models the interaction of two
populations was analyzed in three situations: when control is
exercised over time on both per capita growth rates and when
it is a constant with effect only on one of the populations,
either on its per capita rate, or on its general growth rate. The
analysis was performed in the unitary framework provided
by the abstract scheme of controllability of fixed point
equations, recently formulated by the second author.

From the perspective of those readers interested in
applications, the three examples of control problems may
suggest the wide applicability of our method to control
various models from applied mathematics.

From a theoretical perspective, the method leading to
operator equations with composed mappings is suitable to be
related to advanced research in fixed point theory for single-
valued and multi-valued operators, especially for operators
of the decomposable type.

From a computational point of view, leading to integral
equations of the Volterra or Fredholm type, the method
is suitable to be completed by numerical results and
approximation schemes.
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