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Abstract: In this paper, the mechanism for the fault estimation (FE) problem for a hydraulic servo actuator (HSA) with sensor faults is
investigated. To deal with the design issues, we transformed the nonlinear model of HSA into a new coordinate system to estimate the
sensor faults. In the new coordinate system, the Lipschitz conditions and system uncertainties are also considered. Then, we implement
a sliding mode observer (SMO) approach to introduce the transformation scheme to make the system rational. The proposed fault
estimation scheme essentially transforms the original system into two subsystems where the first one includes system uncertainties,
but is free from sensor faults and the second one has sensor faults but without uncertainties. The effects of system uncertainties on
the estimation errors of states and faults are minimized by integrating an H∞ uncertainty attenuation level into the observer. The
sufficient conditions for the state estimation error to be bounded and satisfy a prescribed H∞ performance are derived and expressed as a
linear matrix inequality (LMI) optimization problem. Finally, the numerical example with simulation results is provided to validate the
practicability and efficacy of the developed control strategy.
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1. Introduction

Important properties of the HSA, such as fast and
accurate responses, high force/mass ratio, and relatively
good stiffness, have attracted the great interest on the HSA
and their applications. In the last two decades, high-
performance controller design of the HSA has attracted
increasing attention due to the expanded performance
requirements of technical systems in industry [1–3].

Modern control systems are prone to faults, which can
damage the systems themselves or the environments in
which they operate. For this reason, fault detection and
isolation (FDI) algotihms become essential, since they
enable fault-tolerant actions that minimize the effect of
faults and improve the overall system’s reliability and safety.

The research on FDI has received considerable attention
during the last two decades due to the increasing demand
for safety and reliability of automatic control systems [4,
5]. Naturally, the nonlinear control problem for different
dynamics systems is always a hot topic and has attracted
compelling attention from scholars, see [6–8]. With the
development of modern technology, autonomous systems
are more and more dependent on sensors which often
carry the most important information in automated/feedback
control systems. Faults occurring in sensors may lead to
poor regulation or tracking performance, or even affect the
stability of the control system. On the other side, the stability
analysis in dynamical systems has attracted widespread
interests on both theoretical and practical fronts in recent
years [9–13]. Therefore, the study of sensor fault diagnosis
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is becoming increasingly important.

The approaches of FDI developed in the past can be
grouped into three fundamental categories: knowledge-
based FDI methods, signal-based FDI and model-based
FDI [14]. Among the possible approaches, the model-based
FDI ones have been recognized as a handy tool by the
scientific community and have been applied successfully to
many physical systems, for example, lateral dynamics of a
vehicle [15], aircraft [16], satellites [17], unmanned aerial
vehicles (UAVs) [18], and wind turbines [19], among others.
The basic idea of the observer-based FDI approaches,
which fall into the category of model-based FDI, is to
generally compare the actual system’s behavior with the
predicted or estimated behavior based on its mathematical
model. Hence, the success of this type of technique directly
relates to the mathematical model, which in reality is not a
perfect representation. As a consequence, any discrepancies
between the system and the model, which appear in the form
of system uncertainties in the model, can cause a misleading
alarm and make the FDI ineffective. Therefore, there is
a need for a robust FDI which is sensitive to faults but
insensitive to model uncertainties [20].

On the other side, fault estiamtion (FE) is different from
the majority of fault detection and isolation (FDI) in the
sense that it not only detects and isolates the fault, but also
provides details of the fault, such as the location, size, and
duration. Thus, it is especially useful for incipient faults
and slow drifts, which are very difficult to detect. Also
FE is vital in fault-tolerant control (FTC) systems which
improve the system’s performance. During the last two
decades, considerable research results have been reported
on sensor FE. In [21], an online estimation approach based
on adaptive observer technique was adopted to reconstruct
the sensor fault with an incipient time profile. A descriptor
system approach was introduced to investigate sensor fault
diagnosis for nonlinear systems in [22], which is applicable
for sensor faults of any forms. Most physical systems
are nonlinear, and therefore FDI should employ nonlinear
algorithms, which are difficult to generalize and apply in
many cases. It is well known that sliding mode techniques
offer good potential for increasing the robustness of FDI
by including a nonlinear discontinuous term that depends
on the output estimation error into the observer [23, 24].

During the last two decades, the research on sliding-
mode observers (SMO)-based FE has received considerable
attention. Several results have been reported on this topic
[25–28].

In this paper, a sensor FE scheme is proposed for
uncertain Lipschitz nonlinear systems. By applying
coordinate transformations, we first transform the the
original system into two subsystems (subsystem-1 and
2) where subsystem-1 includes the effects of system
uncertainties but is free from sensor faults and subsystem-
2 has sensor faults but without any uncertainties. Therefore,
the FE can be carried out independently and is not affected
in the presence of uncertainties. This offers a significant
advantage over some of the existing methods. For example
in [22, 29, 30] the effects of uncertainties on the estimation
of faults can only be minimized. The proposed method
extends the results of [31, 32] in which actuator FE of linear
systems was studied to sensor FE for uncertain Lipschitz
nonlinear systems. Moreover, most of the existing FE
methods such as those reported in [22, 33, 34] assume that
the value of the Lipschitz constant L f is known and they
incorporate this knowledge to obtain feasible LMI solutions.
However, determining the value of L f of a nonlinear system
is often difficult. Further, if the value of L f exceeds the
admissible value, those methods often fail to find feasible
LMI solutions. In this paper, the value of L f is assumed
to be unknown and adaptation laws are integrated into the
proposed schemes such that L f does not appear in the LMI
formulation and the feasibility of LMIs is not dependent on
the knowledge of this parameter. Therefore, the proposed
method offer distinct advantages over some of the existing
methods.

The remainder of the paper is organized as follows:
Section 2 briefly describe model of the hydraulic servo
actuator. Section 3 describes the mathematical preliminaries
required for developing the FDI method and design
procedure of the implemented SMO. The results of the
simulation are shown in Section 4 and conclusions are given
in Section 5.
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2. Description of the HSA

The HSA under study is shown in Fig. 1, which consists
of the servo valve and the hydraulic cylinder. The analysis
of the properties of the HSA comes out from dynamics of
its components that involves the piston motion dynamics,
pressure dynamics at the cylinder, and servo valve dynamics.
Hence, the model of the HSA is derived from complex
nonlinear equations that depend on many parameters which
cannot be accurately obtained [35].

See Table 1 for the description of the HSA parameters.
Using the notation in Figure 1, and defining the area ratio of
the piston α = Ab/Aa, Va = Va0 +yAa, Vb = Vb0 +(L−y)αAa,
qLi = cLi(pa − pb), where cLi is the internal leakage flow
coefficient, cvi > 0 are discharge coefficients, the sign

function sg(x) =

x, x ≥ 0
0, x < 0

, and assuming an external

leakage negligible, the considered model can be described
by the following equations:

mtÿ = Aa pa − Ab pb − F f (ẏ) − Key − Fext, (2.1)

ṗa =
βe

Va(y)
(qa − Aaẏ − qLi − qLea) , (2.2)

ṗb =
βe

Vb(y)
(qb + αAaẏ + qLi − qLeb) , (2.3)

qa = qsv1 − qsv2

= cv1 sg(xv)sign(ps − pa)
√
|ps − pa|

− cv2 sg(−xv)sign(pa − p0)
√
|pa − p0|,

(2.4)

qb = qsv3 − qsv4

= cv3 sg(−xv)sign(ps − pb)
√
|ps − pb|

− cv4 sg(xv)sign(pb − p0)
√
|pb − p0|.

(2.5)

According to Eqs (2.1)-(2.5) and defining the state and
input variables as

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T

,
[
y(t) ẏ(t) pa(t) pb(t)

]T
,

(2.6)

u(t) = xv(t), (2.7)

ps p0

+xv

qa

qsv1

qsv2

qsv4

qsv3

qb

2 1 4 3

Fext

Ke

b
m

qLi

p
a Va Aa, , pb Vb Ab, ,

y +-

e
qLe

mp

pL

Figure 1. The HSA configuration.

the governing nonlinear continuous-time dynamics of the
HSA can be expressed in a state-space form as follows

ẋ(t) = f (x(t)) + g(x(t), u(t)) + h(t),

y(t) = η(x(t)),
(2.8)

where f (x(t)) and g(x(t), u(t)) are the state dynamics and the
input function, respectively

f (x(t)) =


x2

1
mt

(
Aax3 − αAax4 − F f (x2) − Kex1

)
−

βe
Aa x1+Va0

(Aax2 + cLi(x3 − x4))
βe

αAa(L−x1)+Vb0
(αAax2 + cLi(x3 − x4))

 (2.9)

g(x(t), u(t)) =



0
0

βe

Aax1 + Va0

(
cv1 sg(u)sign(ps − x3)

√
|ps − x3| −

−cv4 sg(−u)sign(x3 − p0)
√
|x3 − p0|

)
βe

αAa (L − x1) + Vb0

(
cv3 sg(−u)sign(ps − x4)·

·
√
|ps − x4| − cv2 sg(u)sign(x4 − p0)

√
|x4 − p0|

)


(2.10)

and output function η(x(t)) = x1(t), and disturbance function
h(t) =

[
h1(t) −Fext/mt + h2(t) h3(t) h4(t)

]
includes

loads, unmodelled dynamics and parameter uncertainties,
fS (t) includes sensor faults.

3. SMO-based sensor fault estimation

Consider a non-linear system described by

ẋ(t) = Ax(t) + W f (x, t) + Bu(t) + E∆ψ(t),

y = Cx(t) + D fs(t),
(3.1)
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Table 1. Parameters of the HSA.

Notations Denotes

xv The spool valve displacement
pa, pb Forward and the return pressure
qa, qb Forward and the return flows
y Piston displacement
L Piston stroke
Ke Load spring gradient
pS , p0 Supply and tank pressure
mt, mp, m total mass, piston mass, payload mass
F f Friction forces
Fext Disturbance forces
Aa, Ab Effective areas of the head and rod

piston side
Va, Vb, Va0, Vb0 Fluid volumes of the head and rod

piston side and corresponding initial
volumes

qLi, qLe Internal and external leakage flow
βe Bulk modulus of the fluid

where the state vector is x ∈ Rn, the input vector is u ∈ Rm,
the output vector is y ∈ Rp, the sensor fault is denoted as fs ∈

Rq. The known constant matrices are A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, D ∈ Rp×q, E ∈ Rn×r (p ≥ q + r) and W ∈ Rn× j

with D and E both being of full rank.

Remark 1. It should be noted that the system uncertainty

under consideration is unstructured, which is more general

than the type of structured uncertainty that has been

considered for fault diagnosis of Lipschitz nonlinear systems

in the literature [33, 36]. In the case of structured system

uncertainty, certain rank conditions of the uncertainty

distribution matrix are assumed to be satisfied such that the

fault can be completely decoupled from the uncertainty.

For the objective of achieving sensor fault diagnosis, the
following assumptions and Lemmas are intoduced. The
nonlinear term f (x, t) ∈ R j is assumed to be known and
Lipschitz about x uniformly ∀x, x̂ ∈ Rn

‖ f (x, t) − f (x̂, t)‖ ≤ L f ‖x − x̂‖ (3.2)

where L f is the known Lipschitz constant.

The unknown nonlinear term ∆ψ(t) is structured
modelling uncertainty, but bounded, and satisfies ∆ψ(t) ≤ ξ.
Also, the unknown sensor fault and its derivative are norm
bounded, i.e. fs(t) ≤ ρ and ḟ(t) ≤ ρs.

Lemma 3.1. Let’s assume rank(CE) = rank(E). There exist

linear transformations of coordinates

z =

z1

z2

 = T x and w =

w1

w2

 = S y (3.3)

such that in the new coordinates, the system matrices

become

T AT−1 =

A1 A2

A3 A4

 , T B =

B1

B2

 , T E =

E1

0

 ,
S CT−1 =

C1 0
0 C4

 , S D =

 0
D2

 , TW =

W1

W2


(3.4)

where T ∈ Rn×n, S ∈ Rp×p, T1 ∈ R
r×n, S 1 ∈ R

r×p, z1 ∈ R
r,

w1 ∈ R
r, A1 ∈ R

r×r, A4 ∈ R
(n−r)×(n−r), B1 ∈ R

r×m, E1 ∈ R
r×r,

W1 ∈ R
r× j, C1 ∈ R

r×r, C4 ∈ R
(p−r)×(n−r) and D2 ∈ R

(p−r)×q.

C1 is invertible.

After introducing the state and output transformations
(3.3), the original system is converted into two subsystems:

Subsystem 1:


ż1 = A1z1 + A2z2 + W1 f (T−1z, t) + B1u+

+ E1∆ψ(t)

w1 = C1z1

(3.5)

Subsystem 2:

ż2 = A3z1 + A4z2 + W2 f (T−1z, t) + B2u

w2 = C4z2 + D2 fs

(3.6)

For Subsystem 1, we define a new state z3 =
t∫

0
w2(τ)dτ so

that ż3 = C4z2 + D2 fs. An augmented system with the new
state z3 is therefore given as:ż2

ż3

 =

A4 0
C4 0

 z2

z3

 +

A3

0

 z1 +

W2 f (T−1z, t)
0

 +

+

B2

0

 u +

 0
D2

 fs,

w3 = z3

(3.7)
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Subsystem (3.5) can be rewriten as in a more compact form
as

ż1 = A1z1 + Ā2z0 + W1 f (T−1z, t) + B1u + E1∆ψ(t)

w1 = C1z1

(3.8)

where z0 ∈ R
n+p−2r, Ā2 =

[
A2 0

]
∈ Rr×(n+p−2r). Also,

Subsystem (3.6) can be stated as

ż0 = A0z0 + Ā3z1 + W̄2 f (T−1z, t) + B0u + D0 fs

w3 = C0z0

(3.9)

in which w3 ∈ R
p−r, A0 =

A4 0
C4 0

 ∈ R(n+p−2r)×(n+p−2r), Ā3 =A3

0

 ∈ R(n+p−2r)×r, B0 =

B2

0

 ∈ R(n+p−2r)×m,

D0 =

 0
D2

 ∈ R(n+p−2r)×q, C0 =
[
0 Ip−r

]
∈ R(p−r)×(n+p−2r),

W̄2 =

W2

0

.
Lemma 3.2. [37, 38] The pair (A0,C0) is detectable if and

only if the minimum phase condition holds

rank

sIn − A E

C 0

 = n + rank(E) (3.10)

for every complex number s with nonnegative real part.

Now, a scheme which consists of two SMOs to estimate
sensor faults is develepod. One of the SMOs is designed for
subsystem (3.8) to estimate sensor faults, while other one
is designed for subsystem (3.9) to eliminate the effects of
system uncertainties.

For subsystem (3.8), the proposed SMO has the following
form:

˙̂z1 = A1ẑ1 + Ā2ẑ0 + W1 f (T−1ẑ, t) + B1u+

+
1
2

k̂1P1C−1
1 (w1 − ŵ1) + (A1 − As

1)C−1
1 (w1 − ŵ1) + v1

ŵ1 = C1ẑ1

(3.11)

where As
1 ∈ Rr×r is a stable matrix which needs to

be determined, P1 is the Lyapunov matrix of As
1, ẑ :=[(

C−1
1 S 1y

)T ([
In−r 0

]
ẑ0

)T
]T

. The discontinuous output

error injection term v1, which is used to eliminate the effects
of uncertainties, is defined by

v1 =

(‖E1‖ ξ + η1) P1(C−1
1 w1−ẑ1)

‖P1(C−1
1 w1−ẑ1)‖ , C−1

1 w1 − ẑ1 , 0

0 otherwise

(3.12)

where η1 is a positive scalar to be determined. It should be
noted that state z1 can be obtained by the measured output y

as z1 = C−1
1 S 1y. k̂1 satisfies the following adaption law:

˙̂k1 = lk1

∥∥∥∥P1

(
C−1

1 w1 − ẑ1

)∥∥∥∥2
, (3.13)

where lk1 is a positive constant. For subsystem (3.9), the
proposed SMO has the following form:

˙̂z0 = A0ẑ0 + Ā3C−1
1 w1 + W̄2 f (T−1ẑ, t) + B0u+

+ L0(w3 − ŵ3) +
1
2

k̂2W̄2H0(w3 − ŵ3) + D0v2

ŵ3 = C0ẑ0

(3.14)

where the observer gain L0 =

L01

L02

 ∈ R(n+p−2r)×(p−r), in

which L01 ∈ R
(n−r)×(p−r), H0 ∈ R

j×(p−r), P0 = PT
0 ∈

R(n+p−2r)×(n+p−2r). The discontinuous output error injection
term v2 is defined by

v2 =

(ρs + η2) F0(w3−ŵ3)
‖F0(w3−ŵ3)‖ , w3 − ŵ3 , 0

0 otherwise
(3.15)

where F0 ∈ R
q×(p−r) is a matrix to be determined and η2 is a

positive scalar. k̂2 satisfies the following adaption law:

˙̂k2 = lk2 ‖H0 (w3 − ŵ3)‖2 , (3.16)

where lk1 is a positive constant.
We now present the following theorem which provides

sufficient conditions for the existence of the proposed SMOs.

Theorem 3.3. Let’s consider system (3.1) with introduced

assumptions and lemmas. If there exist matrices As
1, L0, F0,

H0, P0 = PT
0 > 0, P1 = PT

1 > 0 such that

DT
0 P0 = F0C0 (3.17)

W̄T
2 P0 = H0C0 (3.18) Π1 P1Ā2

ĀT
2 P1 Π2 + 2In+p−2r

 < 0 (3.19)
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where Π1 = As
1

T P1 + P1As
1, Π2 = (A0 − L0C0)T P0 +

P0 (A0 − L0C0) then the error dynamics, after the

occurrence of sensor faults

ė1 = As
1e1Ā2e0 + W1

(
f (T−1z, t) − f (T−1ẑ, t)

)
−

1
2

k̂1P1e1 + E1∆ψ − v1

(3.20)

ė0 = (A0 − L0C0) e0 + W̄2

(
f (T−1z, t) − f (T−1ẑ, t)

)
−

1
2

k̂2W̄2H0C0e0 + D0 ( fs − v2)
(3.21)

are assymtoticaly stable, in which the state estimation errors

are defined as e1 = z1 − ẑ1 and e0 = z0 − ẑ0. The Proof of

Theorem 3.3 can be seen in [39].

In practice, it is often difficult to know precisely the value
of the Lipschitz constant in (3.2). This parameter plays
an important role in the design of observers for nonlinear
systems. It should be noted that in [22, 33, 36, 40] the
Lipschitz constant L f is assumed to be known and is one
of the parameters in the LMI formulation. This can be
considered as one of the limitations of those methods.
We have observed that it often fails to solve LMI if the
value of L f is too large. In order to find a feasible
solution of LMI, the value of L f may be reduced by
introducing coordinate transformations for certain structures
of the Lipshcitz function [41]. However, this may bring in
an extra difficulty in the design of observers. In contrast
to some of the existing methods, the Lipschitz constant
L f in this paper is assumed to be unknown and adaptive
SMOs are proposed to deal with this situation. Specifically,
the Lipschitz constants L f1 and L f are injected into the
constants k1 and k2 which can be adjusted by the adaptation
laws (3.13) and (3.16). Note that the asymptotic estimation
of states can be guaranteed even if the estimates of k1 and
k2 do not approach to their actual values [39].

Theorem 3.3 has shown that the error dynamics (3.20)
and (3.21) are asymptotically stable. The objective now is
to choose constants η1 and η2 such that the error dynamics
can be driven to the sliding surface in finite time and a
sliding motion can be maintained on it thereafter. For error
dynamics (3.20) and (3.21), we define the sliding-mode
surface as

S = {(e1, e0) | e1 = 0, C0e0 = 0 } (3.22)

The problem of finding matrices As
1, L0, F0, H0,

P0 = PT
0 > 0, P1 = PT

1 > 0 to simultaneously satisfy
the Inequality (3.19) and Equalities (3.17) and (3.18) can be
transformed into the following LMI optimization problem:

Minimize γ1 + γ2

subject to
P0 > 0, P1 > 0
andX + XT P1Ā2

ĀT
2 P1 P0A0 + AT

0 P0 − Y0C0 −CT
0 YT

0 + 2In+2p−r

 < 0

(3.23) γ1Iq DT
0 P0 − F0C0(

DT
0 P0 − F0C0

)T
γ1In+p−2r

 > 0 (3.24) γ2I j W̄T
2 P0 − H0C0(

W̄T
2 P0 − H0C0

)T
γ2In+p−2r

 > 0 (3.25)

where X = P1As
1 and Y0 = P0L0.

Theorem 3.4. Let’s consider system (3.1) with introduced

assumptions, lemmas and the proposed observers (3.11) and

(3.14). Then the error dynamics (3.20) and (3.21) can be

driven to the sliding surface (3.22) in finite time and remain

on it if LMIs (3.23)-(3.25) are solvable and the gains η1 and

η2 satisfy

η1 ≥
(∥∥∥Ā2

∥∥∥L f

∥∥∥T−1
∥∥∥ ‖W1‖

)
‖e0‖ + η3, (3.26)

η2 ≥
L f

∥∥∥T−1
∥∥∥ ‖W2‖ ‖e0‖

‖D0‖
+ η4, (3.27)

where η3 and η4 are positive scalars. The Proof of Theorem

3.4 can be seen in [39].

After reaching the sliding surface, the sliding motion will
be maintained thereafter, i.e., C0e0 = 0. It follows from
(3.21) that

0 = C0A0e0 + C0W̄2

(
f (T−1z, t) − f (T−1ẑ, t)

)
+ D2

(
fs − v2eq

) (3.28)

where v2eq is the equivalent output error injection signal
representing the average behavior of the discontinuous
function v2. Since lim

t→∞
e0 = 0 according to Theorem 3.3,

it also holds that lim
t→∞

f (T−1z, t)− f (T−1ẑ, t) = 0. From (3.28)
it follows that the sensor fault can be approximated as

f̂s = lim
t→∞

fs = v2eq (3.29)
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in which the equivalent output error injection signal v2eq can
be obtained as

v2eq = (ρs + η2)
F0ew3

‖F0ew3‖ + δ
(3.30)

where δ is a small positive scalar to reduce the chattering
effect.

4. Simulation results

Effectiveness of the sensor FE approach will be
considered on HSA model with following parameters: the
viscous friction BC = 200 N s

m , the supply pressure pS =

45 bar, the tank pressure p0 = 1.6 bar, the bulk modulus
of the fluid βe = 2 · 108 Pa, the total mass m = 25 kg, the
initial chamber volumes Va0 = Vb0 = 8.2 · 10−6 m3, the load
spring gradient Ke = 10−1, the effective area of the head
side of the piston Aa = 4.91 · 10−4 m2, the effective area of
the rod side of the piston Ab = 2.43 · 10−4 m2, the internal
leakage coefficient cLi = 5 · 10−14, the piston stroke L = 1 m,
discharge coefficients of valve orifices cvi = 1.15, i = 1, 4.

It is assumed that there is an complex sensor fault
composed of a combination of abrupt, ramp, and sine-type
faults, which is represented as:

fs =



0 t < 50
0.05 sin(0.15πt) 50 ≤ t < 90

0 90 ≤ t < 120
0.002(t − 120) 120 ≤ t < 150

0.025 + 0.01 sin(0.2πt) 150 ≤ t < 180
0 180 ≤ t ≤ 200

(4.1)

For simulation purposes, we set the control input u(t) as
sinus function sin(πt) and the system uncertainty ∆ψ(t) as

∆ψ(t) =


0.1 sin(0.2t)2

0.1 sin(0.1t)2

0.2 sin(t)2

0.3 sin(t)2

 (4.2)

The results of fault estimation are illustrated in Figure 2.
This figure clearly demonstrate that the proposed observer
is able to estimate the sensor faults successfully, irrespective
of uncertainties in the system. In addition to gradual and
slow faults, such as a ramp and sinusoidal faults, it should
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Figure 2. Estimation of the sensor faults.

be noted that fs changes abruptly at time instants 150 s and
180 s, which indicates that the proposed observer has the
ability to track abrupt faults.

Figure 3 shows the trajectories of the actual states and
their estimates. It can be seen from the figures that the
proposed observer can estimate the states accurately, before
and after the occurrence of any fault.
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Figure 3. System states and their estimates (actual
state: solid line; estimated state: dashed line).

It can be seen that despite the presence of system
uncertainties and measurement noises, the tracking
performances of states x and sensor fault fs have achieved
an ideal performance.

5. Conclusions

In this paper, a new sensor FE scheme for uncertain
Lipschitz nonlinear systems is developed. The proposed
FE scheme essentially transforms the original system
into two subsystems where the first one includes system
uncertainties, but is free from sensor faults and the second
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one has sensor faults but without uncertainties. Using
the integral observer based approach, sensor faults in the
second subsystem are transformed into actuator faults. In the
proposed scheme, two SMOs are designed. One of which is
used to eliminate the effect of system uncertainties, while the
other one is used to estimate sensor faults. Adaptation laws
are integrated into the scheme to deal with the situation when
the Lipschitz constant is unknown or too large. The observer
design parameters can be obtained using LMI techniques
in a systematic way. Effectiveness of the proposed FE
scheme has been demonstrated considering the example of
hydraulic servo actuator. Simulation results have shown
that the proposed FE scheme is effective and feasible in
the presence of system uncertainties. Future research may
include extending the proposed methodology to a single link
robotic arm with a revolute elastic joint.
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