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1. Introduction

The model considered in this paper is a classical semi-
parametric model, varying-coefficient partially linear model,
and it has the following form

Y = XT θ(T ) + ZTβ + ε, (1.1)

where Y is the response variable, X, Z and T are
q−dimensional, p−dimensional and one-dimensional
covariates, respectively. β = (β1, · · · , βp)T is a
p−dimensional unknown parameter vector, θ(·) =

(θ1(·), · · · , θq(·))T is a q−dimensional unknown non-
parametric function vector, ε is the random error and
satisfies E(ε|X,Z,T ) = 0. Model (1.1) has been well studied
by many statisticians, see the literatures, for example, Fan
and Huang [1], You and Zhou [2], Huang and Zhang [3],
Zhao [4], Feng, Zhang and Lu [5] among others.

In practical applications, missing data problems are
frequently encountered in almost all research areas, such
as psychological sciences, medical studies, industrial and
agricultural production. The complete-case (CC) method
will lose the estimation efficiency due to the disregard of
the information from the missing values, and may result

in biased results if the data is not missing completely at
random. For details, see Little and Rubin [6]. The inverse
probability weighted (IPW) method is another frequently
used method dated back to Horvitz and Thompson [7] that
can be applied to the case of missing covariates. This
method is to take the inverse of the selection probability as
the weight to the fully observed data, and under missing at
random (MAR) assumption this method is unbiased. It has
attracted much attention in statistical analysis with missing
data, but still doesn’t make full use of the incomplete data.
The imputation method is a popularly method to deal with
missing responses in many studies which was introduced
by Yates [8]. The concept of imputation is to fill in each
missing data with a suitable value, and then use the observed
value and the imputed value for statistical inference by the
standard method. This method can improve the efficiency
of the resulted estimators, see the literatures, for example,
Cheng [9], Wang and Rao [10,11], Wang, Linton and
Hardle [12], and so forth. In order to further improve the
efficiency of estimation, Robins, Rotnitzky and Zhao [13]
propose an augmented inverse probability weighted (AIPW)
method. This method has the double robustness, that is,
if the selection probability and the conditional expectation
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function are both correctly specified, the resulted estimator
will reach the semi-parametric effective bound, and if
either of the two assumed models is correctly specified,
the estimator is consistent, see the details in Robins and
Rotnitzky [14] and Scharfstein, Rotnitzky and Robins [15].
In subsequent ten years, the doubly robust estimation has
been well studied, see for example, Kang and Schafer [16],
Qin, Shao and Zhang [17], Cao, Tsiatis and Davidian [18],
Han [19], and Rotnitzky et al. [20].

However, double robustness does not provide sufficient
protection for estimation consistency, since it allows only
one model for the selection probability and one for the
conditional expectation function. It is often risky to assume
that one of these two models is correctly specified with
an unknown data generating process. Noticed this, Han
and Wang [21] propose multiple robust estimator for the
population mean when the response variable is subject to
ignorable missingness. They suggest multiple models for
both the selection probability function and the outcome
regression model, and the resulted estimator is consistent
if any of the multiple models is correctly specified, and
attains the semi-parametric efficiency bound when one
selection probability and one outcome regression model
are correctly specified, without requiring knowledge of
which models are correct. For the details please resort
to Han and Wang [21]. Subsequently, Han [22] studies
the multiple robust estimator for the linear regression
model. He discusses the numerical implementation of
the proposed method through a modified Newton-Raphson
algorithm, derives the asymptotic distribution of the resulted
estimator and provides some ways to improve the estimation
efficiency. Later, Sun, Wang and Han [23] propose
multiple robust kernel estimating equations (MRKEEs)
for nonparametric regression, demonstrate its multiple
robustness, and show that the resulted estimator achieves
the optimal efficiency within the class of augmented
inverse propensity weighted (AIPW) kernel estimators
when including correctly specified models for both the
missingness mechanism and the outcome regression. Please
refer to Sun, Wang and Han [23] for more discussion. In
addition, the multiple robust estimation with nonignorably
missing data has been studied recently, and here we just list
some literatures, see for example, Han [24] and Li, Yang and

Han [25].

To the best of our knowledge, the multiple robust
estimation for the parameters of the varying-coefficient
partially linear model with response missing at random has
not been studied. So in this paper, applying the idea of
Han [22] and Sun, Wang and Han [23], we consider the
multiple robust estimation method for the parameters of
the varying-coefficient partially linear model with missing
response, and the proposed method is demonstrated superior
over the existing competitors via simulation studies.

This paper is organized as follows. The proposed
estimation technique and its multiple robustness are
presented in Section 2. Numerical simulation studies are
conducted in Section 3 in order to examine the performance
of the proposed method. The technical proofs are also
provided in Section 4. Conclusions are summarized in
Section 5.

2. The proposed estimator

Suppose the available incomplete data
{(Ri,Yi, Xi,Zi,Ti), i = 1, 2, . . . , n} is a random sample
from model (1.1), that is

Yi = XT
i θ(Ti) + ZT

i β + εi, (2.1)

where Ri is an indicator variable, when Yi can be observed,
then Ri = 1, and when Yi is missing with Ri = 0. The
covariate Xi,Zi and Ti are all observed. Following Han [22]
and Sun, Wang and Han [23], we also suppose the auxiliary
variables S i relate to (Ri,Yi, Xi,Zi,Ti) is available. Just
as Han [22] points out that the auxiliary variables do not
enter the regression model and are not of direct statistical
interest, but they can reduce the impact of missing data on
estimation and improve the estimation efficiency. Let Vi =

(XT
i ,Z

T
i )T denote the covariates. The missing mechanism

we assume in this paper is MAR mechanism that commonly
used in practice. Specifically, given the covariates Vi, Ti

and the available auxiliary variables S i, the missing of Yi

is independent of Yi, that is,

P{Ri = 1|Yi,Vi,Ti, S i} = P{Ri = 1|Vi,Ti, S i}=̂π(Vi, S i).
(2.2)

Here we assume that π(·) is only related to V and S .
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We first carry out the estimator of the varying coefficient
functions θ(·). For any t in a small neighborhood of t0, using
the local linear fitting for θ j(t), j = 1, 2, . . . , q, we have

θ j(t) ≈ θ j(t0) + θ′j(t0)(t − t0) = a j + b j(t − t0).

Suppose the parameter β is known, and then minimizing the
following objective function

n∑
i=1

Ri{Yi − ZT
i β −

q∑
j=1

(a j + b j(Ti − t0))Xi j}
2Kh(Ti − t0)

about (a j, b j), j = 1, 2, . . . , q, we can obtain the estimator of
θ(t) at t0, where Kh(·) = h−1k(·/h), k(·) is a kernel function,
and h is the bandwidth. Let

Dt0 =


XT

1 h−1(T1 − t0)XT
1

...
...

XT
n h−1(Tn − t0)XT

n

 ,

Wt0 = diag(Kh(T1 − t0)R1,Kh(T2 − t0)R2, · · · ,Kh(Tn − t0)Rn),

and
S (t0) = (Iq, 0q)(DT

t0 Wt0 Dt0 )−1DT
t0 Wt0

= (S 1(t0), S 2(t0), . . . , S n(t0)),

then the estimator of the coefficient functions θ(t) at t0 is
given by

θ̃(t0) =

n∑
k=1

S k(t0)(Yk − ZT
k β). (2.3)

Substituting (2.3) into (2.1), we obtain

Ỹi = Z̃T
i β + εi, (2.4)

where Ỹi = Yi − XT
i ĝ(Ti), Z̃i = Zi − µ̂

T (Ti)Xi with ĝ(t) =∑n
k=1 S k(t)Yk and µ̂(t) =

∑n
k=1 S k(t)ZT

k .
For model (2.4), using the complete data, the CC

estimator of β can be obtained by solving the following
estimation equation

n∑
i=1

Riξ̂i(β) = 0, (2.5)

where

ξ̂i(β) = Z̃i(Ỹi − Z̃T
i β)

= (Zi − µ̂
T (Ti)Xi)[Yi − XT

i ĝ(Ti) − (Zi − µ̂
T (Ti)Xi)Tβ].

From Little and Rubin [6] we know that the CC estimator
maybe biased unless the missing mechanism is missing
completely at random. So following the works of Robins,
Rotnitzky and Zhao [13], the doubly robust estimator β̂AIPW

of β can be defined by

1
n

n∑
i=1

{
Ri

π̂(Vi, S i)
ξ̂i(β) −

Ri − π̂(Vi, S i)
π̂(Vi, S i)

ηi(β)} = 0, (2.6)

where π̂(Vi, S i) is some estimated value of π(Vi, S i), ηi(β) =

E[ξ̂i(β)|Vi,Ti, S i]. β̂AIPW has been improved in terms of
consistency, but in practice it is still a great risk to assume
that one of the two assumed models is correctly specified.
So inspired by Han [22] and Sun, Wang and Han [23], next
we shall give the multiple robust estimation for β.

Suppose there are J and K models used to estimate π(V, S )
and E(Y |V,T, S ). Let P = {π j(α j) : j = 1, · · · , J} and
F = {ak(γk) : k = 1, · · · ,K} denote the set of these two
models respectively, where α j and γk are the corresponding
parameters. Let α̂ j, γ̂k be the estimator of α j, γk respectively.
Usually, α̂ j can be obtained by maximizing the binomial
likelihood

n∏
i=1

{π
j
i (α

j)}Ri {1 − π j
i (α

j)}1−Ri .

According to the property of MAR assumption, it can be
seen that Y and R are conditionally independent with respect
to (V,T, S ), that is, E(Y |V,T, S ) = E(Y |R = 1,V,T, S ).
Therefore, using the complete observation data to fit the
model ak(γk), we can obtain γ̂k. Let β̂k be the solution of

1
n

n∑
i=1

{Zi−µ̂
T (Ti)Xi}{RiYi+(1−Ri)ak

i (γ̂k)−XT
i θ̃(Ti)−ZT

i β} = 0.

(2.7)
Obviously, β̂k is an estimated value of β.

Next, let m =
∑n

i=1 Ri represents the number of the
observable response variables. Without loss of generality,
R1 = · · · = Rm = 1, Rm+1 = · · · = Rn = 0. Let
ω(V, S ) = 1

π(V,S ) , similar to Han [22], the following formulas
hold

E(ω(V, S )[π j(α j) − E{π j(α j)}]|R = 1) = 0, (2.8)

E(ω(V, S )[Uk(β, γk) − E{Uk(β, γk)}]|R = 1) = 0, (2.9)

where j = 1, · · · , J, k = 1, · · · ,K, Uk(β, γk) = {Z −

µT (T )X}{ak(γk) − XT θ(T ) − ZTβ}. Therefore, the weights
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ωi, i = 1, · · · ,m can be defined by

ωi ≥ 0, i = 1, · · · ,m;
m∑

i=1

ωi = 1,

m∑
i=1
ωi{π

j
i (α̂

j) − ν j(α̂ j)} = 0, j = 1, · · · , J,
m∑

i=1
ωi{Ûk

i (β̂k, γ̂k) − ηk(β̂k, γ̂k)} = 0, k = 1, · · · ,K,

where

ν j(α̂ j) =
1
n

n∑
i=1

π
j
i (α̂

j), j = 1, · · · , J,

ηk(β̂k, γ̂k) =
1
n

n∑
i=1

Ûk
i (β̂k, γ̂k), k = 1, · · · ,K,

Ûk
i (β̂k, γ̂k) = {Zi − µ̂

T (Ti)Xi}{ak
i (γ̂k) − XT

i θ̃(Ti) − ZT
i β̂

k}.

Based on the empirical likelihood method, under
the above constraints, the Lagrange multiplier method
is used to solve the maximum value problem of∏m

i=1 ωi, and we use the solution as the weight
ωi(i = 1, · · · ,m) to estimate the parameter β. For
ease of presentation, let α̂T = {(α̂1)T , · · · , (α̂J)T },
β̂T = {(β̂1)T , · · · , (β̂K)T }, γ̂T = {(γ̂1)T , · · · , (γ̂K)T }, and
ĝi(α̂, β̂, γ̂)T = [π1

i (α̂1) − ν1(α̂1), · · · , πJ
i (α̂J) − νJ(α̂J),

{Û1
i (β̂1, γ̂1)− η1(β̂1, γ̂1)}T , · · · , {ÛK

i (β̂K , γ̂K)− ηK(β̂K , γ̂K)}T ].
Based on the empirical likelihood theory, we have

ω̂i =
1
m

1
1 + ρ̂T ĝi(α̂, β̂, γ̂)

, i = 1, · · · ,m, (2.10)

where ρ̂T = (ρ̂1, · · · , ρ̂J+pK) is the (J + pK)-dimension
Lagrange multiplier, and is the solution of

1
m

m∑
i=1

ĝi(α̂, β̂, γ̂)
1 + ρT ĝi(α̂, β̂, γ̂)

= 0. (2.11)

Due to the non-negativity of the weight ω̂i, ρ̂ satisfies

1 + ρ̂T ĝi(α̂, β̂, γ̂) > 0, i = 1, · · · ,m. (2.12)

So we can solve the equation

m∑
i=1

ω̂iξ̂i(β) = 0 (2.13)

to obtain the multiple robust estimator of the parameter β,
denoted by β̂MR.

In calculation of the weight ω̂i, the Lagrange multiplier ρ̂
is essential. The calculation algorithm we used is similar to

Han [22], for the details please refer to Han [22], here we
omit.

The multiple robustness of β̂MR is given by the following
theorem.

Theorem 2.1. Suppose that the conditions C1–C5 in
Section 4 hold, and if P contains a model that correctly
specifies π(V, S ), or F contains a correctly specified model
for E(Y |V,T, S ), then

∑m
i=1 ω̂iξ̂i(β)

P
−→ 0 with n→ ∞.

3. Simulation study

In this section, we conduct some numerical simulations
to evaluate the feasibility of the above method and the finite
sample performance of the proposed estimator β̂MR. Several
indices of multiple robust estimates, inverse probability
weighted estimates, and augmented inverse probability
weighted estimates are compared and analyzed under
different sample sizes.

We consider five mutually independent covariates,
namely: X ∼ N(0, 1),T ∼ U(0, 1),Z1 ∼ N(1, 5),Z2 ∼

B(0.5, 1),Z3 ∼ N(0, 1). The response variable is generated
by the model Y = XT θ(T ) + ZTβ + ε, where θ(t) = sin(πt)
and β = (1, 1, 2)T . In addition, We consider three auxiliary
variable, namely S (1) = 1 + Z(1) − Z(2) + ε1, S (2) = I{S (1) +

0.4ε2 > 2.8}, S (3) = exp[{S (1)/9}2] + ε3, where I(·) is an
indicator function. (ε, ε1, ε2, ε3)T ∼ N(0,Σ). The diagonal
elements of the matrix Σ are 1, 0.5, 1, 2, the elements at
positions (1, 2) and (2, 1) are 0.5, and the remaining elements
are all 0. The probability of selection is logit{π(V, S )} =

3.5− 5S (2), under which there are approximately 34% of the
subjects with missing Y . The models for correctly estimating
π(V, S ) and E(Y |V,T, S ) are logit{π1(α1)} = α1

1 + α1
2S (2) and

a1(γ1) = XT θ(T )+γ1
1Z1+γ1

2Z2+γ1
3Z3+γ1

4S (3) respectively. In
addition, we also use two incorrect models in the simulation
process, namely logit{π2(α2)} = α2

1 + α2
2Z1 + α2

3Z2 + α2
4Z3,

a2(γ2) = XT (−4T 2 + 4T ) + γ2
1Z1 + γ2

2Z2 + γ2
3Z3 + γ2

4S (3).
For simplicity, we use the Rule of Thumb method to obtain
the optimal bandwidth when estimating the nonparametric
functions, that is, h = 1.06 ∗ {min(qr, sig)} ∗ n−1/5, where sig

is the standard deviation of covariate T , qr = (Q3−Q1)/1.34,
Q1 and Q3 are the first and third quartile, respectively. In
simulation, we generate random samples with n = 200
and n = 500 respectively, and repeat the process 500
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times to calculate the average biases, mean squared errors
(MSEs), the root of mean squared errors (RMSEs) and
median absolute error (MAEs).

In order to verify the superiority of the multiple
robust estimation method, we give the calculated indices
of the parameter β under different estimation methods,
which are the inverse probability weighted estimates
β̂IPW , and the augmented inverse probability weighted
estimates β̂AIPW and multiple robust estimates β̂MR. To
distinguish all the estimators constructed based on different
methods and models, each estimator is assigned a name
with the form “Method-0000”, where each digit of the
four-digit number, from left to right, indicates whether
π1(α1), π2(α2), a1(γ1), a2(γ2) is used in the construction (1
means yes, 0 means no), respectively. The simulation results
are reported in Table 1 and Table 2 with the sample size
n = 200 and n = 500.

It can be seen from the two tables that regardless of
the estimation method, the larger the sample size, the
better the estimation effect. And when the models for
estimating the selection probability and the conditional
expectation are all specified correctly, the estimated results
obtained by the multiple robust estimation method, the
inverse probability weighted estimation method and the
augmented inverse probability weighted estimation method
are not much different, but the effect of multiple robust
estimation is better in terms of MSE. When all the models
for estimating the selection probability and the conditional
expectation are specified incorrectly, the AIPW − 0101 has
unsatisfactory effects, the resulted estimators have larger
deviations, but our proposed MRE − 0101, despite using
two incorrect models, can generate better estimators. The
interesting observation that β̂MR seems to still provide a
reasonable (at least not too bad) estimate of β even if there
is no model correctly specified is similar to Han [22]. In
a word, it is obvious that our proposed multiple robust
estimation method is better than the two competitors.

4. Proofs

Before we give the proof of Theorem 2.1, some notations
and interpretations are presented firstly.

Let Φ(t) = E[RXZT |T = t], Ψ(t) = E[RXXT |T = t], then

θ(Ti) = {Ψ(Ti)}−1{E[RiXiYi|Ti] − Φ(Ti)β}. (4.1)

Substituting (4.1) into (2.1), we obtain

Y̌i = ŽT
i β + εi, (4.2)

where Y̌i = Yi − XT
i g(Ti), Ži = Zi − µ

T (Ti)Xi, with g(Ti) =

{Ψ(Ti)}−1E[RiXiYi|Ti], µ(Ti) = {Ψ(Ti)}−1Φ(Ti). From model
(4.2), using the complete data, the CC estimator of β can be
obtained by solving the following estimation equation

n∑
i=1

Riξi(β) = 0,

where ξi(β) = Ži(Y̌i − ŽT
i β) = (Zi − µ

T (Ti)Xi)[Yi − XT
i g(Ti) −

(Zi − µ
T (Ti)Xi)Tβ], and E[ξi(β)] = 0.

Suppose C to be a positive constant which can represent
different values, and assume the following conditions C1–
C5 hold.

C1 The bandwidth h satisfies h = Cn−1/5, that is h → 0
and nh → ∞ as n → ∞, where C > 0 is a given positive
constant.

C2 The kernel function K(·) is a symmetric probability
kernel function, and

∫
t2K(t)dt , 0,

∫
t4K(t)dt < ∞.

C3 For each t ∈ (0, 1), f (t),Φ(t),Ψ(t) and θ(t) are twice
continuous differentiable at point t , where f (t) is the density
function of the variable T.

C4 sup
0≤t≤1

E[ε4
i |Ti = t] < ∞, sup

0≤t≤1
E[X4

ir |Ti = t] < ∞, and

they are continuous about t, where Xir is the r-th component
of Xi, i = 1, · · · , n, r = 1, · · · , q.

C5 For a given t, Ψ(t) is a positive definite matrix.

Next, a Lemma is needed in proof of Theorem 2.1, and
the proof can be found in Zhao [4].

Lemma 4.1. Suppose conditions C1–C5 hold, then we
have

sup
0<t<1

‖µ̂(t) − Ψ(t)−1Φ(t)‖ = Op(Cn),

sup
0<t<1

‖ĝ(t) − Ψ(t)−1Φ(t)β − θ(t)‖ = Op(Cn),

where Cn = h2 + ( log(1/h)
nh )1/2.

Proof of Theorem 2.1: Assuming that P contains
a model that correctly specifies π(V, S ), without loss of
generality, let π1(α1) be the model, α1

0 represents the truth
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Table 1. The biases, MSEs, RMSEs and MAEs (multiplied by 102) of different estimators for parameter β when
sample size n = 200.

Method
β1 β2 β3

Bias MSE RMSE MAE Bias MSE RMSE MAE Bias MSE RMSE MAE

IPW-1000 0.071 0.083 2.872 2.296 1.451 2.645 16.26 12.96 0.003 1.360 11.66 9.160
IPW-0100 0.329 0.233 4.826 3.677 0.021 4.591 21.43 16.04 2.113 3.915 19.79 14.65

AIPW-1010 0.030 0.078 2.799 2.211 1.324 2.654 16.29 12.88 0.073 1.402 11.84 9.207
AIPW-1001 0.113 0.074 2.724 2.206 0.644 2.629 16.22 13.18 0.181 1.546 12.44 9.692
AIPW-0110 0.065 0.069 2.625 2.125 0.387 2.283 15.11 12.17 0.232 1.551 12.45 9.778
AIPW-0101 -4.930 130.1 114.1 33.09 -5.591 212.9 145.9 51.96 -1.457 447.1 211.4 59.17
MR-1111 0.066 0.022 2.479 2.193 -0.921 2.341 15.46 12.00 -0.563 0.591 11.18 9.120
MR-1110 0.030 0.021 2.532 2.208 0.637 2.207 15.59 12.08 0.487 0.572 11.23 9.510
MR-1101 0.031 0.023 2.574 2.140 0.602 2.206 15.13 13.26 0.487 0.573 12.01 9.165
MR-1011 0.068 0.020 2.608 2.361 -0.927 2.334 16.35 12.31 -0.544 0.592 12.84 9.997
MR-1010 0.031 0.022 2.427 2.072 0.639 2.207 16.01 12.24 0.501 0.570 11.81 9.772
MR-1001 0.032 0.023 2.899 2.508 0.603 2.208 16.37 13.06 0.501 0.571 12.92 9.328
MR-0111 0.065 0.022 2.623 2.283 -0.909 2.341 15.24 13.52 -0.555 0.590 12.12 9.808
MR-0110 0.029 0.024 2.487 2.904 0.629 2.203 16.20 12.73 0.492 0.573 11.42 9.629
MR-0101 0.121 0.106 3.458 3.140 0.560 5.210 18.53 15.87 -1.064 1.371 16.54 12.61

Table 2. The biases, MSEs, RMSEs and MAEs (multiplied by 102) of different estimators for parameter β when
sample size n = 500.

Method
β1 β2 β3

Bias MSE RMSE MAE Bias MSE RMSE MAE Bias MSE RMSE MAE

IPW-1000 -0.071 0.030 1.732 1.401 0.202 1.023 10.11 8.104 -0.243 0.649 8.054 6.333
IPW-0100 0.208 0.135 3.677 2.869 0.034 4.570 21.38 15.17 0.264 3.559 18.86 13.43

AIPW-1010 0.014 0.027 1.649 1.334 -0.426 1.013 10.06 7.950 0.126 0.611 7.815 5.072
AIPW-1001 -0.009 0.029 1.692 1.334 -0.173 0.964 9.820 7.813 0.364 0.556 7.457 5.692
AIPW-0110 0.017 0.031 1.762 1.380 -0.026 0.870 9.328 7.529 -0.945 0.567 7.527 6.027
AIPW-0101 3.621 165.3 128.6 38.69 -1.019 294.4 171.6 63.55 15.32 123.2 351.0 69.06
MR-1111 0.040 0.018 1.665 1.308 0.257 0.950 9.379 7.060 -0.248 0.387 6.919 4.147
MR-1110 -0.031 0.022 1.689 1.347 0.219 0.913 9.828 7.301 0.114 0.404 6.484 4.991
MR-1101 0.039 0.021 1.669 1.386 -0.460 1.081 10.33 7.582 0.228 0.396 6.873 4.136
MR-1011 0.057 0.020 1.670 1.302 0.265 0.893 9.785 8.108 0.220 0.382 6.622 4.618
MR-1010 0.027 0.015 1.537 1.256 -0.071 0.860 9.603 7.096 0.265 0.359 6.140 5.054
MR-1001 0.044 0.026 1.714 1.350 0.441 1.039 10.36 8.224 0.326 0.462 7.427 6.043
MR-0111 -0.028 0.031 1.746 1.371 0.329 1.014 9.751 7.301 0.164 0.406 7.520 5.150
MR-0110 0.034 0.029 1.657 1.395 0.480 1.076 9.560 8.061 0.326 0.441 7.293 5.875
MR-0101 1.027 0.103 2.853 2.331 0.537 4.031 11.39 10.57 0.931 1.230 11.36 9.480
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value of α1, that is π1(α1
0) = π(V, S ). Next, we combine

the theory of empirical likelihood to prove that β̂MR is a
consistent estimator of β.

Referring to the method in Han [22] to establish the
relationship between the weight ω̂i and the empirical
likelihood on the biased sample. Let pi represent the
conditional empirical probability on the biased sample
(Yi, Xi,Zi,Ti, S i),Ri = 1, i = 1, · · · ,m, based on (2.8), (2.9)
and ω(V, S ) = 1

π1(α1
0) , a more reasonable value of pi can be

given by the following constrained optimization problem:

max
p1,··· ,pm

m∏
i=1

pi; pi ≥ 0, i = 1, · · · ,m;
m∑

i=1

pi = 1,

m∑
i=1

pi{π
i
j(α̂

j) − ν j(α̂ j)}/π1
i (α̂1) = 0, j = 1, · · · , J,

m∑
i=1

pi{Ûk
i (β̂k, γ̂k) − ηk(β̂k, γ̂k)}/π1

i (α̂1) = 0, k = 1, · · · ,K.

Using the Lagrange multiplier method again, we get

p̂i =
1
m

1
1 + λ̂T ĝi(α̂, β̂, γ̂)/π1

i (α̂1)
, i = 1, · · · ,m,

where λ̂T = (λ̂1, · · · , λ̂J+pK) is the (J + pK)-dimensional
Lagrange multiplier, and satisfies

1
m

m∑
i=1

ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

1 + λT ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

= 0.

Due to the non-negativity of p̂i, λ̂ satisfies 1 +

λ̂T ĝi(α̂, β̂, γ̂)/π1
i (α̂1) > 0, i = 1, · · · ,m. Since

1
m

m∑
i=1

ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

1 + λT ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

=
1

ν1(α̂1)
1
m

m∑
i=1

ĝi(α̂, β̂, γ̂)

1 +
π1

i (α̂1)−ν1(α̂1)
ν1(α̂1) + { λ

ν1(α̂1) }
T ĝi(α̂, β̂, γ̂)

=
1

ν1(α̂1)
1
m

m∑
i=1

ĝi(α̂, β̂, γ̂)

1 + { λ1+1
ν1(α̂1) ,

λ2
ν1(α̂1) , · · · ,

λJ+pK

ν1(α̂1) }ĝi(α̂, β̂, γ̂)
,

then the solution of (2.11), ρ̂, can be written as ρ̂1 = (λ̂1 +

1)/ν1(α̂1) and ρ̂l = λ̂l/ν
1(α̂1), l = 2, · · · , J + pK. Therefore

ω̂i =
1
m

ν1(α̂1)/π1
i (α̂1)

1 + λ̂T ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

=
p̂iν

1(α̂1)
π1

i (α̂1)
.

Just like White [24], let α j
∗, βk

∗ and γk
∗ are the minimum

points of the corresponding Kullback-Leibler distance

respectively, then we have α̂ j P
−→ α

j
∗, β̂

k P
−→ βk

∗, γ̂
k P
−→

γk
∗, and n1/2(α̂ j − α

j
∗), n1/2(β̂k − βk

∗) and n1/2(γ̂k − γk
∗) are

bounded by probability. At the same time, ν j(α̂ j)
P
−→ ν

j
∗,

ηk(β̂k, λ̂k)
P
−→ µk

∗, where ν j
∗ = E[π j(α j

∗)], µk
∗ = E[Uk(βk

∗, γ
k
∗)].

Generally speaking, when the model π j(α j) for π(V, S ) is
correctly specified, we have π j(α j

∗) = π(V, S ), and when
the model ak(γk) for E(Y |V,T, S ) is correctly specified, we
have ak(γk

∗) = E(Y |V,T, S ). Let αT
∗ = {(α1

∗)
T , · · · , (αJ

∗)
T },

βT
∗ = {(β1

∗)
T , · · · , (βK

∗ )T }, γT
∗ = {(γ1

∗)
T , · · · , (γK

∗ )T }, and
suppose ρ̂

P
−→ ρ∗.

Based on the empirical likelihood theory, it can be known
that λ̂

P
−→ 0. According to the appendix in Han [22], λ̂ =

Op(n−1/2) holds. Since the model π1(α1) is correct, then we

have m
n

P
−→ ν1

∗, and

m∑
i=1

ω̂iξ̂i(β) =
1
m

n∑
i=1

Riν
1(α̂1)/π1

i (α̂1)

1 + λ̂T ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

ξ̂i(β)

=
ν1(α̂1)

m

n∑
i=1

Ri/π
1
i (α̂1)

1 + λ̂T ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

ξ̂i(β)

=
ν1
∗

m

n∑
i=1

Ri/π
1
i (α̂1)

1 + λ̂T ĝi(α̂, β̂, γ̂)/π1
i (α̂1)

ξ̂i(β)

=
1
n

n∑
i=1

Ri

π1
i (α1
∗)
ξ̂i(β) + op(1).

Refer to Zhao [4], since

ξ̂i(β) = [Zi − µ̂
T (Ti)Xi]εi + [µ(Ti) − µ̂(Ti)]T Xiεi

+ [Zi − µ̂
T (Ti)Xi]XT

i [θ(Ti) − ĝ(Ti) + µ̂(Ti)β]

+ [µ(Ti) − µ̂(Ti)]T XiXT
i [θ(Ti) − ĝ(Ti) + µ̂(Ti)β],

ξi(β) = [Zi − µ
T (Ti)Xi][Zi − µ

T (Ti)Xi]Tβ + [Zi − µ
T (Ti)Xi]εi,

and E[Xiεi] = 0, E[(Zi − µ
T (Ti)Xi)Xi)T ] = 0, we have

ξ̂i(β) − ξi(β) = [µ(Ti) − µ̂(Ti)]T Xiεi

+ [µ(Ti) − µ̂(Ti)]T XiXT
i [θ(Ti) − ĝ(Ti) + µ̂(Ti)β]

+ [Zi − µ
T (Ti)Xi][XT

i θ(Ti) − XT
i ĝ(Ti)

+ XT
i µ̂(Ti)β − ZT

i β + XT
i µ(Ti)β].

Combine conditions C1,C4,C5 and Lemma 4.1, we have

‖
1
n

n∑
i=1

Ri

π1
i (α1
∗)
ξ̂i(β) −

1
n

n∑
i=1

Ri

π1
i (α1
∗)
ξi(β)‖

P
−→ 0.
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That is, 1
n

n∑
i=1

Ri

π1
i (α1
∗)
ξ̂i(β)

P
−→ 1

n

n∑
i=1

Ri

π1
i (α1
∗)
ξi(β). Then we have

m∑
i=1

ω̂iξ̂i(β) =
1
n

n∑
i=1

Ri

π1
i (α1
∗)
ξ̂i(β) + op(1)

=
1
n

n∑
i=1

Ri

π1
i (α1
∗)
ξi(β) + op(1)

P
−→ E[

R
π(V, S )

ξ(β)] = 0.

Therefore, when n → ∞, β is the solution of the formula
(2.13), which shows that β̂MR is a consistent estimator of β.

Next, suppose that F contains a model that correctly
specifies E(Y |V,T, S ). Without loss of generality, let a1(γ1)
be the true model and γ1

0 be the true value of γ1, that is
a1(γ1

0) = E(Y |V,T, S ), and γ1
∗ = γ1

0. A previous constraint is
actually

m∑
i=1

ω̂iÛ1
i (β̂1, γ̂1) =

1
n

n∑
i=1

Û1
i (β̂1, γ̂1),

and β̂1 P
−→ β1

∗ = β, so we get 1
n

n∑
i=1

Û1
i (β̂1, γ̂1)

P
−→ 0.

Let g(α∗, β∗, γ∗)T = [π1(α1
∗) − ν1

∗, · · · , π
J(αJ
∗) −

νJ
∗ , {U

1(β1
∗, γ

1
∗) − η1

∗}
T , · · · , {UK(βK

∗ , γ
K
∗ ) − ηK

∗ }
T ], due to

1
n

n∑
i=1

Û1
i (β̂1, γ̂1)

P
−→ 1

n

n∑
i=1

U1
i (β, γ1

0), ‖ 1
n

n∑
i=1

[ξ̂i(β) − ξi(β)]‖
P
−→

0, and E[U1(β, γ1
0)] = 0, then we have

m∑
i=1

ω̂iξ̂i(β)

=

m∑
i=1

ω̂i{ξ̂i(β) − Û1
i (β̂1, γ̂1)} +

1
n

n∑
i=1

Û1
i (β̂1, γ̂1)

=
1
m

n∑
i=1

Riξ̂i(β) − Û1
i (β̂1, γ̂1)

1 + ρ̂T ĝi(α̂, β̂, γ̂)
+ E[U1(β, γ1

0)] + op(1)

=
1

P(R = 1)
E[

Rξ(β) − U1(β, γ1
0)

1 + ρT
∗ g(α∗, β∗, γ∗)

] + op(1)

=
1

P(R = 1)
E{E[

Rξ(β) − U1(β, γ1
0)

1 + ρT
∗ g(α∗, β∗, γ∗)

|Y,V,T, S ]} + op(1)
P
−→ 0.

This shows that β̂MR is a consistent estimator of β.
So the proof of Theorem 2.1 is completed.

5. Conclusions

In this article, we have proposed the multiple robust
estimators for parameters in varying-coefficient partially

linear model with missing response at random, and the
multiple robustness of our proposals has been shown
theoretically under some regular conditions. Our simulation
studies fully demonstrate the superiority of our multiple
robust estimation method through Table 1 and Table
2. Finally, we point out some problems for the future
researches. First, we only discuss the multiple robust
estimation process of parameters, and the fitting of
nonparametric function curves can be expanded in the future
studies. Next, based on the model in this article, if the
missing mechanism is nonignorable missing, how to obtain
the robust estimation of parameters is also worth studying.
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