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Abstract: Epilepsy is considered as a brain network disease. Epileptic computational models are developed to simulate the
electrophysiological process of seizure. Some studies have shown that the epileptic network based on those models can be used
to predict the surgical outcome of patients with drug-resistant epilepsy. Most studies focused on the causal relationship between
electrophysiological signals of different brain regions and its impact on seizure onset, and there is no knowledge about how time delay
of electrophysiological signal transmitted between those regions related to seizure onset. In this study, we proposed an epileptic model
with time delay between network nodes, and analyzed whether the time delay between nodes of epileptic network can cause seizure
like event. Our results showed that the time delay between nodes may drive the network from normal state to seizure-like event through
Hopf bifurcation. The time delay between nodes of epileptic computational network alone may induce seizure-like event. Our analysis
suggested that the time delay of electrophysiological signals transmitted between different regions may be an important factor for seizure
happening, which provide a deeper understanding of the epilepsy, and a potential new path for epilepsy treatment.
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1. Introduction

Epilepsy is a chronic brain disease, which is characterized
by the occurrence of spontaneous seizures [1]. The affected
neurons produce synchronized abnormal discharges during
seizure [2]. There are about 50 million patients with
epilepsy globally, and there are two million new patients
each year. The focal onset seizure is the most common
type for patient with epilepsy. The onset starts locally
and propagates to normal brain tissues [3, 4]. There
are interactions between pathological and normal brain
regions [5]. The epilepsy is now considered as a brain
network disease. The epileptic discharges are with complex
temporal and spatial characteristics [6, 7]. How the
seizure onselectroencephalogram (EEG)ets and propagates
to neighbor regions is still in an infancy [8]. Some
early studies proposed mathematical models to simulate
the seizure onset, propagation and termination, which
are critical to drug treatment, surgical intervention and
neuromodulation of epilepsy [9, 10].

There are different approaches to model the epileptic
behaviors of the brain. Wendling et al. introduced a
computational macroscopic model of electroencephalogram
(EEG) activity that included a physiologically relevant fast
inhibitory feedback loop and the transition from interictal
to fast ictal activity was explained by the impairment of
dendritic inhibition in the model [11, 12]. Kalitzin et al.
proposed an analytical model as examples of transitions
between various dynamical states [13]. The model was then
used to study the dynamics of convulsive seizure termination
and postictal generalized EEG suppression [14]. Jirsa et al.
proposed a generic model called Epileptor. They showed
that the onset and offset of ictal-like discharges were well-
defined mathematical events: a saddle-node and homoclinic
bifurcation, respectively [15].

Furthermore, the coupled Epileptor network can be used
to predict the spatiotemporal diversity of seizure propagation
and termination in human focal epilepsy [16]. Time lags
between epilepsy network nodes were considered as an
important fact linked to seizure onset [17]. Bandt et al.
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studied connectivity strength and time lags between different
network nodes using resting-state functional Magnetic
Resonance Imaging (fMRI). They showed that there were
decreased time lags within the seizure onset node and
globally increased time lags throughout all regions of the
brain not involved in seizure onset or propagation [18].

In this study (see Figure 1), we investigated that
the dynamical behaviors of epilepsy network based on
simplified Epileptor model with time delay , and how the
variation of time delay between the network nodes induce
seizure-like event.

2. Local stability and Hopf bifurcation

The Epileptor model was introduced to represent complex
behavior of the brain for patient with epilepsy. Taking
advantage of time scale separation and focusing on the
slower time scale, two dimensional Epileptor was proposed
as follows [16]: dx1,i

dt = −x3
1,i − 2x2

1,i + 1 − zi + I1,i,
dzi
dt = 1

τ0

[
4(x1,i − x0,i) − zi −

∑N
j=1 Ki j(x1, j − x1,i)

]
,

where i ∈ {1, 2}; characteristic time scale is fixed at τ0 =

2857, and resting-state current I1,i = 3.1. x1,i is the state
variables on the slower time scale account for spike and
wave events observed in electrographic seizure recordings.
z is the state variable which guides the neural population
through the seizures including seizure onset and offset. Ki j

is the connection strength between Epileptor i and Epileptor
j as given by the connectivity matrix with i, j = 1, 2.
The parameter x0,i describes the excitability degree of each
Epileptor.

Some studies have shown that the time lags between
different brain regions will change in patients with epilepsy.
Proix et al found delays of recruitment can be either
highly variable or stereotypical by computing for several
seizures the mean and SD of the delays of recruitment
and the values of excitability and coupling parameters [8].
Zhang et al found that time delay is related to coupled
seizure network, which is unavoidably encountered due
to finite speed, reaction time of signal transmission over
the couplings, can lead to instabilities, bursting transitions,
bifurcations of periodic [19]. In this paper, we consider

the following epileptic model with two time delays between
coupled nodes:

dx11
dt = −x3

11 − 2x2
11 + 1 − z1 + I11,

dz1
dt = 1

τ0
[4(x11 − x01) − z1 − K12(x12(t − τ1) − x11)] ,

dx12
dt = −x3

12 − 2x2
12 + 1 − z2 + I12,

dz2
dt = 1

τ0
[4(x12 − x02) − z2 − K21(x11(t − τ2) − x12)] .

(2.1)
The nontrivial equilibrium point of model system (2.1) is
P(x∗11, z

∗
1, x
∗
12, z

∗
2), where

z∗1 = − x∗311 − 2x∗211 + 1 + I11,

x∗12 =
x∗311 + 2x∗211 + (4 + K12)x∗11 − 4x01 − 1 − I11

K12
,

z∗2 = − x∗312 − 2x∗212 + 1 + I12,

and x∗11 satisfies the following equation:

K21x11−h3(x11)−2h2(x11)−(4+K21)h(x11)+4x02+I12+1 = 0,

where

h(x11) =
x3

11 + 2x2
11 + (4 + K12)x11 − 4x01 − 1 − I11

K12
.

The characteristic equation of model (2.1) at the nontrivial
equilibrium point P is given by:

|λI−J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + 3x∗211 + 4x∗11 1 0 0
−

4+K12
τ0

λ + 1
τ0

K12e−λτ1

τ0
0

0 0 λ + 3x∗212 + 4x∗12 1
K21e−λτ2

τ0
0 −

4+K21
τ0

λ + 1
τ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be reduced into the following form

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 + A5e−λτ1−λτ2 = 0, (2.2)

where
A1 = 3x∗211 + 3x∗212 + 4x∗11 + 4x∗12 + 2

τ0
,

A2 = (3x∗211 +4x∗11)(3x∗212 +4x∗12)+
6x∗211+6x∗212+8x∗11+8x∗12+K12+K21+8

τ0
+

1
τ2

0
,

A3 =
(3x∗211 + 4x∗11)(6x∗212 + 8x∗12 + K21 + 4)

τ0
+ (3x∗212 + 4x∗12)

·
4 + K12

τ0
+

3x∗211 + 3x∗212 + 4x∗11 + 4x∗12 + K12 + K21 + 8

τ2
0

,

A4 =
(3x∗211+4x∗11)(3x∗212+4x∗12+K21+4)+(4+K12)(4+K21+3x∗212+4x∗12)

τ2
0

,

A5 = −K12K21
τ0

.

When τ1 = τ2 = 0, the characteristic equation (2.2) becomes

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 + A5 = 0.
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Figure 1. The epilepsy network with double time delay.

According to Routh-Hurwitz criteria, the positive
equilibrium of model (2.1) in the absence of time delay is
locally asymptotically stable when the following conditions
are satisfied:

A1 > 0, A1A2−A3 > 0 and A3(A1A2 − A3) > A2
1(A4+A5) > 0.

(2.3)
Next,we will analyze the effects of the two time-delays
on the stability of the nontrival equilibrium point P. We
substitute iω into equation(2.2) and separate the real and
imaginary parts, then we obtain the following equations: ω4 − A2ω

2 + A4 = −A5cos(ω(τ1 + τ2)),
−A1ω

3 + A3ω = A5sin(ω(τ1 + τ2)),
(2.4)

from which it follows that

ω8 + (A2
1 − 2A2)ω6 + (2A4 + A2

2 − 2A1A3)ω4+

(A2
3 − 2A2A4)ω2 + A2

4 − A2
5 = 0.

(2.5)

If A2
4−A2

5 < 0, the Equation (2.5) has a positive real root ω∗0.
We define τ = τ1 + τ2, then we get

τ∗k =
1
ω∗0

arccos
ω∗40 − A2ω

∗2
0 + A4

−A5
+

2kπ
ω∗0

, k = 0, 1, 2...

According to the Butler’s Lemma, we can conclude that the
equilibrium point P is stable for τ < τ∗0. Now, we discuss
whether Hopf bifurcation occurs at P of model (2.1) when τ
increases through τ∗0.
Based on Equation (2.2), we can further obtain

Sign
( d
dτ

Re(λ)
)
|τ∗k =Sign

(
Re(

dλ
dτ

)−1
)
|τ∗k

=Sign
(
4ω∗60 + (3A2

1 − 6A2)ω∗40

+ (2A2
2 − 4A1A3 + 4A4)ω∗20

+ A2
3 − 2A2A4

)
.

(2.6)

From Equation (2.6), it is clear that the sign can be
determined by

Sign
(

f
′

(x) |x=ω∗20

)
,

where f (x) = x4 + (A2
1 − 2A2)x3 + (2A4 + A2

2 − 2A1A3)x2 +

(A2
3 − 2A2A4)x + A2

4 − A2
5.

Theorem 1 Assume that the conditions in (2.3), A2
4 −A2

5 < 0
and f

′

(ω∗20 ) , 0 hold. The equilibrium point P of model
(2.1) is locally asymptotically stable for τ ∈ [0, τ∗0), and
Hopf bifurcation occurs at P when τ = τ∗0 ,where

τ∗0 =
1
ω∗0

arccos
ω∗40 − A2ω

∗2
0 + A4

−A5
.

3. Stability of bifurcated periodic solutions

Generally speaking, the time delays between two network
nodes are always similar, so we consider a special case τ1 =

τ2. In what follows, we will investigate the direction of Hopf
bifurcation, stability and period of the periodic solution
bifurcating from the equilibrium point P. Following the
ideas of Hassard et al. [20], we derive the explicit formulae
for determining these properties of Hopf bifurcation at the
critical value τ∗s =

τ∗0
2 by employing the normal form method

Mathematical Modelling and Control Volume 2, Issue 1, 13–23



16

and center manifold theorem. Let

u1 =x11 − x∗11,

u2 =z1 − z∗1,

u3 =x12 − x∗12,

u4 =z2 − z∗2,

and u1(t) = x11(τst), u2(t) = z1(τst), u3(t) = x12(τst), u4(t) =

z2(τst), τs = τ∗s + µ, µ ∈ R. For system(2.1), µ = 0 is
the Hopf bifurcation value. In the fixed phase space C =

C([−1, 0],R4), system (2.1) is transformed into a FDE as

u̇(t) = Lµ(ut) + F(µ, ut), (3.1)

where u(t) = (u1(t), u2(t), u3(t), u4(t))T ∈ R4, and Lµ :
C → R, F : R ×C → R are given respectively by

Lµ(φ) =

(τ∗s + µ)(


−3x∗211 − 4x∗11 −1 0 0

4+K12
τ0

− 1
τ0

0 0

0 0 −3x∗212 − 4x∗12 −1
0 0 4+K21

τ0
− 1
τ0



· φ(0) +


0 0 0 0
0 0 −

K12
τ0

0

0 0 0 0
−

K21
τ0

0 0 0

 φ(−1))

and

F(µ, φ) =(τ∗s + µ)


(−3x∗11 − 2)φ2

1(0) − φ3
1(0)

0
(−3x∗12 − 2)φ2

3(0) − φ3
3(0)

0

 ,
(3.2)

where φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))T ∈ C.

According to the Riesz representation theorem, there exists
a 4 × 4 matrix η(θ, µ) of bounded variation for θ ∈ [−1, 0],
which follows that

Lµφ =

∫ 0

−1
dη(θ, µ)φ(θ), for φ ∈ C.

In fact, we can choose

η(θ, µ) =



(τ∗s + µ)


−3x∗211 − 4x∗11 −1 0 0

4+K12
τ0

− 1
τ0

−
K12
τ0

0

0 0 −3x∗212 − 4x∗12 −1
−

K21
τ0

0 4+K21
τ0

− 1
τ0

 ,
θ = 0,

(τ∗s + µ)


0 0 0 0
0 0 −K12

τ0
0

0 0 0 0
−

K21
τ0

0 0 0

 , θ ∈ (−1, 0),

04×4, θ = −1.

For φ ∈ C1([−1, 0],R4), we define

A(µ)φ =


dφ(θ)

dθ
, −1 ≤ θ < 0,∫ 0

−1
dη(s, µ)φ(s), θ = 0,

and

R(µ)φ =

0, −1 ≤ θ < 0,

F(µ, φ), θ = 0.

Then system (3.1) is equivalent to

u̇t = A(µ)ut + R(µ)ut, (3.3)

where ut(θ) = u(t + θ), for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R4)∗), we define

A∗ψ(s) =


−

dψ(s)
ds

, s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0,

and the bilinear form

〈ψ(s), φ(θ)〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ,

(3.4)
where η(θ) = η(θ, 0). Thus, A = A(0) and A∗ are adjoint
operators.
Owning to ±iω∗0τ

∗
s are eigenvalues both of A and A∗, we can

compute the eigenvector of A corresponding to iω∗0τ
∗
s and

A∗ corresponding to −iω∗0τ
∗
s. Assume that the eigenvector of

A(0) corresponding to iω∗0τ
∗
s is q(θ) = (1,∆1,∆2,∆3)T eiω∗0τ

∗
sθ,
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then Aq(θ) = iω∗0τ
∗
sq(θ). The definition of A(0) and η(θ, µ)

yields
−3x∗211 − 4x∗11 −1 0 0

4+K12
τ0

− 1
τ0

−
K12e−iω∗0τ

∗
s

τ0
0

0 0 −3x∗212 − 4x∗12 −1

−
K21e−iω∗0τ

∗
s

τ0
0 4+K21

τ0
− 1
τ0


q(0) = iω∗0q(0).

Thus, we can get

∆1 = − 3x∗211 − 4x∗11 − iω∗0,

∆2 =
4 + K12 − (1 + iτ0ω

∗
0)(−3x∗211 − 4x∗11 − iω∗0)

K12e−iτ∗sω∗0
,

∆3 = − 3x∗212 − 4x∗12 − iω∗0.

Similarly, the eigenvector of A∗ corresponding to −iω∗0τ
∗
s is

q∗(s) = D(1,∆∗1,∆
∗
2,∆

∗
3)eiω∗0τ

∗
s s, then we get

∆∗1 =
−1

1
τ0
− iω∗0

,

∆∗2 =(iω∗0 −
1
τ0

)∆∗3,

∆∗3 =
τ0(−3x∗211 − 4x∗11 + iω∗0) + (4 + K12)∆∗1

K21eiω∗0τ
∗
s

.

From (3.4), we get

〈q∗(s), q(θ)〉 = D(1,∆∗1,∆
∗
2,∆

∗
3)(1,∆1,∆2,∆3)T

−

∫ 0

−1

∫ 0

ξ=0
D(1,∆∗1,∆

∗
2,∆

∗
3)e−iω∗0τ

∗
s(ξ−θ)dη(θ)

· (1,∆1,∆2,∆3)T e+iω∗0τ
∗
sξdξ

=D(1 + ∆∗1∆1 + ∆∗2∆2 + ∆∗3∆3 +
K21τ

∗
se
−iω∗0τ

∗
s

τ0

· ∆∗3 +
K12τ

∗
se
−iω∗0τ

∗
s

τ0
∆∗1∆2).

Thus, we get

D =(1 + ∆∗1∆1 + ∆∗2∆2 + ∆∗3∆3 +
K21τ

∗
se
−iω∗0τ

∗
s

τ0
∆∗3

+
K12τ

∗
se
−iω∗0τ

∗
s

τ0
∆∗1∆2)−1.

Therefore, it is clear that both 〈q∗(s), q(θ)〉 = 1 and
〈q∗(s), q(θ)〉 = 0 are satisfied. Let ut be the solution of (3.3)
when µ = 0. Define

z(t) = 〈q∗, ut〉 , W(t, θ) = ut(θ) − 2Re {z(t)q(θ)} . (3.5)

On the center manifold C0, we get

W(t, θ) = W(z(t), z(t), θ),

and

W(z(t), z(t), θ) = W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ ... ,

(3.6)
where z and z are local coordinates for center manifold C0

in the direction of q∗ and q∗. Note that W is real if ut is real.
We only consider real solutions. For solution ut ∈ C0 of
(3.3), due to µ = 0, we have

ż(t) =iω∗0τ
∗
sz + q∗(0)F(0,W(z, z, 0) + 2Re {z(t)q(θ)})

=iω∗0τ
∗
sz + q∗(0)F0(z, z).

We rewrite this equation as

ż(t) = iω∗0τ
∗
sz + g(z, z),

where

g(z, z) =q∗(0)F0(z, z)

=g20(θ)
z2

2
+ g11(θ)zz + g02(θ)

z2

2
+ g21(θ)

z2z
2

+ ... .

(3.7)
From (3.5) and (3.6), we have

ut =(u1t(θ), u2t(θ), u3t(θ), u4t(θ))

=W(t, θ) + 2Re {z(t)q(θ)} ,

where q(θ) = (1,∆1,∆2,∆3)T eiω∗0τ
∗
sθ, then

u1t(0) =W (1)(t, 0) + z + z,

u2t(0) =W (2)(t, 0) + ∆1z + ∆1z,

u3t(0) =W (3)(t, 0) + ∆2z + ∆2z,

u4t(0) =W (4)(t, 0) + ∆3z + ∆3z,

u1t(−1) =W (1)(t,−1) + ze−iω∗0τ
∗
s + zeiω∗0τ

∗
s ,

u2t(−1) =W (2)(t,−1) + ∆1ze−iω∗0τ
∗
s + ∆1zeiω∗0τ

∗
s ,

u3t(−1) =W (3)(t,−1) + ∆2ze−iω∗0τ
∗
s + ∆2zeiω∗0τ

∗
s ,

u4t(−1) =W (4)(t,−1) + ∆3ze−iω∗0τ
∗
s + ∆3zeiω∗0τ

∗
s .

Comparing the coefficients with (3.7), we can yield the
following important parameters:

g20 =2Dτ∗s[−3x∗11 − 2 + ∆
∗

2∆2
2(−3x∗12 − 2)],
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g11 =2Dτ∗s[−3x∗11 − 2 + ∆
∗

2∆2∆2(−3x∗12 − 2)],

g02 =2Dτ∗s[−3x∗11 − 2 + ∆
∗

2∆
2
2(−3x∗12 − 2)],

g21 =2Dτ∗s
[
(−3x∗11 − 2)

(
W (1)

20 (0) + 2W (1)
11 (0)

)
− 3

]
+2D ∆∗2τ

∗
s

[
(−3x∗12 − 2)

(
W (3)

20 (0)∆2 + 2W (3)
11 (0)∆2

)
− 3∆2

2∆2

]
.

Since g21 depends on the coefficient W20(θ) and W11(θ), we
need to compute them. From (3.3) and (3.5), we can get

Ẇ =u̇t − żq − żq

=

AW − gq(θ) − g q(θ), θ ∈ [−1, 0),

AW − gq(0) − g q(0) + F0, θ = 0.

(3.8)

On the other hand, on the center manifold C0 near the
origin, we can obtain

Ẇ =Wzż + Wzż

=[W20(θ)z + W11(θ)z](iw∗0τ
∗
sz + g(z, z))

+[W11(θ)z + W02(θ)z](−iw∗0τ
∗
sz + g(z, z)) + .... .

(3.9)

By comparing the coefficients of z2

2 and zz, we know that

(2iw∗0τ
∗
sI−A)W20(θ) =


− g20q(θ) − g02q(θ), θ ∈ [−1, 0),

− g20q(0) − g02q(0) +
∂2F0

∂z2 , θ = 0.

(3.10)
Similarly,

− AW11(θ) =


− g11q(θ) − g11q(θ), θ ∈ [−1, 0),

− g11q(0) − g11q(0) +
∂2F0

∂z∂z
, θ = 0.

(3.11)

We know that for θ ∈ [−1, 0),

Ẇ20(θ) = 2iω∗0τ
∗
sW20(θ) + g20q(θ) + g02q(θ).

Substituting q(θ) = q(0)eiw∗0τ
∗
sθ into(3.10), then we have

W20(θ) =
ig20

w∗0τ
∗
s
q(0)eiw∗0τ

∗
sθ +

ig02

3w∗0τ
∗
s
q(0)e−iw∗0τ

∗
sθ + E1e2iw∗0τ

∗
sθ,

(3.12)
where E1 = (E(1)

1 , E(2)
1 , E(3)

1 , E(4)
1 ) ∈ R4 is a constant vector.

Similarly, we obtain

W11(θ) =
−ig11

w∗0τ
∗
s

q(0)eiw∗0τ
∗
sθ +

ig11

w∗0τ
∗
s
q(0)e−iw∗0τ

∗
sθ + E2, (3.13)

where E2 = (E(1)
2 , E(2)

2 , E(3)
2 , E(4)

2 ) ∈ R4 is also a constant
vector.

Based on (3.10), (3.11), (3.12) and (3.13),we can obtain

E1 =(2iw∗0τ
∗
sI −

∫ 0

−1
e2iw∗0τ

∗
sθdη(θ))−1Fz2

=

 E11 E12

E21 E22

−1

Fz2 ,

(3.14)

where

E11 =

 2iω∗0τ
∗
s + 3x∗211 + 4x∗11 1
−

4+K12
τ0

2iω∗0τ
∗
s + 1

τ0

 ,
E12 =

 0 0
K12e−2iω∗0τ

∗
s

τ0
0

 , E21 =

 0 0
K21e−2iω∗0τ

∗
s

τ0
0

 ,
E22 =

 2iω∗0τ
∗
s + 3x∗212 + 4x∗12 1
−

4+K21
τ0

2iω∗0τ
∗
s + 1

τ0

 ,
and

E2 = −(
∫ 0

−1
dη(θ))−1Fzz

=


3x∗211 + 4x∗11 1 0 0
−

4+K12
τ0

1
τ0

K12
τ0

0

0 0 3x∗212 + 4x∗12 1
K21
τ0

0 −
4+K21
τ0

1
τ0



−1

Fzz,

(3.15)

where

Fz2 =


2τ∗s(−3x∗11 − 2)

0
2τ∗s∆

2
2(−3x∗12 − 2)

0

 ,

Fzz =


2τ∗s(−3x∗12 − 2)

0
2τ∗s∆2∆2(−3x∗12 − 2)

0

 .

Thus, W20(θ) and W11(θ) can be determined and g20, g11,
g02, g21 can be expressed. Hence, we can judge property
of Hopf bifurcation by three parameters µ2, β2, T2 and
compute the following values:

c1(0) =
i

2ω∗0τ
∗
s
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

g21

2
,
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µ2 = −
Re {c1(0)}
Re

{
λ′(τ∗s)

} ,
β2 = 2Re {c1(0)} ,

T2 = −
Im {c1(0)} + µ2Im

{
λ′(τ∗s)

}
w∗0τ

∗
s

.

From the conclusion of Hassard et al. [20], we have the
conclusion
Theorem 2 µ2 determines the direction of the Hopf
bifurcation, β2 determines the stability of the bifurcating
periodic solution, and T2 determines the period of the
bifurcating periodic solution. Moreover, if µ2 > 0 (µ2 <

0), the Hopf bifurcation is supercritical (subcritical); if
β2 > 0 (β2 < 0), the bifurcating periodic solution is
stable (unstable); if T2 > 0 (T2 < 0), the period increases
(decreases).

4. Numerical simulations

We use some numerical simulation to illustrate the
bifurcation analysis. Firstly, we consider the following
Epileptor model: dx11

dt = −x3
11 − 2x2

11 + 1 − z1 + I11,
dz1
dt = 1

2857 [4(x11 − x01) − z1] ,

where x01 and I11 are regarded as the two parameters. We
plot a critical curve with respect to these two parameters in
Figure 2, which gives the stable region. Moreover, fixing

τ0 = 2857,K12 = 18,K21 = −7, x01 = −2.6,
x02 = −1.2, I11 = 3.1, I12 = 3.1,

we consider a coupled Epileptor model with the following
form

dx11
dt = −x3

11 − 2x2
11 + 1 − z1 + 3.1,

dz1
dt = 1

2857 [4(x11 + 2.6) − z1 − 18(x12(t − τ1) − x11)] ,
dx12
dt = −x3

12 − 2x2
12 + 1 − z2 + 3.1,

dz2
dt = 1

2857 [4(x12 + 1.2) − z2 + 7(x11(t − τ2) − x12)] .
(4.1)

The pathological changing of brain tissues always
increase or decrease the time lags of signal transmission
bidirectionally at the same time. Therefore, we consider a
special scenario τ1 = τ2. We can compute the nontrivial
equilibrium point P (0.0114, 4.0997, 0.3640, 3.7870) of
model (4.1). In the absence of delay, τ1 = τ2 = 0, the

dynamic behaviors of model (4.1) are described in Figure
3, which indicates that P is locally asymptotically stable.
Using Matlab software, we can find the unique positive
solution ω∗0 = 0.3 in (2.5). Then, we can obtain τ∗s = 2.6,
c1(0) = −3.69 − 1.36i, µ2 = 8.62, β2 = −0.85, T2 =

−5.41. Based on the Theorem 2, model (4.1) undergoes a
supercritical Hopf bifurcation at the nontrivial equilibrium
point P and the bifurcating periodic solution exists for τs

slightly larger than τ∗s and the bifurcated periodic solution
is unstable, which can be seen in Figure 4. We also plot
Figure 5 to present phase map between x11 and its delay
xd

11.Moreover, we take τ0 as the parameter and exhibit a
critical curve in the plan τ0 − τs. From Figure 6, we
can see that time delay decreases with the increasing of
characteristic time scale τ0.We also consider other cases
such as τ2 = 0.5τ1,τ2 = 2τ1 and τ2 = 4τ1. The periodic
solution still exist which can be seen in Figure 7.

5. Discussions

Our theoretical analysis and numerical simulation both
show that the increase of time delay between nodes change
the network to SLE state through Hopf bifurcation. The
bifurcation value τs also relies on characteristic time scale
of brain tissue τ0. The increasing of τ0 will increase the
threshold of bifurcation value τs. Time delay between
nodes of epileptic network is important for understanding
the seizure. The seizure onsets are mainly due to the changes
of brain tissues, which alter the topology of epileptic
network. Early studies using diffusion tensor imaging
(DTI) indicated the decrease in fractional anisotropy (FA)
of brain regions of patients with epilepsy, which further
changed the time delay of signal transmission between brain
regions [21]. Study using fMRI showed global increased
time lags through all regions of the brain not involved in
seizure onset and propagation [18]. Our study show that
the stable network may change to SLE state by introducing
time delays between nodes, which indicates that time delay
is one of the important reasons for seizure onset. Moreover,
our analysis shows that the epileptic network of two coupled
nodes goes to the SLE state through Hopf bifurcation.

Our results support that the brain region with increased
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Figure 2. The stability region in the plane x01 − I11.
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Figure 3. Without any time delay, the nontrivial
equilibrium point P is locally asymptotically
stable.

time delay with other regions can be selected for epilepsy
treatment. Noninvasive neuromodulation is a potential
measure to treat drug-resistant epilepsy, which use electric
or magnetic field to stimulate specific brain region in
order to eliminate seizure, such as repetitive Transcranial
Magnetic Stimulation (rTMS), transcranial Alternating
Current Stimulation (tACS), etc. Where and when to make
the stimulation are the key factors for efficacy of treatment.
Our theoretical study shows that the changing in time delay
between brain regions is a good indicator for forecasting
seizure onset. Scalp EEG is a convenient and noninvasive
tool of measuring electrophysiological activities of brain.
There are also some measures, such as phase lag index,
to quantify time lags of EEG signal transmission between
different recording sites [22]. Time lags of nodes of epileptic
network can be used to select target for epilepsy treatment.
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Figure 4. A periodic solution of model (4.1)
bifurcates from the nontrivial equilibrium point P.
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