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Abstract: A deterministic multi-stage malaria model with a non-therapeutic control measure and the effect of
loss of immunity due to the use of the Long-Lasting bednets with a control perspective is formulated and analyzed
both theoretically and numerically. The model basic reproduction number is derived, and analytical results show
that the model’s equilibria are locally and globally asymptotically stable when certain threshold conditions are
satisfied. Pontryagin’s Maximum Principle with respect to a time dependent constant is used to derive the necessary
conditions for the optimal usage of the Long-Lasting Insecticide-treated bednets (LLINs) to mitigate the malaria
transmission dynamics. This is accomplished by introducing biologically admissible controls and ε%-approximate
sub-optimal controls. Forward-backward fourth-order Runge-Kutta method is used to numerically solve the optimal
control problem. We observe that the disadvantage (loss of immunity, even at its maximum) in the use of bednets
is compensated by the benefit of the number of susceptible/infected individuals excluded from the malaria disease
dynamics, the only danger being the poor use of the long-lasting bednets. Moreover, it is possible to get closer to the
optimal results with a realistic strategy. The results from this study could help public health planners and policy
decision-makers to design reachable and more practical malaria prevention programs “close” to the optimal strategy.

Keywords: malaria; long-lasting insecticide-treated bed nets; optimal control; sub-optimality

1. Introduction

Malaria is a vector-borne disease of global

public health concern with high level of morbidity

and mortality in the tropical regions of the

world. The disease is caused by several species

of parasites of the Plasmodium genus type and

transmitted to humans by the bite of a female
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anopheles mosquito when taking the blood meal

necessary for egg production. In 2018, there

was an estimated 228 million cases of malaria

worldwide with about 405,000 deaths attributable

to malaria [39]. Various mathematical models of the

transmission dynamics of malaria and its control

have been proposed in the literature [2, 3, 5, 8, 10,

15, 16, 20, 34, 38]. The very first model is that

of Ross-MacDonald who laid the foundations for

modeling malaria [26, 35]. Models that include

therapeutic (treatment and vaccination) and non-

therapeutic (insecticide-treated bed net) measures

have also flourished in the literature [12, 17, 19,

33]. Because insecticide-treated nets (ITNs) reduce

human/mosquito contacts, distribution campaigns

have been organized in affected countries, including

Cameroon. However, the use of these mosquitoes

treated bednets have not always been satisfactory

as several people let holes in the bednets, do

not use them every night (poor adherence), or

use these bednets for other activities such as

fishing [36]. Mosquitoes insecticide-treated bednets

could influence the force of infection, the rate of

recruitment of new females mosquito, or the death

rate of mosquitoes [6, 10, 11, 17, 19]. Moreover, the

use of these treated bednets could influence the rate

of loss of immunity.

We formulate a mathematical model for the

transmission dynamics of malaria in human

populations, which takes the (good or poor) use

of bednets as a control measure. First, we

formulate the autonomous model with a constant

proportion of bednets usage as control strategy.

Next, we compute the basic reproduction number

T0, and investigate the existence and stability of the

equilibria. Analytical results show that both model

equilibria; the disease-free and the endemic states

are locally asymptotically stable when T0 < and

when T0 > 1, respectively. However, the model could

exhibit the phenomenon of backward bifurcation

when T0 < 1, an epidemiological situation where,

although necessary, having the basic reproduction

number less than unity is not sufficient for malaria

elimination [38].

We then extend our autonomous model by

considering a time-dependent control of the

proportion of bednets usage. Optimal control

theory is used to establish conditions under

which the spread of malaria can be mitigated.

The characterization of the optimal control

is obtained by the application of Pontryagin’s

maximum principle. We use the Forward-backward

fourth-order Runge-Kutta method for numerical

simulations to determine an optimal control

strategy. In addition, we focus on a bednet

control strategy since the other controls measures

are expensive. By other vector controls, we

mean outdoor application of larvicides (chemical

or biological), breeding habitat reduction (e.g.,

draining standing water), outdoor vector control

(mosquito fogging, attractive toxic sugar bait

(ATSB)), indoor residual spraying (IRS), repellents,

including topical repellents, mosquito coils, etc,

rapid diagnosis and treatment (RDT), preventative

drugs like seasonal malaria chemo-prevention

(SMC), intermittent preventative treatment

(IPT) [19]. Generally, the bednet control in the

literature concerns the bednets usage, including

insecticide-treated bed nets (ITNs), long-lasting

insecticide-treated nets (LLINs), and untreated

Mathematical Modelling and Control Volume 1, Issue 4, 188–207
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bednets (UBNs) [19]. Some of these other vector

controls do not respectful the ecological population

environment. But, the use of these other vector

control require periodic actions on a short time (1

day, 1 week, 1 month, 1 year) that is less effective

and practicable than the three years’ use of the

LLNs. We observe that the disadvantage (loss

of immunity, even at its maximum) in the use

of bednets is compensated by the benefit of the

number of susceptible/infected individuals excluded

from the malaria disease dynamics, the only danger

being the poor use of the long-lasting bednets. In

fact, the model suggests that if one family fails

to use accurately the LLNs, then the number of

infectious will increase (sometimes exponentially)

since the protection of the bednets would drop down.

However, it is possible to come close to the optimal

results with a realistic strategy.

The rest of the paper is organized as follows. In

Section 2, we present the mathematical model for

malaria transmission dynamics with a parameter

w that represents the proportion of persons having

and using the treated mosquito bednets correctly.

In Section 4, we propose an optimal control

problem for the minimization of the number of

infected humans while controlling the cost of control

interventions with bednets. Finally, in Section 4.4,

some numerical simulations provided to support

the analytical results are interpreted from the

epidemiological point of view. Section 5 is the

conclusion.

2. Modeling of the LLITN controlled

dynamics of malaria

2.1. Description of involved phenomena

In this section, we consider two populations,

namely human hosts and female mosquitoes that

are assumed homogeneously distributed. We

suppose that female mosquitoes only feed with

human blood. The human population is subdivided

into three classes, namely the susceptible Sh, the

infectious Ih and the immune Rh as shown in Figure

1. According to [20], we do not consider an exposed

compartment because it does not significantly

influence qualitatively the evolution of infections in

the human population. The recruitment is done

only in the susceptible class at a rate Λh. In

all compartments, there is an output of µh due to

natural death, with an additional death rate µd

in the infectious compartment. When in contact

with an infectious mosquito, a susceptible humans

become infected at a rate αh representing the force

of infection. Infectious humans recover and gain

immunity at a rate δh, while the rate of loss of

immunity is γh.

Sh Ih Rh

µh µh + µd µh

Λh αh δh

γh

Figure 1. Compartment diagram of the
human component of the model.

Following the work in [17, 19, 37], we distinguish

the questing anopheles (looking for the blood meal)

from the resting one. As depicted in Figure 2, the
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new mosquitoes arrive through the compartment

of questing susceptible at rate Λv. The natural

death rate is µv. When in contact with an infectious

human, a susceptible mosquito can become infected

at a rate of αv corresponding to the strength of

infection of the mosquitoes. Once infected, a

mosquito will alternate (at most 12 times) during

its period of latency between the resting status and

the questing status. Hence, we consider 6 resting

infected compartments and 6 questing infected

compartments. The transition rate from resting

status to questing status is χ, and the transition rate

from questing to resting is β. Assuming that the

number of bites on a human by female mosquitoes

per day is a, the fraction of persons having a long-

lasting insecticide-treated net is b ∈ [0,1], and the

sub-fraction of persons using it effectively is u ∈

[0,1]. Hence, the proportion of people who own a

mosquito net and use it adequately is w := b × u ∈

[0,1]. We suppose that the dependence of some

parameters with respect to w can be express as

a(w) = amax (1− w) + wamin, (1)

Λv(w) = Λmax
v (1− w) + wΛmin

v , (2)

γh(w) = γmin
h (1− w) + wγmax

h , (3)

µ̃v(w) = µv + w∆µv. (4)

Indeed, the adequate use of mosquito bednet

reduces transmission forces αh and αv through

the factor a. It also limits indirectly the

horizontal immigration of mosquitoes in the human

environment via the rate Λv. Finally, w indirectly

increases the rate of death in the population

of mosquitoes since it reduces mosquito-human

contacts, and then there is a reduction of mosquito’s

blood meal leading to additional death rate.

Sq E1
q E2

q E3
q E4

q E5
q E6

q Iq

E1
r E2

r E3
r E4

r E5
r E6

r E7
r Ir

Λv

µv

µ̃v

αv χ χ χ χ χ χ χχ χβ β β β β β β

Figure 2. Compartment diagram of the
mosquito component of the model.

The variables and parameters of the model are

presented in detail in Table 1, Table 2 and Table 3.

Table 1. Variables of the model.
Variable Description
Humans
Sh Number of susceptible humans within the population

Ih Number of infectious humans within the population

Rh Number of immune humans within the population

Nh = Sh + Ih + Rh Total number of humans in the population

Mosquitoes
Sq Number of questing susceptible mosquitoes

Ei
q Number of questing infected mosquitoes in step i

Ei
r Number of resting infected mosquitoes in step i

Iq Number of questing infectious mosquitoes

Ir Number of resting infectious mosquitoes

Nq
v = Sq + ∑6

i=1 Ei
q + Iq Total number of questing mosquitoes

Nr
v = ∑7

i=1 Ei
r + Ir Total number of resting mosquitoes

Nv = Nq
v + Nr

v Total number of mosquitoes

Mathematical Modelling and Control Volume 1, Issue 4, 188–207
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Table 2. Composite parameters of the
model.

Parameter Formula Description

αh a(w)
mIq

Nh
Incidence rate of susceptible human

αv a(w)

(
cIh
Nh

+
c̃Rh
Nh

)
Incidence rate of susceptible mosquitoes

fr
χ

χ + µv
Resting frequency of mosquitoes

fq
β

β + µ̃v
Questing frequency of mosquitoes

2.2. Mathematical model and preliminary

properties

According to the above description and

assumptions, we proposed the following system

of non-linear ordinary differential equations (5).



S
′
h = Λh + γh(w)Rh − (αh(w) + µh)Sh,

S
′
q = Λv(w)− (αv(w) + µ̃v(w))Sq,

E1
′

r = αv(w)Sq − (χ + µv)E1
r ,

Ei
′

r = βEi−1
q − (χ + µv)Ei

r, 2≤ i ≤ 6,

Ei
′

q = χEi
r − (β + µ̃v(w))Ei

q, 1≤ i ≤ 6,

E7
′

r = βE6
q − (χ + µv)E7

r , ,

I
′
r = βIq − (χ + µv)Ir,

I
′
q = χ(E7

r + Ir)− (β + µ̃v(w))Iq

I
′
h = αh(w)Sh − (δh + µh + µd)Ih,

R
′
h = δh Ih − (γh(w) + µh)Rh.

(5)

Table 3. Atomic parameters of the model.
Parameter Description Value Reference
Human
Λh Immigration in the host

population
10000

59∗365 [6,11]

γmax
h Maximal transmission

rate of loss of
0.0146 [8]

immunity within the
host population

γmin
h Minimal transmission

rate of loss of
0.00055 [8]

immunity within the
host population

δh Rate of recovery in the
host population

0.0035 [8]

µh Death rate in the host
population

1
59×365 [6,11]

µd Disease-induced death
rate within

[
10−5 ,10−3] [6]

the host population

amax Maximal number of
bites on humans by one

19 ∗ 0.5 [8]

female mosquito per
day

amin Minimal number of
bites on humans by one

4.3 ∗ 0.33 [8]

female mosquito per
day

m Infectivity coefficient of
hosts due to a bite

0.022 [13]

of infectious vector

Mosquitoes
Λmax

v Maximun immigration
rate of vectors

104
21 + 1 Assumed

Λmin
v Minimun immigration

rate of vectors
104
21 [11]

χ Rate at which resting
vectors move to

1
5 [37]

the questing state

β Rate at which questing
vectors move to

2
3 [37]

the resting state

µv = µmin
v Natural death rate of

vectors
1

21 [6,11]

∆µv Death rate of vectors
due to bednet

1
21 [6,11]

c Infectivity coefficient of
vector due to

0.48 [13]

a bite of infectious host

c̃ Infectivity coefficient of
vector due to

0.048 [13]

a bite of removed host
group
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By setting xS =
(
Sh,Sq

)
∈ R2 and xI ≡(

(Ei
r, Ei

q)1≤i≤6, E7
r , Ir, Iq, Ih, Rh

)
∈ R17, the system

(5) can be rewritten as

x′ = A(x)x + b. (6)

More precisely, we have

 x′S = AS(x)xS + AS,I(x)xI + bS,

x′I = AI(x)xI

, where

(7)

bS =

 Λh

Λv

 , AS =

 −µh 0

0 −µ̃v

 and

ASI is the 2 × 17 matrix with all its coefficients

null, except ASI (1,15) = − amSh
Nh

, ASI (1,17) = γh,

ASI (2,16) = −
acSq

Nh
and ASI (2,17) = −

ãcSq

Nh
.

AI =

 A11 A12

A21 A22

 .

A11 is a 13× 13 matrix satisfying



A11 (i, i) = −χ− µv,∀i = 1,3, . . . ,13

A11 (i, i) = −β− µ̃v,∀i = 2,4, . . . ,12

A11 (i + 1, i) = χ,∀i = 1,3, . . . ,11

A11 (i + 1, i) = β,∀i = 2,4, . . . ,12

A11 (i + 1, i) = 0, otherwise.

A12 is the 13× 4 matrix defined by A12 (1,3) =
acSq

Nh
,

A12 (1,4) =
ac̃Sv

Nh
and A12 (i, j) = 0 for other cases.

The matrix A21 is the 4 × 13 matrix defined by

A21 (2,13) = χ and A21 (i, j) = 0 for the other cases.

The matrix A22 is the 4× 4 square matrix defined by

A22 =


−(χ + µv) β 0 0

χ −(β + µ̃v) 0 0

0
amSh

Nh
−(δh + µh + µd) 0

0 0 δh −(γh + µh)

 .

Proposition 2.1. The non-negative cone (R+)
19 is

positively invariant for system (7).

Proof 2.0.1. The result comes from the fact that A(x)

is a Metzler matrix for all x ∈ (R+)
19, i.e., aij(x) =

A(x) (i, j) ≥ 0 for i , j. Indeed, since the solution of

the system (7) is continuous, it suffices to check that

every trajectory starting at the boundary of (R+)
19

remains in (R+)
19. That boundary is defined as

∪19
i=1Hi where Hi ≡

{
x ∈ (R+)

19 , | xi = 0
}

. For x ∈

Hi, x′i = ∑19
j=1 aij(x)xi + bi = ∑19

j=1,i,j aij(x)xi + bi ≥ 0.

This means that xi moves from 0 to non-negative

values.

Proposition 2.2. The set Ω ={(
Sh,Sq, (Ei

r, Ei
q)1≤i≤6, E7

r , Ir, Iq, Ih, Rh

)
∈ R19

+ /0 ≤ Nh

≤ Λh
µ h

,0 ≤ Nv ≤
Λv

µv

}
is a compact forward-

invariant and absorbing set for the model system

(5).

Proof 2.0.2. Adding respectively the human sub-

populations equations and then the mosquitoes sub-

populations equations, we have

N
′
h =Λh − µhNh − µd Ih ≤ Λh − µhNh, (8)

N
′
v =Λv − µvNv − µ̃vwNq

v ≤ Λv − µvNv. (9)

From Proposition 2.1, we have Nh, Nv ≥ 0. Applying

Gronwall’s inequality, we have

Nh (t) ≤Nh (0) e−µht +
Λh
µh

(
1− e−µht) , (10)

Mathematical Modelling and Control Volume 1, Issue 4, 188–207
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Nv (t) ≤Nv (0) e−µvt +
Λv

µv

(
1− e−µvt) . (11)

Assuming that Nh (0) ≤
Λh
µh

and Nv (0) ≤
Λv

µv
. it

follows that Nh ≤
Λh
µh

and Nv ≤
Λv

µv
.

Proposition 2.3. At any time t, the model system

(5) is well-posed, i.e., it admits a non-negative global

unique C1-solution on the set R+.

Proof 2.0.3. Applying the Cauchy-Lipschitz

theorem, Proposition 2.1 and Proposition 2.2,

the result is immediate.

3. Asymptotic and bifurcation analyses

In this section we study the existence of equilibria

and their stability using the theory of bifurcation.

3.1. Disease-free equilibrium and threshold

condition

This section is devoted to local and global

stability of the disease-free equilibrium which

unconditionally exists.

Proposition 3.1. System (5) admits a disease-free

equilibrium (DFE) given by x∗ = (x∗S,x∗I ) with

x∗S =
(

S∗h ,S∗q
)
=

(
Λh
µh

,
Λv

µ̃v

)
and x∗I = 0R17 ∈R17 (12)

Proof 3.0.1. An equilibrium is obtained by solving

x′ = A(x)x + b = 0. A DFE corresponds to any

solution satisfying xI = 0R17 .

Proposition 3.2. The system x′ = AS(x∗).
(
x− x∗S

)
is

globally asymptotically stable (GAS) at x∗S on R2
+.

Proof 3.0.2. The proof is immediate since the matrix

AS(x∗) =

 −µh 0

0 −µ̃v


has all its eigenvalues −µh and −µ̃v negative.

In the following, we determine a stability

threshold condition using a technique well described

and used in [17, 37]. In our case, this threshold can

be biologically interpreted as the basic reproduction

number T0 [19].

Let us define the threshold

T0 =
Λvam( fr fq)7

βµ̃v
(
1− fq fr

) aµh [c(γh + µh) + c̃δh]

Λh(δh + µh + µd) (γh + µh)
. (13)

Theorem 3.1. T0 is equivalent to the basic

reproduction number T0 of the model system (5).

Moreover, the DFE is locally asymptotically stable

(LAS) if T0 ≤ 1.

Proof 3.1.1. According to Gautier-Sallet’s algorithm
in [18] and Proposition 3.2, it is sufficient to obtain
condition ensuring that AI(x∗) is stable (all its
eigenvalues are negative). Looking carefully at
A11 and A22, they are Metzler stable. Thus, let
N = A22(x∗) − A21(x∗) × A−1

11 (x
∗) × A12(x∗). Using

formal calculus (under Sagemath software for
instance), we have

N =


−(χ + µr) β 0 0

χ −(β + µ̃v) 0 0

0
amS∗h

N∗h
−(δh + µh + µd) 0

0 0 δh −(γh + µh)



−


0 0 0 0

0 0 − χ7β6

(χ + µv)
7
(β + µ̃v)

6

acS∗q
N∗h

− χ7β6

(χ + µv)
7
(β + µ̃v)

6

ac̃S∗q
N∗h

0 0 0 0
0 0 0 0

 .

=


−(χ + µr) β 0 0

χ −(β + µ̃v)
ac f 7

r f 6
q S∗q

N∗h

ac̃ f 7
r f 6

q S∗q
N∗h

0 am −(δh + µh + µd) 0
0 0 δh −(γh + µh)



Let us consider the 2× 2 blocks in N. Since N11 is Metzler stable,
let L = N22 −N21 ×N−1

11 ×N12.
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L =

(
−(δh + µh + µd) 0

δh −(γh + µh)

)
+

(
0 am
0 0

)

·


β + µ̃v

(χ + µv)(β + µ̃v)− βχ

β

(χ + µv)(β + µ̃v)− βχ
χ

(χ + µv)(β + µ̃v)− βχ

χ + µv

(χ + µv)(β + µ̃v)− βχ


 0 0

ac f 7
r f 6

q S∗q
N∗h

ac̃ f 7
r f 6

q S∗q
N∗h



=

 −(δh + µh + µd) +
am (χ + µv)

(χ + µv)(β + µ̃v)− βχ

ac f 7
r f 6

q S∗q
N∗h

am (χ + µv)

(χ + µv)(β + µ̃v)− βχ

ac̃ f 7
r f 6

q S∗q
N∗h

δh −(γh + µh)



AI(x∗) is stable if

amδh (χ + µv)

(χ + µv)(β + µ̃v)− βχ

ac̃ f 7
r f 6

q S∗q
N∗h (γh + µh)

− (δh + µh + µd)

+
am (χ + µv)

(χ + µv)(β + µ̃v)− βχ

ac f 7
r f 6

q S∗q
N∗h

< 0

Since N∗h = S∗h , this is equivalent to

1 >
a2m f 7

r f 7
q S∗q (c̃δh + c (γh + µv))

βS∗h(δh + µh + µd) (γh + µv)
(
1− fr fq

)
=T0.

Theorem 3.2. The DFE is GAS in Ω when T0 <
µh

µh + µd
≡ ζ.

Proof 3.2.1. Our proof relies on Theorem 4.3 in [18],

which establishes global asymptotic stability (GAS)

for epidemiological systems that can be expressed in

matrix form (7). The demonstration is completely

similar to that made in [37].

3.1.1. Endemic equilibrium

Theorem 3.3. There exists R−,Rc,R+ ∈ R such

that the model system (5) has

(a) a unique endemic equilibrium if R0 > 1,

(b) a unique endemic equilibrium if R0 = 1 and

Rc < 1,

(c) two endemic equilibria if Rc <R0 < min(1,R−)

or max(Rc,R+) <R0 < 1,

(d) No endemic equilibrium elsewhere.

Proof 3.3.1. An endemic equilibrium is any non-

zero and positive solution of the following system



Λh + γh R?
h − (αh + µh)S?

h = 0, (14)

αhS?
h − (δh + µh + µd)I?h = 0, (15)

δh I?h − (γh + µh)R?
h = 0, (16)

Λv(w)− (αv + (µv + w∆µv ))S
?
q = 0, (17)

αvS?
q − (χ + µv)E1?

r = 0, (18)

χEi?
r − (β + (µv + w∆µv ))Ei?

q = 0, 1≤ i ≤ 6, (19)

βEi−1?
q − (χ + µv)Ei?

r = 0, 2≤ i ≤ 6, (20)

β(E6?
q + I?q )− (χ + µv)I?r = 0, (21)

χI?r − (β + (µv + w∆µv ))I?q = 0. (22)

The equations (15) and (16) allow us to write

S?
h and R?

h in function of I?h as follows: S?
h =

δh + µh + µd
α?h

I?h and R?
h =

δh
γh + µh

I?h .

To simplify the expressions, let D = δh + µh + µd ,

C =
δh

γh + µh
and F = γhC.

By subsequently replacing S?
h and R?

h by their

values in (14), we then obtain the expression of I?h
with respect to α?h.

Also, α?v =
a(cI?h + c̃R?

h)

N?
h

=
a(Cc̃ + c)α?h

(C + 1)α?h + D
. Using

equations (17),(18),(19),(20),(21) and (22), we have

S?
q =

Λv(w)

α?v + (µv + w∆µv)
, E1?

r =
α?vS?

q

χ + µv
, Ei?

q =

χEi?
r

β + (µv + w∆µv)
f or 1≤ i≤ 6, Ej?

r =
βE(j−1)?

q

χ + µv
f or 2≤

j ≤ 7; I?q =
χ fqE7?

r

β(1− fq fr)
et I?r =

βI?q
χ + µv

.

So all our unknowns are expressed in terms of α?h,

and it only remains to determine the value of α?h.

By definition, we have αh? =
amI?q
N?

h
and by

replacing I?q and N?
h by their values, and after

simplification and re-arrangement, we obtain

α?h

[
P2(α

?
h)

2 + P1α?h + P0

]
= 0, (23)

where

P2 = −β6χ7µh (C + 1)
(
1− fq fr

)
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·
[
a(c̃C + c) + (µv + w∆µv)(C + 1)

]
< 0,

P1 = Dβ6χ7(1− fq fr)
[
(µv + w∆µv)T0(D− F)

− µh
(
a(c̃C + c) + (µv + w∆µv)(C + 1)

) ]
=

Dβ6χ7 (1− fq fr
)

(µv + w∆µv)(D− F)
[T0 − Tc]

with Tc =
µh
[
a(c̃C + c) + (µv + w∆µv)(C + 1)

]
(µv + w∆µv)(D− F)

(24)

P0 = D2µh(µv + w∆µv)β6χ7 (T0 − 1) .

Equation (23) has solution α?h = 0 and solutions of

the equation (E) : P2(α
?
h)

2 + P1α?h + P0 = 0.

The case α?h = 0 leads us to the equilibrium without

disease. We are interested in the equation (E), of

which we are going to analyze the number of positive

solutions as a function of the value of T0.

1. If T0 > 1 then, P0 > 0 and since P2 < 0, the

discriminant ∆ = P2
1 − 4P2P0 of the equation

(E) is positive, hence the equation (E) has two

different real solutions. In addition, the product

of the solutions is p =
P0

P2
< 0. Hence, equation

(E) has a unique positive solution.

2. if T0 = 1, then, equation (E) has two different

real solutions, which are zero and−P1

P2
. But P2 <

0, so this solution is positive if P1 > 0, that is to

say if T0 > Tc.

3. if T0 < 1 and ∆ = P2
1 − 4P2P0 > 0 and T0 > Tc,

then, equation (E) admits two different positive

solutions.

Let P2 = −b2 P1 = b1(T0 − Tc) and P0 = b0(T0 − 1);

b2, b1 and b0 are all positive coefficients. We have,

∆ = P2
1 − 4P2P0 = b2

1T 2
0 − (2b2

1Tc − 4b0b2)T0 − 4b0b2 +

b1T 2
c .

The last condition can be re-written as follows Tc < T0 < 1,

∆ = b2
1T 2

0 − (2b2
1Tc − 4b0b2)T0 − 4b0b2 + b1T 2

c > 0.
Let us study the sign of ∆ in relation to the values

of T0. Consider the equation

(ET0) : b2
1T 2

0 − (2b2
1Tc − 4b0b2)T0 − 4b0b2 + b2

1T 2
c = 0

(ET0) has as discriminant ∆r = (2b2
1Tc − 4b0b2)

2 −

4b2
1(−4b0b2 + b2

1T 2
c ) = 16b2b0

[
b2b0 + b2

1(1− Tc)
]

which is positive for Tc < 1, and the equation (ET0)

has two solutions T− and T+.

We then have

 Tc < T0 < 1,

T0 ∈ ]−∞,T−[ ∪ ]T+,+∞[ ,
which yields Tc < T0 < min(1,T−), where

max(Tc,T+) < T0 < 1.

Remarks 3.1. For the (global) stability of the

endemic equilibrium, one could follow the approach

in [19] by using a suitable Lyapunov-type functional

along the positive flow of the model 5 on a ”two

domains” subdivision of the phase state R19, under

appropriate conditions.

Note that the disease-free equilibrium is only

globally asymptotically stable when T0 < ζ < 1,

so it is possible that if this condition is violated,

bistability could occur. That is, for ζ < T0 < 1, a

stable DFE could co-exist with a stable endemic

equilibrium, a phenomenon known as backward

bifurcation [7,9,14,21,38]. In this case, the condition

T0 < 1, although necessary is insufficient to mitigate

the spread of malaria in a community.

The following figure depicts the backward

bifurcation for model system (5), representing the
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plotting of I?h as a function of T0 for values of the

bifurcation parameter m ranging from 0.001 to 0.01,

µd = 4.54× 10−3 and Tc = 0.388975.

Figure 3. Backward bifurcation diagram,
showing the co-existence of a stable DFE
and two branches of endemic equilibria (a
stable and an unstable branch).

4. Optimal control model

To find the solution to the model (5), following

four steps are followed. (i) Description the optimal

control (ii) Proof of the existence of optimal control

problem (iii) Proof of the uniqueness of the optimal

control (iv) Numerically solve the optimal control

and show these graphically.

4.1. Description of optimal control

There are several methods to mitigate

the prevalence of malaria in a community by

reducing the mosquito density, contact, longevity

and competence. Among all these methods, the

possession and correct use of insecticide-treated

mosquito bednets is the strategy that considers

three of the biological elements mentioned above

[27]. Therefore, we consider as control the function

w representing the fraction of population that owns

and properly use a mosquito net.

Consider the following objective functional

J(w) =
∫ T

0

[
A1 Ih + A2

(
6

∑
i=1

Ei
q + Iq

)
+ Bw2(t)

]
dt.

(25)

The terms A1 Ih and A2

(
6

∑
i=1

Ei
q + Iq

)
are the cost of

infection while Bw2(t) is a quadratic cost related

to the effort of using bednets. Our main goal is

to find an optimal control function w∗ such that

J(w∗) = min{J(w) | w ∈ Γ(T)}, with Γ(T) the set of

admissible controls defined as

Γ(T) = {ω | ω(.) is Lebesgue mesurable on [0, T] ,

0≤ ω(t) ≤ 1,∀t ∈ [0, T]} .

4.2. Existence and characterization of an optimal

control

The aim of this section is to prove the

existence of an optimal control for the model system

(5) and then derive the optimality system. The

existence of optimal control of the system (5) will

be considered by applying the following theorem

[4,22,23,25,29].

Theorem 4.1. Consider the objective functional J

given by equation (25), with w ∈ Γ subject to the

constraint state system (5). There exists w∗ ∈ Γ(T)

such that J(w∗) = min{J(w) | w ∈ Γ(T)} subject to the

control system (5) with initial conditions at t = 0.

Proof 4.1.1. The state and control variables of the

system (5) are positive and the control set Γ(T) is

closed and convex. Therefore, the integrand of the
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objective functional J in which it was expressed in

the system (5) is a convex function of ω on the control

set Γ(T). Since the state solutions are bounded, the

Lipschitz property of the state system with respect

to the state variables is satisfied. It can also be

seen that there exist positive numbers η1 and η2,

and a constant ε > 1 such that J(ω) ≥ η1 | ω |ε −η2.

Therefore, the state variables are bounded and the

existence of optimal control of the model system (5) is

concluded.

4.3. The uniqueness of optimal control

To derive the necessary conditions that the three
controls and corresponding state variables must
satisfy, we use Pontryagin’s maximum principle [31].
To this end, we define the Hamiltonian function for
the system, where λi, i = 1, . . . ,19 are the adjoint
variables or co-state variables

H = A1 Ih + A2

(
6

∑
i=1

Ei
q + Iq

)
+ Bw2(t)

+ λ1

[
Λh +

(
γmin

h + w(t)∆γh

)
Rh

−
(

mIQ

Nh
(amax − w(t)∆a) + µh

)
Sh

]
+ λ2

[(
mIQ

Nh
(amax − w(t)∆a)

)
Sh − (δh + µh + µd)Ih

]
+ λ3

[
δh Ih −

(
γmin

h + w(t)∆γh + µh
)

Rh
]

+ λ4 [Λmax
v − w(t)∆Λv

−
((

cIh

Nh
+

c̃Rh

Nh

)
((amax − w(t)∆a) + µv + w(t)∆µv

)
Sq

]
+ λ5

[((
cIh

Nh
+

c̃Rh

Nh

)
(amax − w(t)∆a)

)
Sq − (χ + µv)E1

r

]
+

6

∑
i=1

λi+5

[
χEi

r − (β + µv + w(t)∆µv )Ei
q

]
+

7

∑
i=2

λi+10

[
βEi−1

q − (χ + µv)Ei
r

]
+ λ18

[
βIq − (χ + µv)Ir

]
+ λ19

[
χ(E7

r + Ir)− (β + µv + w(t)∆µv )Iq
]

.

(26)

The following result presents the adjoint system

and control characterization.

Theorem 4.2. Given an optimal control w∗, and

the corresponding state solutions

Sh, Ih, Rh,Sq, E1
r , E1

q , E2
q , E3

q , E4
q , E5

q , E6
q ,

E2
r , E3

r , E4
r , E5

r , E6
r , E7

r , Ir, Iq

of the corresponding state system (5), there exists

adjoint variables, λi, i = 1, . . . ,19, satisfying



λ′1 = (amax − ∆aw(t))
[

cIh + c̃Rh

N2
h

Sq(λ5 − λ4)

+
mIq

Nh

[
Sh

Nh
− 1
]
(λ2 − λ1)

]
+ µhλ1,

λ′2 = −A1 −
mIq

N2
h
(amax − ∆aw(t))Sh(λ2 − λ1)

+
cNh − cIh − c̃Rh

N2
h

(amax − ∆aw(t))Sq(λ4 − λ5)

−λ3Sh − (δh + µh + µd)λ2,

λ′3 = (γmin
h + w(t)∆γh )(λ3 − λ1)−

mIq

N2
h
(amax − ∆aw(t))Sh(λ2 − λ1)

+
c̃Nh − cIh − c̃Rh

N2
h

(amax − ∆aw(t))Sq(λ4 − λ5) + µhλ3,

λ′4 = (µv + µ̃w(t))λ4 −
cIh + c̃Rh

Nh
(amax − ∆aw(t)) (λ5 − λ4),

λ′5 = (χ + µv)λ5 − χλ6,
λ′i = (β + ∆µvw(t))λi − βλi+6 − A2, f or i = 6, . . . ,11,
λ′i = (χ + µv)λi − χλi−5 f or i = 12, . . . ,16,
λ′17 = (χ + µv)λ17 − χλ19,
λ′18 = (χ + µv)λ18 − χλ19,
λ′19 = (β + µv + w(t)∆µv )λ19 − βλ18

− m
Nh

(amax − ∆aw(t))Sh(λ2 − λ1)− A2,

λi(T) = 0, f or i = 1, . . . ,19.

(27)

The control w∗ satisfies the optimality condition.

w∗ = max
{

0,min
(

1,
1

2B

[
∆γh R∗h(λ3 − λ1)

+ ∆aS∗hα∗v(λ2 − λ1)

+
(
∆aα∗h(λ5 − λ4) + ∆µv λ4

)
S∗q

+ λ19∆µv I∗q +
6

∑
i=1

λi+5Ei∗
q + ∆Λv λ4

])}
,

(28)

where α∗v =
mI∗q
N∗h

and α∗h =
cI∗h + c̃R∗h

N∗h
.

Proof 4.2.1. The differential equations governing

the adjoint variables are obtained by differentiation

of the Hamiltonian function, evaluated at the
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optimal control. Then, the adjoint system can be

written as

λ′1(t) = −
∂H

∂Sh
, λ′2(t) = −

∂H

∂Ih
, λ′3(t) = −

∂H

∂Rh
,

λ′4(t) = −
∂H

∂Sq
, λ′5(t) = −

∂H

∂E1
r

,

λ′i(t) = −
∂H

∂Ei−5
q

, f or i = 6, . . . 11,

λ′i(t) = −
∂H

∂Ei−10
r

, f or i = 12, . . . 16,

λ′17(t) = −
∂H

∂E7
r

, λ′18(t) = −
∂H

∂Ir
, λ′19(t) = −

∂H

∂Iq
,

with zero final time conditions (transversality)

λi(T) = 0. The characterization of the optimal control

given by (28) is obtained by solving the equations on

the interior of the control set, where 0 < w < 1. That

is,

∂H

∂ω
= 2Bω∗ −

(
∆γh R∗h(λ3 − λ1) + ∆aS∗hα∗v(λ2 − λ1)

+
(
∆aα∗h(λ5 − λ4) + ∆µv λ4

)
S∗q + λ19∆µv I∗q

+
6

∑
i=1

λi+5Ei∗
q + ∆Λv λ4

)
,

with
∂H

∂ω
= 0, where α∗v =

mI∗q
N∗h

and α∗h =
cI∗h + c̃R∗h

N∗h
.

Hence, we obtain

ω∗ =
1

2B

[
∆γh R∗h(λ3 − λ1) + ∆aS∗hα∗v(λ2 − λ1)

+
(
∆aα∗h(λ5 − λ4) + ∆µv λ4

)
S∗q + λ19∆µv I∗q

+
6

∑
i=1

λi+5Ei∗
q + ∆Λv λ4

]
.

4.4. Numerical simulations: the biological

admissibility and approximate controls

We numerically solve the optimal transmission

parameter control for the malaria model. The

optimal control is obtained by solving the optimality

system, consisting of 19 non-linear ordinary

differential equations from the state and adjoint

equations. An iterative scheme is used for solving

the optimality system [24]. For the simulations,

we consider the initial (and arbitrary) number of

individuals at time t = 0: Sh(0) = 100000, Ih(0) =

100, Rh(0) = 1000,Sq(0) = 100000, E1
r (0) = 10, E2

r (0) =

9, E3
r (0) = 8, E4

r (0) = 7, E5
r (0) = 6, E6

r (0) = 5, E7
r (0) = 4,

E1
q(0) = 3, E2

q(0) = 3, E3
q(0) = 3, E4

q(0) = 3, E5
q(0) = 3,

E6
q(0) = 2, Ir(0) = 35, Iq(0) = 800.

For the cost weight in the objective functional

J, we take B = $4.5 USD (for three years) which

represents what the state of Cameroon spends on

the purchase of an insecticide-treated mosquito

net for two individuals [32]. This is somehow

comparable to B = $3.95 USD for the average

cost for a household (with about 5.5 individuals)

per month (for the first two largest cities of

Cameroon in terms of population - Douala and

Yaounde [28]). The main practical problem is

the difficulty to provide bednets to everybody in

the household as well as individuals complain

of feeling excessive heat when sleeping under a

bednet [28], the latter being a potential reason

why some individuals use other vector control

measures. We could consider the cost per household2

for T = 3years, and finally discuss the impact of

the optimal controls associated to B1 = 4.5 ∗ 5.5
2 and

B2 = 3.95 ∗ 36. Clearly, from the economic stand

point, the other vector control strategies are more

expensive than the bednet control. Thus, we focus

on the bednet control strategies. The simulations

are carried out with T = 3 years, the duration

of one LLIN (Long-lasting insecticide-treated

bednet) efficacy [32]. We define the uniform control
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uuni f (t) = k and the multi-intervals (“stage”) one

ustages(t) =


u1 ffl t ∈ [0;365.25 days ] ,

u2 ffl t ∈ ]365.25;730.5 months ] ,

u3 ffl t ∈ ]730.5;1080.75 months ] ,
over three years with k,u1,u2,u3 ∈ R+ and

1
1080.75

∫ 1080.75
0 ustages(t)dt = k as the mean value.

uoptimal is an optimal control for our optimal problem

in Theorem 4.1. u f orced is an administrative control

of distribution of the bednets over three years (it is

imposed or “forced”); it is either uuni f or ustages. We

also define the following in percentage:

1. t
uoptimal
s (u f orced) =

100×Total of susceptible humans on [ 0;T] under u f orced
Total of susceptible humans on [ 0;T] under uoptimal

;

2. t
uoptimal
Ih

(u f orced) =
100×Total of infectious humans on [ 0;T] under uoptimal

Total of susceptible humans on [ 0;T] under u f orced
;

3. t
uoptimal
Rh

(u f orced) =
100×Total of recovered humans on [ 0;T] under uoptimal

Total of recovered humans on [ 0;T] under u f orced
.

Definition 4.1. Let Γ(T) be the set of admissible

controls relative to a dynamical system D(u(.)),

u(.) ∈ Γ(T). An optimal control, mathematically

admissible, is biologically admissible if

t
uoptimal
s (u f orced) ≤ 100, t

uoptimal
Ih

(u f orced) ≤ 100 and

t
uoptimal
Rh

(u f orced) ≤ 100.

It is easy (even numerically) to study the

biological admissibility to an (mathematically)

admissible control u f orced. But (for all u f orced), the

biological admissibility is a challenge related to the

choice of the objective function.

Numerically, for T = 1080.75

days, uuni f (t) = 0.65 and ustages(t) =
u1 = 0.9 t ∈ [0;365.25 days ] ,

u2 = 0.6 t ∈ ]365.25;730.5 days ] ,

u3 = 0.45 t ∈ ]730.5;1080.75 days ] .

For

all our numerical simulations, graphs related to

optimal control are in black solid lines, while those

linked to the “forced” control are in solid green lines.

The effects of the “uniform” control are graphically

represented in Figures 4-9 while the “stage” control

effects are shown in Figures 10-15.

Practically, the common strategies u f orced in

malaria affected countries are decreasing functions

of time (as trends), due to the difficulty to maintain a

constant or high (> 90%) level of possession and use

of bednets throughout a 3-year campaign of LLINs

distribution.

Table 4. Results in percentage.

t
uoptimal
s (u f orced) t

uoptimal
Ih

(u f orced) t
uoptimal
Rh

(u f orced)

uuni f 99.769 43.530 52.164
ustages 99.929 68.500 77.009

Figure 4. Number of susceptible humans
Sh: optimal versus uniform controls.

Figure 5. Number of infectious humans Ih:
optimal versus uniform controls.
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Figure 6. Number of recovered individuals
Rh: optimal versus uniform controls.

Figure 7. The optimal control uoptimal

compared to the uniform control uuni f :
optimal versus uniform controls.

Figure 8. Total number of latent questing
E.

q and latent resting E.
r mosquitoes:

optimal versus uniform controls.

Figure 9. Number of questing Iq and
resting Ir infectious mosquitoes: optimal
versus uniform controls.

Figure 10. Number of susceptible humans
Sh: optimal versus “stage” controls.

Figure 11. Number of infectious humans
Ih: optimal versus “stage” controls.
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Figure 12. Number of recovered
individuals Rh: optimal versus “stage”
controls.

Figure 13. Optimal control uoptimal

compared to the “stage” control ustage.

Figure 14. Total number of latent questing
E.

q and latent resting E.
r mosquitoes:

optimal versus “stage” controls.

Figure 15. Number of questing Iq and
resting Ir infectious mosquitoes: optimal
versus “stage” controls.

Table 4 suggests that, even if the “stage” and

uniform controls have the same mean, it is better

to use a “stage” control with emphasis on the first

few months of the 3 years. Clearly, the effort should

be done to cover the gap (between the results of the

system state following u f orced and uoptimal) in Table 4.

This approach, based on the reality of the malaria

programs in each country, could support health

policies and decision-makers in order to obtain

an accurate threshold in the percentage εu f orced of

the “administrative/public planners controls” u f orced

(ustage or uuni f ) applications compared to optimal

effects, such that 100− t
uoptimal
s (u f orced)≤ εu f orced , 100−

t
uoptimal
Ih

(u f orced) ≤ εu f orced and 100 − t
uoptimal
Rh

≤ εu f orced .

This allows us to introduce the definitions of the

εu f orced -approximate weak or strong “sub-optimal”

controls.

Definition 4.2. (Approximate controlability)

Let Γ(T) be the set of admissible controls

relative to a dynamical system D(u(.)),

u(.) ∈ Γ(T), for T > 0. For V
uoptimal
u f orced =(

t
uoptimal
s (u f orced), t

uoptimal
Ih

(u f orced), t
uoptimal
Rh

(u f orced)
)

,
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let define

Normstrong(V
uoptimal
u f orced ) :=

max
{

100− t
uoptimal
s (u f orced),100− t

uoptimal
Ih

(u f orced),

100− t
uoptimal
Rh

(u f orced)

}
,

also written as

Normstrong(V
uoptimal
u f orced ) :=

100−min
{

t
uoptimal
s (u f orced), t

uoptimal
Ih

(u f orced),

t
uoptimal
Rh

(u f orced)

}
,

and

Normweak(V
uoptimal
u f orced ) :=

1
3

(
100− t

uoptimal
s (u f orced)

)
+
(

100− t
uoptimal
Ih

(u f orced)
)

+
(

100− t
uoptimal
Rh

)
,

That is,

Normweak(V
uoptimal
u f orced ) :=

100− 1
3

{
t
uoptimal
s (u f orced) + t

uoptimal
Ih

(u f orced) + t
uoptimal
Rh

}
,

A biologically admissible control u f orced is εu f orced -

approximate weak ”sub-optimal” if

Normweak(Voptimal(u f orced)) ≤ εu f orced .

A biologically admissible control u f orced is εu f orced -

approximate strong “sub-optimal” if

Normstrong(V
uoptimal
u f orced ) ≤ εu f orced .

Remarks 4.1. These definitions in 4.2 improve

on the efficiency index [1]. It is possible to

consider the reduction of noise Nmosq (similar to

Norm. for mosquitoes) produced by mosquitoes as

the percentage of mosquitoes with optimal control

compared to the states with forced control: then

the new index would be Normα,β
. := αNorm. + βNmosq

such that α + β = 1. The coefficients α and β relate

respectively the importance of the humans’ group and

mosquitoes’ group. Herein, we focus on the optimal

impact on humans and consider α = 1.

Straightforward computations lead to the

following proposition 4.1.

Proposition 4.1. There is an equivalence between

Normweak and Normweak:

Normweak ≤ Normstrong ≤ 3.Normweak

In Table 4,

Normweak(V
uoptimal
uuni f ) = 34.845926,

Normweak(V
uoptimal
ustage ) = 18.186947,

Normstrong(V
uoptimal
uuni f ) = 56.470157,

and

Normstrong(V
uoptimal
ustage ) = 31.499672.

We see that for εu f orced = 35%, the V
uoptimal
uuni f is

35%-approximate weak “sub-optimal” like V
uoptimal
ustage .

But only V
uoptimal
ustage is 35%-approximate strong “sub-

optimal” and not V
uoptimal
uuni f . Another interesting point

is the fact that Normweak(V
uoptimal
ustage ) = 18.186947, and

this comes from the fact that the “weak” deviation

from the optimal strategy is only about 18.187%

in total (with the collective effort/contribution of

Sh, Ih and Rh to reach the optimal strategy). By
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the way, Normstrong(V
uoptimal
ustage ) = 31.410, and this

corroborates the fact that the “weak” deviation from

the optimal strategy is only about 31.410% following

the individual efforts/contributions of Sh, Ih and Rh

to reach the optimal objective. We observe that

the disadvantage (loss of immunity) in the use of

bednets is compensated by the benefit of the number

of susceptible/infected individuals excluded from the

malaria disease dynamics. Then, it is possible to get

closer to the optimal results with a realistic strategy.

5. Conclusion

We formulated and rigorously analyzed a vector

multi-stage malaria model with the use of mosquito

treated bednets as preventive measure. The

proposed model is biologically meaningful and

mathematical well-posed. We investigated the local

and global stability of equilibria. The analytical

results reveal the possibility of bistability when T0 <

ζ < 1 (see subsection 3.1.1 with additional mortality

δh less than 10−5 see discussion in [6]). That is, the

model could exhibit the phenomenon of backward

bifurcation, an epidemiological situation which

although necessary, having the basic reproduction

number less than unity is no longer sufficient to

mitigate the malaria transmission dynamics [38].

Thus, a low level of additional (disease-induced)

mortality could lead to the existence of an endemic

equilibrium even if the basic reproduction number is

less than one.

Next, an optimal control strategy is investigated

with the proper usage of LLINs (during three

years compared to a “forced” control) as the control

parameter. We observe that the disadvantage (loss

of immunity) in the use of bednets is compensated

by the benefit of the number of susceptible/infected

individuals excluded from the malaria disease

dynamics. Moreover, it is possible to get close to the

optimal results with a realistic strategy.

Results from this study could help inform

health policy and decision-makers on the

potential optimum strategies to mitigate

malaria transmission dynamics in affected

communities by designing reachable malaria

program implementation objectives “close” to the

optimal strategies εu. % by the “weak” collective

contribution or the “strong” individual effort to

achieve the optimal objective. The notions of εu f orced -

approximate strong/weak “sub-optimal” control

are more practical than the theoretical optimal

control which remains a daunting task to health

officials. The upper bound εu f orced of the gap, from

the “sub-optimal” results to the optimal ones, is

of great interest practically since it delineates the

acceptable error one could essentially make if we

apply u f orced instead of uoptimal.

The proposed model is not exhaustive. One could

consider splitting the human population into adults

and juveniles since malaria disproportionately

affects children under five years of age. The

model could then be fitted with real data from an

affected region/country with most model parameter

values estimated for the purpose. Also, because of

uncertainties in most parameter values, a detailed

sensitivity and uncertainty analysis could be carried

out to understand the dependence of the basic

reproduction number and model state variables on

their components [30].
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