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Abstract: Taylor series method is simple, and an infinite series converges to the exact solution for initial condition problems. For
the two-point boundary problems, the infinite series has to be truncated to incorporate the boundary conditions, making it restrictively
applicable. Here is recommended an ancient Chinese algorithm called as Ying Buzu Shu, and a nonlinear reaction diffusion equation
with a Michaelis-Menten potential is used as an example to show the solution process.
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1. Introduction

Nonlinear equations arise always in electroanalytical
chemistry with complex and esoteric nonlinear terms [1,
2], though there are some advanced analytical methods
to deal with nonlinear problems, for examples, the
Gamma function method [3], Fourier spectral method
[4], the reproducing kernel method [5], the perturbation
method [6], the homotopy perturbation method [7, 8], He’s
frequency formulation [9–11]and the dimensional method
[12], chemists are always eager to have a simple one step
method for nonlinear equations. This paper introduces an
ancient Chinese algorithm called as the Ying Buzu algorithm
[13] to solve nonlinear differential equations.

2. Taylor series solution

We first introduce the Taylor series method [14].
Considering the nonlinear differential equation:

d2u
dx2 + F(u) = 0. (0.1)

The boundary conditions are

du
dx

(a) = α, (0.2)

u(b) = β. (0.3)

If u(a) is known, we can use an infinite Taylor series to
express the exact solution [14]. We assume that

u(a) = c. (0.4)

From (0.1), we have

u
′′

(a) = −F(u(a)) = −F(c),

u
′′′

(a) = −
∂F(c)
∂u

u
′

(a) = −α
∂F(c)
∂u

.

Other higher order derivatives can be obtained with ease, and
its Taylor series solution is

u(x) =u(a) + (x − a)u
′

(a) +
1
2!

(x − a)2u
′′

(a)

+
1
3!

(x − a)3u
′′′

(a) + ... +
1

N!
(x − a)Nu(N)(a),
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the constant c can be determined by the boundary condition
of (0.3).

3. The Ying Buzu algorithm

The Ying Buzu algorithm [15, 16] was used to solve
differential equations in 2006 [13], it was further developed
to He’s frequency formulation for nonlinear oscillators
[13, 17–23] and Chun-Hui He’s algorithm for numerical
simulation [24].

As c in (0.4) is unknown, according to the Ying Buzu

algorithm [13, 15, 16], we can assume two initial guesses:

u1(a) = c1, u2(a) = c2. (0.5)

where c1 and c2 are given approximate values.
Using the initial conditions given in (0.2) and (0.5), we

can obtain the terminal values:

u(b, c1) = β1, u(b, c2) = β2.

According to the Ying Buzu algorithm [6–12], the initial
guess can be updated as

u(a)est = c3 =
c1(β − β2) − c2(β − β1)

(β − β2) − (β − β1)
,

and its terminal value can be calculated as

u(b, c3) = β3.

For a given small threshold, ε, |β− β3| ≤ ε, we obtain u(a) =

c3 as an approximate solution.

4. Application

Here, we take Michaelis Menten dynamics as an example
to solve the equation. Michaelis Menten reaction diffusion
equation is considered as follows [25, 26]:

d2u
dx2 −

u
1 + u

= 0. (0.6)

The boundary conditions of it are as follows:

du
dx

(0) = 0, u(1) = 1. (0.7)

We assume
u(0) = c.

From (0.6), we have

u
′′

(0) =
c

1 + c
,

u
′′′

(0) = 0, (0.8)

u(4) =
c

(1 + c)3 .

The 2nd order Taylor series solution is

u(x) = u(0) +
u
′

(0)
1!

x +
u
′′

(0)
2!

x2 = c +
c

2(1 + c)
x2.

In view of the boundary condition of (0.7), we have

u(1) = c +
c

2(1 + c)
= 1, (0.9)

solving c from (0.9) results in

c = 0.7808.

So we obtain the following approximate solution

u(x) = 0.7808 + 0.2192x2.

Similarly the fourth order Taylor series solution is

u(x) = c +
c

2!(1 + c)
x2 +

c
4!(1 + c)3 x4.

Incorporating the boundary condition, u(1) = 1, we have

c +
c

2!(1 + c)
+

c
4!(1 + c)3 = 1. (0.10)

We use the Ying Buzu algorithm to solve c, and write (0.10)
in the form

R(c) = c +
c

2(1 + c)
+

c
24(1 + c)3 − 1.

Assume the two initial solutions are

c1 = 0.8, c2 = 0.5.

We obtain the following residuals

R1(0.8) = 0.0279, R2(0.5) = −0.3271.

By the Ying Buzu algorithm, c can be calculated as

c =
R2c1 − R1c2

R2 − R1
=

0.0279 × 0.5 + 0.3271 × 0.8
0.0279 + 0.3271

= 0.7764.
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(a) The second order Taylor series solution.

(b) The fourth order Taylor series solution.

Figure 1. Taylor series solution.

The exact solution of (0.10) is

c = 0.7758.

The 4th order Taylor series solution is

u(x) = 0.7758 + 0.2192x2 + 0.0057x4.

Figure 1 shows the Taylor series solutions, which
approximately meet the requirement of the boundary
condition at x = 1.

Now we use the Ying Buzu algorithm by choosing two
initial guesses

u1(0) = 0.5, u2(0) = 1,

which lead to u1 = 0.6726 and u2 = 1.2550, respectively,
see Figure 2 (a) and (b).

(a) u1(0) = 0.5

(b) u2(0) = 1

Figure 2. The shooting processes with different
initial guesses.

It is obvious that the terminal value at x = 1 deviates
from u(1) = 1 for each guess, according to the Ying Buzu

algorithm, the initial guess can be updated as

u3(0) =
0.5 × (1 − 1.2550) − 1 × (1 − 0.6726)

(1 − 1.2550) − (1 − 0.6726)
= 0.7810.

(0.11)
The shooting process using (0.11) results in

u3(1) = 1.0058,

which deviates the exact value of u(1) = 1 with a relative
error of 0.5%, see Figure 3.

We can continue the iteration process to obtain a higher
accuracy by using two following two guesses u1(0) =

Mathematical Modelling and Control Volume 1, Issue 4, 172–176
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Figure 3. The shooting processes with an updated
initial guess of u(0) = 0.7810.

0.5,u3(0) = 0.7810:

u4(0) =
0.5 × (1 − 1.0058) − 0.7810 × (1 − 0.6726)

(1 − 1.0058) − (1 − 0.6726)

= 0.7761.

Using this updated initial value, the shooting process leads
to the result

u(1) = 1.0001,

so the approximate u(0) = 0.7761 has only a relative error
of 0.01%.

The above solution process couples the numerical
method, and the ancient method can also be solved
independently.

We assume that solution is

u(x) = c + (1 − c)x2. (0.12)

Equation (0.12) meets all boundary conditions.

The residual equation is

R(x) =
d2u
dx2 −

u
1 + u

.

It is easy to find that

R(0) = 2(1 − c) −
c

1 + c
.

We choose two guesses:

c1 = 0.5, c2 = 1.

We obtain the following residuals

R1(0) = 2(1 − 0.5) −
0.5

1 + 0.5
=

2
3
,

R2(0) = 2(1 − 1) −
1

1 + 1
= −

1
2
.

The Ying Buzu algorithm leads to the updated result:

c =
c2R1(0) − c1R2(0)

R1(0) − R2(0)
=

2
3 × 1 + 1

2 × 0.5
2
3 + 1

2

= 0.7857.

The relative error is 1.2%, and the process can continue if a
higher accuracy is still needed.

5. Discussion and Conclusion

The ancient Chinese algorithm provides a simple and
straightforward tool to two-point boundary value problems
arising in chemistry, and it can be used for fast insight into
the solution property of a complex problem.
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