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Abstract: The connection between curvature and topology is a very well-studied theme in the subject
of differential geometry. By suitably defining curvature on networks, the study of this theme has been
extended into the domain of network analysis as well. In particular, this has led to curvature-based
community detection algorithms. In this paper, we reveal the relation between community structure
of a network and the curvature of its edges. In particular, we give apriori bounds on the curvature of
intercommunity edges of a graph.
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1. Introduction

The connection between curvature and topology is a fundamental question in Riemannian geometry.
Notable examples include the Gauss-Bonnet theorem, which relates the curvature of a surface to
its Euler characteristic, and Myer’s theorem, which bounds the diameter of a manifold in terms of
its curvature (see [15] for more details). Remarkably, successful definitions of curvature have been
extended to graphs (Forman [8], Ollivier [20], Lin [16], Devriendt [4]), generalizing the curvature
notions on Riemannian manifolds and establishing analogous connections between curvature and
topology.

A crucial topological question in the study of complex networks is their community structure
(see [9, 10] for a survey on community detection). This involves clustering nodes such that many
edges connect nodes within the same cluster, while few edges connect nodes between different clusters.
These clusters, referred to as communities, are defined based on the application at hand. This task is
significant across various fields including computer science [13,14], biology [5,22,25], chemistry [21],
logistics [12, 19], where graphs are commonly used to model real-world systems. Consequently,
numerous methods based on diverse theories are available, such as partitioning algorithms and spectral
methods ( [9] contains a survey of commonly used algorithms).
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A recent approach to community detection draws inspiration from the geometric notion of curvature.
In this paper, we employ the Ollivier-Ricci curvature (ORC), originally defined by Ollivier [20] using
optimal transport theory. The essential idea is to compare the distance d(x, y) between two vertices x
and y to the distance between the neighbors of x and y (defined in terms of optimal transport). If the
latter distance is smaller, the edge is positively curved; if greater, it is negatively curved. For instance,
in Figure 1, the edge (0, 6) is one where the neighbors of 0 are further from the neighbors of 6 than 0 is
from 6, and would be negatively curved, whereas the edge (4, 3) would be positively curved because the
neighbors of 3 and those of 4 largely overlap. Negatively curved edges act as “bottlenecks,” indicating
that to move from the neighbors of x to those of y, one must pass through the edge xy. This concept
is applied to rewire graph neural networks in [28]. It has also been used to study the the robustness of
neural networks in [26].

Figure 1. A visual example to illustrate the concept of ORC. Edge (0, 6) is negatively curved
whereas (3, 4) is positively curved.

Studies such as [18, 24] have observed that edges with positive ORC typically exist between
nodes within the same community, whereas edges with negative ORC often connect nodes from
different communities. This observation has been turned into a computational algorithm for community
detection. [24] achieves this by sequentially deleting negatively curved edges, while [18] employs
“Ricci flow with surgery” to elongate or contract edges based on their curvature, then removes the
longest edges. These curvature-based methods have been shown to perform competitively against
other industry-standard techniques.

In addition to experimental and theoretical results on graph Ricci curvature and community
detection algorithms, there have been a number of papers in the sciences in recent years that have used
such algorithms to reveal interesting structures and relationships. One such is [23], where authors have
reported that ORC-based methods identify communities in protein complexes than other algorithms.
Forman and Ollivier Ricci curvatures have been shown to predict protein-ligand affinity in [31, 32],
highlighting their potential in drug discovery. Another is [6], where graph Ricci curvatures have been
used to characterize atypical connectivity in the brains of people diagnosed with autism spectrum
and other neurodevelopmental disorders. Graph Ricci curvature methods have also been shown to be
effective at identifying phase transitions in time-varying complex networks [33].
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A variant of ORC known as the dynamical ORC has been used in [11] to reveal community
structures at varying scales of resolution. Mixed membership, where a node is allowed to belong to
multiple communities has been studied in [27, 29] (note that these papers use flow-based approaches
similar to [18]). Other curvature notions that are not based on optimal transport have also been used
to attack the problem of community detection. One of the popular definitions is that of Forman [8].
Though not equivalent to Ollivier’s notion, it has the advantage of being computationally efficient,
and its flow version has been used for community detection in [30]. The shortcomings of Forman’s
definition have been partially mitigated by modifying its definition (while retaining computational
efficiency): One such is the augmented Forman-Ricci curvature, which has also been shown to be
effective at community detection in [7].

From a theoretical point of view, ORC has been linked to other deep properties of graphs. Besides
the work of Ollivier himself, one of the earliest theoretical analyses of ORC is [16], which relates
several geometrical and spectral properties of a graph to its ORC. Its relation to the heat flow on graphs
has been studied in [17]. The spectrum of the Laplacian is also intimately connected to ORC, and this
is shown in [1]. Analyses regarding geometric properties of ORC such as flatness, rigidity have been
studied in [2, 3]. In spite of the great theoretical interest in ORC and its relation to other properties of
graphs, and a great practical interest in its application to community detection, there has not been a
substantial amount of literature in the theoretical relation between ORC and community structure.

A basic question regarding this relationship is the following: It is observed that a single edge
connecting two disjoint communities will have negative curvature, whereas a complete graph formed
by adding all possible intercommunity edges will have positively curved edges (this is discussed in
Section 2). Therefore, the critical question is: What is the maximum number of intercommunity
edges such that we can guarantee each one is negatively curved? More broadly, when examining two
particular communities in a graph, what can we infer about the curvature of intercommunity edges?
This paper aims to address this question quantitatively, as provided by the main theorem.

In all of the following, it is assumed that the graph G is undirected and all edges have weight 1.

Theorem 1.1. Suppose G is a graph comprised of several communities. Let Ci,C j be distinguished
communities in G whose sizes are m and n, where m ≥ n (without loss of generality). Let k be the total
number of edges that are either intercommunity edges between Ci and C j, or from any other community
to Ci or C j.

Then, if

k ≤
−m +

√
m2 + 4(m − 1)(2n − 1)

2
,

we have κ(e) ≤ 0 for every intercommunity edge e between Ci and C j.
In particular, if k ≤ minl |Cl| − 1 where Cl are the various communities, the same conclusion holds.

We have the following when the community sizes are all the same:

Corollary 1.2. Let G be a graph as in previous theorem. Suppose in addition that all communities
have the same size n. Then if k ≤ n − 1, we have κ(e) ≤ 0 for every intercommunity edge e between C1

and C2.

In the case where the graph only has two communities, we have the following:
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Corollary 1.3. Suppose G is a graph comprised of only two communities C1,C2 whose sizes are m and
n, where m ≥ n (without loss of generality). Let k be the total number of intercommunity edges between
C1 and C2.

Then, if

k ≤
−m +

√
m2 + 4(m − 1)(2n − 1)

2
,

we have κ(e) ≤ 0 for every intercommunity edge e between C1 and C2.
If m = n, the same conclusion holds for k ≤ n − 1.

The paper is organized as follows: In Section 2, we do a quick review of optimal transport as it
pertains to graphs, define the Ollivier-Ricci curvature of an edge of a graph, and give some examples. In
Section 3, we give a key example that simultaneously motivates the claims in the paper and highlights
the computational techniques used to prove the main theorem. In Section 4, we provide a proof of the
main theorem and the corollaries. In Section 5, we show that the bound prescribed in the theorem is
sharp, but at the same time we show experimental results that show that we have a lot of latitude even
if we go beyond the theoretical limit prescribed in the theorem.

2. Preliminaries

2.1. Definitions

Let G = (V,E) be a graph:

(1) A community C of G is a maximal complete subgraph of G (in the sense that C is not contained
in any bigger complete subgraph of G, potentially including G).

(2) An edge whose endpoints lie in different communities is called an intercommmunity edge.

(3) An edge whose endpoints both lie inside the same community is called an intracommunity edge.

We remark that this is definition of community is only one of several possible definitions, but this
simplifies our mathematical analysis.

2.2. Optimal transportation on graphs

Let µ, ν be probability measures on a graph, and let the vertices be enumerated 1, . . . , n. A
transference plan π = (πi j) is an n × n matrix with nonnegative entries such that

∑
j πi j = µ(i), and∑

i πi j = ν( j). More concisely, π is a joint probability distribution onV×V whose marginals are µ and
ν. We define Π to be the set of all transference plans between µ and ν.

Closeness between two probability distributions can be measured via the 1-Wasserstein distance (or
earthmover’s distance) which is defined as follows:

W(µ, ν) = W1(µ, ν) B inf
π∈Π

∑
i, j

πi jd(i, j), (2.1)

where d(i, j) is the graph distance between vertices i, j.

Proposition 2.1. Under the metric W defined above, the set of all probability measures on V is a
metric space.
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Note that computing W amounts to solving a linear programming problem. Therefore, by duality,
we have an equivalent formulation for W via a maximization problem. To present this formulation, we
first define a 1-Lipschitz function to be a function f such that | f (x)− f (y)| ≤ d(x, y).On (combinatorial)
graphs, this is equivalent to insisting that the values of f on adjacent nodes do not differ by more than 1.

Proposition 2.2. Let F be the set of 1-Lipschitz functions on G. Then,

W(µ, ν) = sup
f∈F

∑
z∈G

f (z)(µ(z) − ν(z))

 . (2.2)

A function f that achieves this supremum is called a Kantorovich potential.

2.3. The Ollivier-Ricci curvature

Ollivier [20] defined Ricci curvatures on general Markov chains on metric spaces, with random
walks as the building blocks. The following is a simplified exposition for graphs. A random walk is
a family of probability distributions {mx}x∈G. For any α ∈ [0, 1], the α-lazy random walk is one where
the probability measures at each node are given by

mx(z) = mα
x (z) =


α, z = x,
1−α
dx
, (zx) ∈ E,

0, otherwise.

Finally, the α-Ollivier-Ricci curvature of an edge e = (xy) is defined as

κ(e) = κα(e) B 1 −
W(mx,my)

d(x, y)
. (2.3)

We deal with combinatorial graphs in this paper, and therefore, all edges have length 1. Thus the
formula reduces to

κ(e) = 1 −W(mx,my). (2.4)

Example 1. The intuition behind the Ollivier-Ricci curvature is captured by the following examples:

a. An edge of the lattice Zn has curvature κ = 0. So does an edge of the cycle Cn for n ≥ 6.

b. An edge of the complete graph Kn has curvature κ =
n(1−α)

n−1 > 0.

c. Imagine a ‘dumbbell’ graph comprised of two communities of size m, n, joined by a single
intercommunity edge. This edge has curvature κ = 2(1 − α)

(
1
m + 1

n − 1
)
, which is negative for

all m, n ≥ 3.

Remark 1. The claims in the above example can be proved by following the general strategy described
here.

(1) To establish an upper bound on the curvature, we need a lower bound on W(mx,my). This
uses (2.2) and requires prescribing an explicit potential function.

(2) To establish a lower bound on the curvature, we need an upper bound on W(mx,my). This
uses (2.1) and requires prescribing an explicit transference plan.
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(3) If we can show that the curvature is bounded above and below by the same constant C, then the
curvature equals C.

We will apply this strategy to an important nontrivial example in the next section.

3. A zero-curvature example

To see what motivates the claims of this paper, we start with the case that the two communities have
the same size n ≥ 3. Consider the number of intercommunity edges below which it is guaranteed that
every intercommunity edge is nonpositively curved. We show an explicit construction which suggests
that this number can be no more than n − 1. A proof of the sufficiency of this claim is given by the
main theorem of this paper. Sharpness is given by Proposition 5.1.

Theorem 3.1. For communities of size (n, n), there is a configuration of n − 1 edges between the
communities such that each intercommunity edge has zero curvature.

Proof. We give an explicit construction. Let A, B be a complete graph on the vertices
{a0, . . . , an−1}, {b0, . . . , bn−1} respectively. Add inter-community edges aibi, i = 0, . . . , n−2 (see Figure 2
for an illustration). We claim that every edge aibi has zero curvature. Indeed by symmetry, we only
need to show it for one of them, say a0b0.

Figure 2. A configuration with zero curvature on all intercommunity edges.

To get an upper bound on the curvature, we obtain a lower bound on W(ma0 ,mb0). We use f as
defined in Table 1. Applying the Eq (2.2), an explicit calculation shows that W(ma0 ,mb0) ≥ 1, which
implies κ(a0b0) ≤ 0.

Table 1. A potential function for curvature lower upper bounds.

- an−1 a1, . . . , an−2 a0 b0 b1, . . . , bn−2 bn−1

ma0
1−α

n
1−α

n α 1−α
n 0 0

mb0 0 0 1−α
n α 1−α

n
1−α

n
f 0 -1 -1 -2 -2 -3
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To get a lower bound on curvature, we obtain an upper bound on W(ma0 ,mb0). We use the following
transference plan:

πaibi =

α − 1−α
n , i = 0,

1−α
n , i = 1, . . . , n − 1,

together with πa0a0 = πb0b0 = 1−α
n and 0 between any other pair of vertices not specified previously.

Note that the associated distances are

d(ai, bi) =

1, i = 0, . . . , n − 2,
3, i = n − 1.

Applying Eq (2.1), it follows that W(ma0 ,mb0) ≤ 1 and hence κ(a0b0) ≥ 0. Thus we conclude that

κ(a0b0) = 0.

�

Remark 2. The configuration in the previous example is not unique. Indeed, it can be shown using the
same technique that the intercommunity edges in Figure 3 have curvature 0.

Figure 3. Another configuration with zero curvature on intercommunity edges.

4. Proof of main theorem

Let G be graph, and C1,C2 be two communities in G. Suppose e = xy ∈ E, x ∈ C1, y ∈ C2. We
obtain an upper bound on κ(e) by getting a lower bound on W(mx,my). To do so, we need a potential
function. The key step is to partition the graph into several subsets on which f will be constant. We
define C3 = G −C1 −C2, which could be a union of several communities.

We partition C1 into five subsets {x}, A, B,C, J, C2 into {y},D, E, F,K and define the subsets C3 in
G,H, I in the following way:

• B = {z ∈ C1 − x : yz ∈ E},
• D = {w ∈ C2 − y : xw ∈ E},
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• C = {z ∈ C1 − x − B : zw ∈ E for some w ∈ C2},
• E = {w ∈ C2 − y − D : zw ∈ E for some z ∈ C1},
• J = {z ∈ C1 − x − B −C : ∃v ∈ C3 such that zv ∈ E},
• K = {w ∈ C2 − y − D − E : ∃v ∈ C3 such that wv ∈ E},
• A = C1 − x − B −C − J,
• F = C2 − y − D − E − K,
• G = {v ∈ G −C1 −C2 : xv, yv ∈ E},
• H = {v ∈ G −C1 −C2 −G : xv ∈ E},
• I = {v ∈ G −C1 −C2 −G : yv ∈ E}.

This configuration, along with the values of the function f are illustrated in Figure 4. The number
shown inside each “node” (or subset of G to be precise) is the value of the function f . Note that we
have not added all possible edges: For instance, there could be edges C and D, between J and H, and
so on. The important thing is that A, J do not have neighbours in C2, and F,K do not have neighbours
in C1. This ensures that the function in Table 2 is 1-Lipschitz.

In Table 2 we depict the measures mx,my together with the value of f . We let β B 1 − α.

Figure 4. Three communities, with a potential function.

Table 2. Probabilities and potential associated with curvature of edge xy.

- J A B C x y D E F K G H I
mx

β

dx

β

dx

β

dx

β

dx
α β

dx

β

dx
0 0 0 β

dx

β

dx
0

my 0 0 β

dy
0 β

dy
α β

dy

β

dy

β

dy

β

dy

β

dy
0 β

dy

f 0 0 -1 -1 -1 -2 -2 -2 -3 -2 -1 -1 -1

In the following we abuse notation by conflating S with its cardinality |S | where S could be any of
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the sets A, . . . ,K. Let W = W(mx,my). Using (2.2) we have the following bound:

W ≥ α + (1 − α)
[
−B −C − 2 − 2D −G − H

dx
+

1 + B + 2D + 2E + 2K + 3F + G + I
dy

]
. (4.1)

We also have the following constraint equations from counting nodes and edges:

A + B + C + J + 1 = n,

D + E + F + K + 1 = m,

n + D + G + H = dx,

m + B + G + I = dy.

(4.2)

Equations (4.1) and (4.2) together give

W ≥ α + (1 − α)
[
n − 1 + A + J + G + H

dx
+

m − 1 + F
dy

− 1
]
. (4.3)

Note that the lack of symmetry between x and y in the above expression is due to the lack of symmetry
in the way we defined f .

Let k1 be the number of intercommunity edges between C1 and C2, and k2 be the number of edges
from C1 or C2 to the rest of G. Then,

k1 ≥ 1 + B + D + max{C, E},
k2 ≥ 2G + H + I + J + K.

(4.4)

Defining k = k1 + k2, we have

k ≥ 1 + B + D + max{C, E} + 2G + H + I + J + K, (4.5)

which, together with the constraint Eq (4.2), yields

k + A ≥ n + D + 2G + H + I + K

= dx + G + I + K

≥ dx

(4.6)

and

k + F ≥ m + B + 2G + H + I + J

= dy + G + I + J

≥ dy.

(4.7)

The plan is to get W ≥ 1 (which would imply our goal of κ(xy) ≤ 0). From (4.3), it is sufficient to
find the optimal k such that

n − 1 + A + J + G + H
dx

+
m − 1 + F

dy
− 1 ≥

k + A + J + G + H
dx

+
k + F

dy
− 1,
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which reduces to
n − 1

dx
+

m − 1
dy

≥
k
dx

+
k
dy
.

When m = n, it is trivial to see that the above equation is true precisely when k ≤ n − 1. When m > n,
we have

n − 1
dx

+
m − 1

dy
≥

k
dx

+
k
dy

⇐⇒ (m − 1)dx + (n − 1)dy ≥ k(dx + dy)
⇐⇒ (m − n)dx + (n − 1)(dx + dy) ≥ k(dx + dy)
⇐⇒ (m − n)dx ≥ (k − n + 1)(dx + dy)

⇐⇒
dx

dx + dy
≥

k − n + 1
m − n

.

Since dx ≥ n and dx + dy ≤ n + m + k − 1, a sufficient condition for the above to be true is

n
n + m + k − 1

≥
k − n + 1

m − n
,

which results in the quadratic inequality

k2 + mk − (m − 1)(2n − 1) ≤ 0.

Theorem 1.1 now follows directly from this.

Proof of Corollary 1. By letting m = n, we get

k ≤
−m +

√
m2 + 4(m − 1)(2n − 1)

2

=
−n +

√
n2 + 4(n − 1)(2n − 1)

2

=
−n +

√
n2 + 4(2n2 − 3n + 1)

2

=
−n +

√
9n2 − 12n + 4

2

=
−n + 3n − 2

2
=n − 1.

�

Proof of Corollary 2. In the proof of main theorem, we may assume that G,H, L, I,M = ∅.
Consequently, J,K = ∅ as well, and k2 = 0, and the claim follows immediately. �
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5. Empirical results

In the previous section, we gave theoretical bounds on the number of intercommunity edges that
guarantee the negativity of curvatures. This bound is sharp due to the following proposition:

Proposition 5.1. For communities of size (n, n), there is a configuration of n edges between the
communities such that each intercommunity edge has positive curvature.

Proof. Consider the product graph of the complete graph Kn with the graph consisting of only two
points joined by an edge. See Figure 5 for an illustration with n = 4.

Figure 5. Two communities with all n intercommunity edges positively curved.

We can show that edge a0b0 (and hence every intercommunity edge) has positive curvature. The
distributions ma0 ,mb0 are shown in Table 3.

Table 3. Probability distributions about a0b0.

- a0 a1, . . . , an−1 b0 b1, . . . , bn−1

ma0 α 1−α
n

1−α
n 0

mb0
1−α

n 0 α 1−α
n

Consider the transference plan defined by πa0a0 = πb0b0 = 1−α
n ,

πaibi =


α − 1−α

n , i = j = 0,
1−α

n , i = j , 0,
0, i , j.

(5.1)

This plan has a cost of ∑
i, j

πaib jd(ai, b j) = α +
(n − 2)(1 − α)

n
= 1 −

2(1 − α)
n

,
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which is an upper bound on W(ma0 ,mb0), and hence

κ(a0b0) ≥
2(1 − α)

n
> 0.

�

Even though it is theoretically possible for all edges to be positively curved when we have k = n
intercommunity edges, the point of the remainder of this section is to share experimental findings that
indicate how unlikely such a situation is. For the sake of simplicity, we generate two-community graphs
with randomly chosen intercommunity edges and observe the empirical proportion of nonpositively
curved edges.

Figure 6 shows the result of one such experiment. Here, we choose the community sizes |C1| =

|C2| = 128. We experiment with k = 128, 256, 384, 512 intercommunity edges. For each k, we generate
100 graphs where k intercommunity edges are chosen at random. In each of those random graphs, we
compute the proportion pk

≤0 of nonpositively curved edges. Finally, we plot pk
≤0 versus its frequency of

occurrence.
One notices in Figure 6 that for k = 128, 256, almost all edges were negatively curved in every one

of the 100 randomly generated graphs. When k = 384, most of the edges are negatively curved. But
when k = 512, the proportion of negatively curved edges is small.

Figure 6. Distribution of proportion of nonpositively curved intercommunity edges.

In fact, we find something similar for different sizes. In Figure 7, we examine community sizes
n = 16, 32, 64, 128, 256, 512. And for each n, we generate graphs with number of intercommunity
edges k = n, 2n, 3n, 4n and empirically find the proportion of intercommunity edges that have
nonpositive curvature. For each choice of (n, k), we generate 100 graphs at random. We plot the
empirical proportion of nonpositive edges with error bars one standard deviation wide (over the 100
runs.) What we find is that for n ≥ 32, even when we have 2n intercommunity edges, almost all of
them are negatively curved. When n = 512, even when k = 4n we have almost all edges negatively
curved.
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Figure 7. Proportion of negative edges for different k and n.

6. Conclusions

In this paper, we have examined the relation between curvature and community structure from a
theoretical point of view. In particular, we have sought to understand how the sizes of communities
and the number of intercommunity edges affects the curvature of those intercommunity edges. More
specifically, we have given sufficient conditions for intercommunity edges to be negatively curved. In
addition, we show these requirements are sharp, in the sense that there are counterexamples as soon as
we cross the cutoff. We have achieved this by exploiting two equivalent definitions of the Wasserstein
distance between probability distributions, which give us concrete computational tools for proving
curvature estimates.

In the experimental section of the paper, we explored how likely it is to find positively curved edges
when the number of intercommunity edges k exceeds the theoretical bound. We found that as the
community sizes become large, k can get much larger than the theoretical bound while most of the
intercommunity edges have negative curvature. A likely explanation for this is in the estimate (4.3).
Here we see that the Wasserstein distance is large when the “unmatched” sections A, F are large and
the node degrees dx, dy are small. When we randomly sample intercommunity edges from the list of
all possible intercommunity edges, we are less likely to sample an edge configuration where degrees
are very large and the unmatched sections are very small, at least when the number of intercommunity
edges is very small.

We believe that this analysis raises several interesting questions. For instance, it would be very
interesting to study the curvature of intracommunity edges and obtain criteria that ensure that they
are positively curved. In effect, this would provide a theoretical underpinning for curvature-based
community detection via edge deletion. Another interesting direction is the analysis of curvature
distribution as a function of the number of intercommunity edges. For instance, for a fixed k, let I
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be a random sample of k intercommunity edges from the list of all possible ones. Now we can generate
a graph with I as the set of intercommunity edges. Let κmax(I) be the maximum curvature among edges
in I, which we may regard as a random variable. What is the probability distribution of κmax? How is
it affected by k? Another interesting question is one that concerns “surgery”, or edge deletion. How
does the deletion of a subset of edges of a graph affect the curvature of the remaining edges? Questions
of this nature provide ideal circumstances for the synthesis of tools from differential geometry, graph
theory, statistics, and programming.
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