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1. Introduction

The use of composite materials for engineering applications is a continuously broadening field, due
to their high performances under several points of view. Many are in fact the advantages offered
by such materials, as for instance lighter weight, the ability to tailor layup for optimum strength
and stiffness, improved fatigue life, corrosion resistance, and, through good design practice, reduced
assembly costs due to fewer detail parts and fasteners. For these reasons these composites are
used in several fields of engineering, for example in civil engineering are used for strengthening of
reinforced concrete columns, in mechanical engineering in high performance racing cars, aerospace
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and biomechanical applications being as well a growing network in this regard. A special class in
this realm is represented by fibre-reinforced composite materials. The specific strength of superior
quality material fibres (especially carbon, glass, metal alloy, just to mention a few types) are higher
than those of embedding matrices making these materials an interesting option for the construction
of numerous technical devices. Being intrinsically heterogeneous, deriving homogenized equivalent
material properties is mandatory in design practice. Amongst the many different methods developed
in recent years, asymptotic homogenization has become widely known and quite popular due to the
versatility in application with respect to material configuration of fibre and matrix arrangements. The
method nonetheless requires a numerical approximation whenever the geometry of fibres or their
disposition within the surrounding matrix becomes complex, being classical FE methods the usual
tool in this context.

A powerful alternative to Finite Element Methods (FEM) and inherent limitations, is offered by
the virtual element method (VEM), a recently introduced numerical method for approximation of
PDEs [5, 6] which can be viewed as an extension of FEM to general polygonal and polyhedral
elements. The strongest aspects in favor of the VEM are its firm mathematical foundations, simplicity
in implementation, and efficiency and accuracy in computations, as well as mesh adaptivity together
with the possibility of having curvilinear polygonal meshes. The latter aspect in particular results quite
efficient in the study of the overall mechanical behavior of fibre-reinforced composite materials through
homogenization since the ensuing boundary value (cell) problem is posed, in general, on curvilinear
domains bounded by material interfaces identified on the cross section orthogonal plane [3].

This work presents a curvilinear VEM approach for the computational homogenization of in-
plane shear moduli for unidirectional fibre reinforced materials having inclusions with complex shape
profiles. A key point of the procedure relies on an efficient 2D cubature algorithm for NURBS
boundary polygons which grants positive weights and interior nodes. An extensive campaign of
numerical applications illustrate accuracy and convergence patterns of the method, both for doubly
periodic regular arrangements of fibres and for randomly distributed fibres within the matrix phase.

The paper is organized as follows: Section 2 presents the governing equations of the considered
homogenization problem, Section 3 introduces the curvilinear VEM approximation space and the
discretized form of the problem. Sections 4–7 are devoted to the cubature formula for NURBS-shaped
curvilinear polygons. Last, Section 8 presents a set of selected numerical tests supporting the accuracy
and efficiency of the proposed methodology. Conclusions are drawn in Section 9.

2. Asymptotic homogenization of fibre-reinforced composite: the anti-plane problem

This section is devoted to a unified compact presentation of the so called computational asymptotic
homogenization of antiplane shear moduli for both a doubly-period or a random fibre-reinforced
composite. We consider a composite material, reinforced with long, parallel fibres, distributed in
the material with a statistically homogeneous microstructure, given either by a doubly periodic or a
random spatial arrangement. Fibres have all same cross section with a possibly complex shape: In the
present context we assume that the curvilinear curve defining the boundary for a given cross section is
described through a sigle NURBS or a C0 regular blend of subsequent NURBS curves.

In either case, at microscale, the section orthogonal to fibres is represented by a doubly-periodic
arrangement of repeating unit cells (RUC). A RUC is a parallelogram, having edges L1, L2, and an
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angle ϕ, containing a given number F of fibres, as represented in Figure 1 for the two exemplary cases
of doubly periodic and random type of composite. A given material setup is characterized by the so
called volume fraction, denoted by f =

∑F
j=1 f j which rapresents the ratio between fibre material area

and RUC total area.

Figure 1. Stochastic realization of a square-shaped repeating unit cell (RUC) of a composite
with volume fraction f = 0.2 and four circular fibres (left panel). Conforming curvilinear
quadrilateral mesh (right panel).

The case studied in this communication refers to effective in-plane elastic shear moduli, which
are computed applying computational asymptotic homogenization through VEM, due to a lack of
closed-form solutions of the aforementioned problem for fibres with complex cross section boundary.
Statement of the problem is given by the following set of boundary value problems of equilibrium over
the composite cross section domain:

div(G∇wε) = 0, in ∪ jΩ
f
jε ∪Ωm

ε ; (2.1)

[[G∇wε · ν]] = 0, on ∪ jΓ jε ; (2.2)

G∇wε · ν =
1
ε

D j[[wε]], on ∪ jΓ jε , (2.3)

indexed by a parameter ε. In the above, wε denotes the displacement field in the fibre axes direction,
and ∪ jΩ

f
jε and Ωm

ε indicate fibres and matrix domains, respectively, while∪ jΓ jε is defined as the set
of all fibre/matrix interfaces, and ν represents the unit normal to ∪ jΓ jε towards Ωm

ε . The double
square brackets operator [[ · ]] denotes jump across the fibre interface, defined as extra-minus-intra
difference. Parameter ε is a scaling factor for the microstructure, such that ε = 1 corresponds to the
actual composite material, while homogenization limit is reached for the limit of ε approaching zero.

The physical meaning of the above set of governing equations is as follows: Eq (2.1) represents
translational equilibrium along fibre axis direction; Eq (2.2) represents in-plane equilibrium at
fibre/matrix interface i.e., continuity of the normal-to-interface shear stress component; Eq (2.3) is
actually a constitutive equation, also known as linear spring-layer model [19, 21], ruling the zero-
thickness imperfect interface behavior in terms of displacement jump [[wε]] and normal traction G∇wε·ν
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at the interface in such a way that parameter(s) D j are selected to represent the level of interface
degradation [10]. Lastly, factor ε−1 providess the right scaling for the homogenization limit [21].

Assuming homogeneous isotropic linear elastic fibre and matrix material behavior, the in-plane
effective shear moduli, which are collected by the constitutive tensor G, are given by:

G = Gf
j = Gf I in Ωf

jε, j = 1 . . .F, (2.4)

G = Gm = GmI in Ωm
ε , (2.5)

where I is the unit tensor. An interesting generalization for fibres to incorporate cylindrical orthotropy,
with material grading along the radial direction, could be also taken into account for the particular case
of circular fibres (see [2] for more details), but it is here omitted for simplicity.

Well posedness of the homogenization problem requires the following conditions to hold:

Gm > 0, Gf > 0, D j > 0, j = 1 . . . F, (2.6)

where Gm, Gf are shear moduli, for the matrix and the fibre, respectively, D j is the fibre/matrix interface
elastic stiffness parameter (see Eq (2.3)).

2.1. Homogenization of in-plane shear moduli

To derive the homogenized or effective in-plane shear moduli of the composite material, asymptotic
homogenization shall be employed herein. With reference to a given RUC, the procedure identifies
two characteristic separate length scales for the spatial domain under consideration, i.e., two different
space variables: a macroscopic one, x, and a microscopic one, y = x/ε, y ∈ D, being D the RUC (see
Figure 1), whose extra-fibre space, intra-fibre space and fibre-matrix interface are denoted by Dm, Df

j
and Γ j, for j = 1 . . . F, respectively. Thence, an asymptotic expansion of the primary variable, the axial
displacement field, is considered with respect to powers of ε:

wε(x, y) = w0(x, y) + εw1(x, y) + ε2w2(x, y) + . . . , (2.7)

where w0, w1, w2 are doubly periodic functions over the RUC domain, with w1, w2 having zero integral
average over D. Substituting this expansion in the equilibrium form Eqs (2.1)–(2.3) and equating the
power-like terms of ε, a set of three differential problems for w0, w1 and w2, respectively are obtained,
which in turn lead (see [9,25]) to the homogenized equilibrium equation for the so called macroscopic
displacement w0:

divx(G#
∇xw0) = 0, (2.8)

where ∇xw0 is a macroscopic shear strain, and

G# =
1
|D|

∫
D

G(I − ∇t
yχ) da (2.9)

is the effective constitutive tensor. In the above, the superscript t stands for a transpose, da is the area
element on D, | · | the Lebesgue measure. Function χ(y) which is introduced as the cell function has
components χs, s = 1, 2, which represents the unique, null average, D-periodic solutions of the cell
problem:

divy[G(∇yχs − es)] = 0, in Df ∪ Dm ; (2.10)
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[[G(∇yχs − es) · ν]] = 0, on ∪ jΓ j ; (2.11)
G(∇yχs − es) · ν = D j[[χs]], on ∪ jΓ j , (2.12)

where es is the unit vector parallel to the ys axis.
Using Gauss-Green Lemma and introducing an auxiliary cell function:

χ̃(y1, y2) = χ(y1, y2) − (y1e1 + y2e2), (2.13)

the following expression for the effective material moduli is obtained:

G# = Gm +
1
|D|

F∑
j=1

∫
Df

j

(divyGf) ⊗ χ̃ da +
1
|D|

F∑
j=1

∫
Γ j

[[Gν ⊗ χ̃]] dl, (2.14)

with dl line element on Γ j. Equation (2.14) is indeed applied to compute G# in terms of χ̃.

2.2. Weak form

The cell problems (2.10)–(2.12) are usually rephrased in weak form through virtual work
fundamental identity: Find χ̃s ∈ Ṽ such that

a(χ̃s, δχs) = 0 ∀ δχs ∈ V, s = 1, 2
(2.15)

where Ṽ := H1
sp(D) is the space of admissible auxiliary cell functions χ̃ which are RUC-shifted D-

periodic vector valued functions satisfying: Eq (2.13)

χs(y1 + L1, y2) = χs(y1, y2) = χs(y1 + L2 cosϕ, y2 + L2 sinϕ). (2.16)

In a functional space setting:

Ṽ =
{
χ̃ ∈ L2(D) such that χ̃|Df

j
∈ H1(Df

j) for j = 1, 2, .., F,

χ̃|Dm ∈ H1(Dm), χ̃(y1, y2)+ys satisfies (2.16), s = 1, 2
}
.

Indicating V the space of the admissible D-periodic variations of Ṽ, the bilinear form associated with
the stress divergence term results:

a(χ̃s, δχs) = −

∫
D

divy[G(∇yχ̃s)] δχs dx (2.17)

which, applying Gauss-Green lemma, using the interface elastic law (2.12) and observing the outward
normals to fibre and matrix domains at their interface are mutually opposite, becomes:

a(χ̃s, δχs) =

∫
Dm
∇yδχs · Gm(∇yχ̃s)dx +

F∑
j=1

∫
Df

j

∇yδχs · Gf
j(∇yχ̃s)dx

+

F∑
j=1

∫
Γ j

[[δχs]] D j [[χ̃s]] dł,

(2.18)
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or, in a more general fashion:

a(χ̃s, δχs) =

∫
D
∇yδχs · G(∇yχ̃s)dx +

F∑
j=1

∫
Γ j

[[δχs]] D j [[χ̃s]] dł. (2.19)

The form a(·, ·) is symmetric, continuous and coercive on Ṽ, so that problem (2.15) is well posed.

3. Lowest order augmented curvilinear virtual element method

A virtual element discretization of problem (2.15) for curvilinear polygons is here presented,
much along the general idea outlined in [8]. Denote Th as a simple polygonal mesh on D, i.e., any
decomposition of D in a finite set of simple polygons E, without holes and with boundary given by a
finite number of edges. In this realm, and for the forthcoming application, we will primarily focus on
meshes of quadrilaterals, given their simplicity, efficiency and wide possibility of generation through
conventional mesh generators. For a curvilinear element with one or more edges lying on a fibre/matrix
interface Γ j, we shall describe its geometry in exact form as long as it can be recovered by a NURBS
representation (cf. Section 4). Hence, the proposed methodology offers a wide feasibility in terms of
fibre cross section boundary shapes allowing for complex profiles in this regard. Any given interface
Γ j is then intended as a NURBS parametrization i.e., an invertible C1 mapping with proper weights
and control points or a C1 blend of NURBS curves such that any portion is explicitly computable.
Dropping index j to lighten up notation, we simply indicate

γ : [0, L] −→ Γ

to indicate a generic curved part of the fibre/matrix interface Γ with the relevant NURBS representation.

Remark 3.1. In what follows we denote with e any edge of the mesh and with ν a generic vertex. The
symbol h will be associated with a length quantity, hence hE denotes the diameter of element E and he

the length of a (possibly curved) edge e. As usual, the maximum mesh element size is indicated by h
with no subscripts.

3.1. The augmented virtual element space

For the discretization of the cell problem which is required to compute the effective shear moduli,
we propose a simple, computationally efficient enrichment of the VEM space proposed in [8], for
lowest order discretization k = 1, coupled with a NURBS like representation of curvilinear polygons
abutting the material interfaces between fibres and matrix. Given a (curvilinear) polygon E ∈ Th with
some edge laying on a curved interface Γ j ( j ∈ {1, 2, .., F}), for any such curved edge e, we denote with
γe : [a, b] → e the restriction of the parametrization for Γ j to edge e. Then we indicate the standard
space of R2 polynomials of degree k restrictions on edge e as

P̃k(e) =
{
p(γe) : p ∈ Pk(R2)

}
.

The local virtual element space on E is then defined introducing the space of traces on a curved
edge as follows. For a given integer k ≥ 1, on a given element E with a curved edge γ, we consider the
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trace space
Bh(∂E) =

{
v ∈ C 0(∂E) such that : v|e ∈ Pk(e) ∀ straight edge e ⊂ ∂E,

and v |γ ∈ P̃k(e) ∀ curved edge e ⊂ ∂E
}
.

(3.1)

Then, for every integer k ≥ 1 the local virtual element space is defined as

Vh(E) =
{
v such that v |∂E ∈ Bh(∂E), ∆v ∈ Pk−2(E)

}
. (3.2)

For k = 1, which is the primarily investigated case of the present contribution, the selected degrees of
freedom of the local space are (cf. [8])

• pointwise evaluation at each vertex of E;
• one extra single degree of freedom for any given curved edge.

Note that the investigated case k = 1 amounts to a number of local degrees of freedom which equates
the classical curvilinear case (cf. [3]) plus only one extra dof for the curved edge on the polygon.
Figure 2 illustrates the choice of the additional node on the curved edge, associated to the extra degree
of freedom in the augmented form for the relevant case k = 1 which simply amounts to adding an extra
node for any given curvilinear element edge. In passing we note that, owing to interelement continuity,
this node is shared by both curved elements abutting such an edge.

Figure 2. Typical curvilinear virtual element (case k = 1) at fibre matrix curved interface
boundary. Case with cirved edge no. 5 equipped with additional degree of freedom (node
vextra).

The global conforming space is obtained by a standard identification of degrees of freedom, i.e., as
the unique values at the interelement, gluing local spaces with C0 regularity:

Ṽh =
{
v ∈ Ṽ : v|E ∈ Vh(E) ∀E ∈ Th

}
.

The same holds for the spaces of discrete variations:

Vh =
{
v ∈ V : v|E ∈ Vh(E) ∀E ∈ Th

}
.
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3.2. Discretization of the problem

The discretization of the problem is an augmented combination of the scheme proposed in [8] for
the case with straight and curvilinear edges and the original method introduced in [7] for curvilinear
VEM; the projection space for virtual cell functions is here augmented with an additional deformation
mode at no extra cost in terms of local degrees of freedom.

We propose here an augmented projection operator, local to element E, which represents an
approximated cell function component χs (s = 1, 2) which is explicitly computable. Denote with
(x̃, ỹ) the usual shifted centroidal Cartesian coordinates at element level. Let [Paug(E)] be the set of
polynomials spanned by the monomials {1, x̃, ỹ, x̃ỹ} (hence linears augmented by the skew-symmetric
monomial x̃ỹ) restricted to E. Given E ∈ Th and any vh ∈ Vh(E), the operator Π∇ : Vh(E)→ [Paug(E)]
is defined by 

∫
∂E

Π∇(vh)ds =

∫
∂E

vhds∫
E
∇Π∇(vh) · ∇paug dE =

∫
E
∇(vh) · ∇paug dE ∀paug ∈ [Paug(E)] ,

where ∇(vh) denotes the gradient of vh with respect to ys (s = 1, 2) at the microscale. Hence, the
augmented projector Π∇(vh) is an extension of the standard L2 projection of vh on [P1(E)] since, at the
price of the same number of local degrees of freedom of the standard k = 1 case, the approximated
cell function belongs to a polynomial space which is larger than the standard one, encompassing also
the quadratic skew-symmetric monomial term x̃ỹ. This case is indeed quite relevant from the point of
view of accuracy, since many RUC geometrical and material arrangements lead to a skew-symmetric
solution of the homogenized equilibrium problem in terms of cell function χs. It is immediate to check
that the above operator Π∇(vh) is readily computable through integration by parts and using the adopted
degrees of freedom, see [5, 6, 8] for the relevant standard derivations.

The aforementioned integrals and all the quantities relevant to post processing of the solution
(namely the homogenized material moduli) are computed for NURBS curvilinear polygons with the
efficient quadrature formula outlined in Section 4.

Once the projector is defined, the development of the VEM method proceeds by deriving the local
discrete counterpart of the bulk term in the bilinear form (2.19) as follows. For an E ∈ Th, for all
vh,wh ∈ Vh(E), we define:

aE
h (vh,wh) =

∫
E
∇Π∇(wh) · G∇Π∇(vh) dE + sE((I − πΠ∇)vh, (I − πΠ∇)wh) (3.3)

where the first term is a direct approximation of
∫

E
∇wh · G(∇vh) by substituting ∇ with ∇Π∇, and

the second term is a stabilization term of the do fi − do fi type (see [22] for a thorough discussion of
the subject and possible variants). To this end, an additional operator π : Vh(E) → P1(E) on linear
monomials is introduced (given the relevant simplicity in coding), defined as the unique minimizer of
the euclidean norm distance of the degrees of freedom values with respect to such polynomial space
canonical basis. The stabilization form is then taken as:

sE((I − πΠ∇)vh, (I − πΠ∇)wh) = αE

#do f s∑
i=1

(
dofi(wh − πΠ∇wh)

)(
dofi(vh − πΠ∇vh)

)
(3.4)
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where the dofi symbol denotes evaluation at the ith local degree of freedom and the positive scalar αE

is introduced to ensure physical dimension consistency with the previous term. The present choice is
indeed αE = trace(G)/2. More details on the stabilization can be found for instance in [22].

The global discrete equilibrium equation at microscale over a RUC domain then reads:

ah(vh,wh) =
∑
E∈Th

aE
h (vh,wh) +

F∑
j=1

∫
Γ j

[[wh]] D j [[vh]] dł

for any vh,wh in Ṽh or Vh. Note that the jumps in the above expression do not imply any computational
issue since the virtual cell function and their variations are explicit at the element boundaries.

The proposed VEM then readsFind χ̃hs ∈ Ṽh such that
ah(χ̃hs, δχhs) = 0 ∀δχhs ∈ Vh, s = 1, 2.

(3.5)

The above construction and the ensuing post-processing heavily relies on integrating known functions
over the polygonal domain which can present NURBS-like curved edges. In the following section
we detail the proposed efficient quadrature formula adopted throughout our numerical simulation
campaign.

4. Numerical cubature over rational spline curvilinear polygons

In this section we sketch the details on the computation of numerical rules over piecewise rational
spline curvilinear polygons, following the details introduced in [31]. This formulation includes the
domains studied in [4]. Such a problem was also considered in [26] in the framework of FEM as well
as in [35].

In particular we consider Jordan domains S :⊂ R2:

(1) Whose boundary ∂S is described by parametric equations x = x̃(t), y = ỹ(t), t ∈ [a, b], x̃, ỹ ∈
C([a, b]), x̃(a) = x̃(b) and ỹ(a) = ỹ(b);

(2) For which there are partitions {I(k)}k=1,...,M of [a, b], and {I(k)
j } j=1,...,mk of each I(k) ≡ [t(k), t(k+1)], such

that the restrictions of x̃, ỹ on each closed interval I(k) are rational splines, w.r.t. the subintervals
{I(k)

j } j=1,...,mk .

We adopt as notation

x̃(t) =
uk,1(t)
vk,1(t)

, ỹ(t) =
uk,2(t)
vk,2(t)

, t ∈ I(k), (4.1)

being uk,1, uk,2, vk,1, vk,2 splines on I(k), sharing the same knots and having degree, respectively, ηk,1,
ηk,2, δk,1, δk,2, k = 1, . . . ,M.

Notice, that since x̃, ỹ ∈ C([a, b]), we are assuming that the denominators vk,1, vk,2, k = 1, . . . ,M are
everywhere not null in the closed interval I(k).

In what follows we intend to show some examples of domains that fulfill these requests. First, this
is the case of a spline curvilinear region as those presented in [32]. Indeed, let Vk = (x̃(tk), ỹ(tk)) ∈ R2,
k = 1, . . . ,M, VM+1 = V1, be the vertices of such a Jordan domain S, then ∂S := ∪M

k=1Vk _ Vk+1 and
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each curvilinear side Vk _ Vk+1 can be tracked by a parametric spline of degree δk, interpolating an
ordered subsequence of knots P1,k = Vk, P2,k, . . . , Pmk−1,k, Pmk ,k = Vk+1 with a suitable parametrization
determining each I(k)

j (and thus each I(k)).
Another large family of domains S belonging to the class defined above is when ∂S is a composite

Bezier closed curve, whose k-th component is of the form

B(t̃) = B(ωk(t)) =

mk−1∑
i=0

bi,mk−1(t)Pi+1,k,

where t̃ = t(k+1)+t(k)

2 + t(k+1)−t(k)

2 t := ωk(t), t ∈ [0, 1] and

bi,l(t) =

(
l
i

)
ti(1 − t)l−i, i = 0, . . . , l − 1, t ∈ [0, 1]

are the Bernstein polynomials.
The framework also includes domains whose boundary ∂S is locally a p-th degree NURBS

curve [24, p.117], where the k-th curvilinear side Vk _ Vk+1 takes the form

C(t) =

∑mk
i=1 Bi,p(t) λi,kPi,k∑mk

i=1 Bi,p(t) λi,k
, t ∈ [t(k), t(k+1)]

where

• {Pi,k}
mk
i=1 are the control points,

• {λi,k}
mk
i=1 are the weights,

• {Bi,p}
mk
i=1 are the p-th degree B-spline basis functions [12, p.87] defined on the nonperiodic (and

nonuniform) knot vector

U = {t(k), . . . , t(k)︸      ︷︷      ︸
p+1

, t(k)
p+1, . . . , t

(k)
mk−(p+1), t

(k+1), . . . , t(k+1)︸            ︷︷            ︸
p+1

},

with t(k)
p+ j ≤ t(k)

p+ j+1, j = 1, . . . ,mk − 1.

Some classical examples are domains whose boundary is given by a polygon in which a side is
substituted by a circular or ellipse arc (see Figure 3).

Figure 3. Some domains S of polygonal type in which a side is substituted by a circular arc.
In all these examples ∂S is locally a p-th degree NURBS curve.
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5. The Tchakaloff-Davis-Wilhelmsen approach

In this paper we consider a technique based on an approach that dates back to Davis (1967) and
Wilhelmsen (1976) in its general formulation (cf. [11, 34]), giving a constructive proof of the well-
known Tchakaloff existence theorem for positive quadratures (1957), cf. [33].

Our strategy is based on a theorem in [34] that says the following.

Theorem 5.1. Let be F ⊂ C(S) a function space of dimension k on a multidimensional compact set
S ⊂ Rd (such that F contains functions that do not vanish on S), X = {xi}i≥1 ⊂ S an everywhere dense
point sequence, and L a strictly positive linear functional on F , i.e., L( f ) > 0 for every f ∈ F not
vanishing everywhere in S.

Then, for sufficiently large m, the set Xm = {x1, ..., xm} is a “Tchakaloff set” in S, which means that,
for every f ∈ F , L( f ) can be represented as the integral with respect to a discrete positive measure
with finite support in Xm of cardinality not exceeding k (i.e., as a linear combination with positive
coefficients of at most k values of f in Xm).

Direct applications of the previous theorem regard the case in which L( f ) is an integral functional
with respect to an absolutely continuous measure w(x)dx, i.e.,

L( f ) =

∫
S

f (x) w(x)dx, (5.1)

as well as w.r.t. discrete measure with support of large cardinality (for example, a positive algebraic
quadrature formula or a QMC formula),

L( f ) =

M∑
s=1

λs f (zs), λs > 0, s = 1, ...,M, (5.2)

where ZM = {z1, . . . , zM} ⊂ S with M > k.
In both instances, Theorem 5.1 ensures that for sufficiently large m there exist nodes {ξ1, . . . , ξν} ⊂

Xm ⊂ S and corresponding positive weights {w1, . . . ,wν} such that

L( f ) =

ν∑
j=1

w j f (ξ j), ν ≤ k, ∀ f ∈ F , (5.3)

i.e., Xm is a Tchakaloff set.
In our examples, having in mind to determine algebraic rules with a fixed degree of exactness n, we

set F = Pn(S), the space of multivariate polynomials of total-degree not exceeding n on S. We also
denote by N = (n + 1)(n + 2)/2 the dimension of the vector space Pn(S).

Aiming to a practical implementation of Tchakaloff-Davis-Wilhelmsen theorem, we proceed as
follows:

TDW measure compression algorithm: via moment-matching on the polynomial space Pn(S)

(i) Set the moment residual tolerance tol, the starting cardinality m and the cardinality increase factor
θ > 1;

(ii) Select a basis {ϕ1, . . . , ϕN} of Pn(S) and compute the moments b j :=
∫
S
ϕ jdx, j = 1, ...,N;
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(iii) Generate a (quasi)-uniformly distributed sequence Xm = {x1, . . . , xm} in S (via an implementation
of an in-domain routine over S);

(iv) Compute the Vandermonde-like matrix

V = V(Xm) = [vi j] := [ϕ j(xi)] ∈ Rm×N;

(v) Compute the factorization V = QR with Q ∈ Rm×N , R ∈ RN×N , and the modified moments β such
that Rtβ = b;

(vi) Solve the underdetermined system Qtu = β as a Non-Negative Least Squares problem

u∗ = argmin‖Qtu − β‖2, u ≥ 0

by Lawson-Hanson active-set method (see, e.g., [20] and its Matlab implementation via
lsqnonneg, as well as its alternatives [14–16, 27]; for its application to numerical quadrature
see, e.g., [36]);

(vii) If ‖V tu∗ − b‖2 > tol then goto (iii) with m := θm;
(viii) Select the active weights and nodes:

J := {i : u∗i > 0}, w := u∗(J), T := Xm(J).

A careful read of the algorithm shows that its implementation requires some key ingredients.

(1) In (ii), once a suitable basis {ϕ1, . . . , ϕN} of Pn(S) is considered, we have to determine the moments
b j :=

∫
S
ϕ jdx, j = 1, ...,N;

(2) In (iii), it is necessary to develop an in-domain routine for Jordan domains S taken in
consideration.

We will develop these demands in the next sections, showing in Figure 4 the results obtained for
two not trivial geometries. For practical aspects about the choice of m and θ in (i) see [31]. The Matlab
routines are available open-source at [29].

Figure 4. Rules having algebraic degree of exactness equal to 5, obtained by means of TDW
measure compression algorithm, over NURBS based curvilinear polygons.

6. On the moments computation

In the TDW measure compression algorithm, we have shown that once a suitable basis {ϕ1, . . . , ϕN}

of Pn(S) is considered, we have to determine its moments b j :=
∫
S
ϕ jdx, j = 1, ...,N.
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In this section we develop these details, following the lines introduced in [32] and generalised
in [31] to the Jordan domains mentioned above.

To this purpose, let R∗ = [a1, b1] × [a2, b2] be the bounding box of S, i.e., the smallest cartesian
rectangle R ⊇ S with sides parallel to the axes. As polynomial basis {ϕ j}1≤ j≤N , we adopt the shifted
lexicographically ordered total-degree product Chebyshev basis

ϕ j(x, y) = Th1(α1(x)) · Th2(α2(y)), 0 ≤ h1 + h2 ≤ n

(where j is the position of (h1, h2) in such ordering) where

• Th(·) = cos(h arccos(·)) is the h-degree Chebyshev polynomial of first kind;
• αi(s) = (2s − bi − ai)/(bi − ai), s ∈ [ai, bi], i = 1, 2.

The use of this basis comes from the necessity of mitigating the possible extreme ill-conditioning
of Vandermonde matrices in the standard monomial basis. By Gauss-Green theorem (see e.g., [1]),

γ j =

∫
S

ϕ j(x, y) dx dy =

∮
∂S

Ψ j(x, y) dy, (6.1)

where

Ψ j(x, y) =

∫
ϕ j(x, y) dx = Th2(α2(y))

∫
Th1(α1(x)) dx.

It is easy to achieve that∫
T0(α1(x)) dx = x,∫
T1(α1(x)) dx =

b1 − a1

4
· α2

1(x),∫
Th(α1(x)) dx =

b1 − a1

2
·

(
h

h2 − 1
Th+1(α1(x)) −

x
h − 1

Th(α1(x))
)
, h ≥ 2.

If Pk,s := (x̃(t(k)
s ), ỹ(t(k)

s )) and Pk,s _ Pk,s+1 is the arc of ∂S joining Pk,s with Pk,s+1, we obtain

γ j =

∮
∂S

Ψ j(x, y) dy =
∑
k,s

∫
Pk,s_Pk,s+1

Ψ j(x, y) dy

=
∑
k,s

∫ t(k)
s+1

t(k)
s

Ψ j(x̃(t), ỹ(t)) ỹ′(t)dt. (6.2)

The evaluation of the integrals on the r.h.s. of (6.2) is a delicate matter. Since x̃ and ỹ are in
general rational functions one can use high order Gauss-Legendre rules [18], or adaptive routines as
the MATLAB built-in routine integral, or the Extended Rational Fejèr Quadrature Rules proposed
in [13].
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7. The in-domain routine

In the previous section we have shown that the application of the TDW measure compression
algorithm requires an in-domain algorithm for the Jordan domains S taken under consideration, i.e., an
algorithm that determines if P ∈ R2 is inside (or not inside) such a S. This problem has been analysed
in [30, 31] and for the sake of the reader, we sketch its details below.

A well-known strategy is based on the Jordan curve theorem that states that a point P belongs to a
Jordan domain S if and only if, having taken a point P∗ < S then the segment P∗P crosses ∂S an odd
number c(P) of times.

In spite of its simplicity, there can be pathological cases, e.g., when P∗P crosses a vertex or when
includes a segment of ∂Ω.

Another problematic situation holds when the boundary ∂S has a critical point S = (x̃(γ), ỹ(γ))
where

lim
t→γ−

ỹ′(t) lim
t→γ+

ỹ′(t) < 0,

i.e., there is locally a vertical turn of boundary from left to right (or conversely from right to left). If
we consider vertical segments P∗P then the Jordan theorem cannot be directly applied.

These special cases, illustrated in Figure 5, after some effort, can be classified by an algorithm, and
thus we start from the most common situation that P∗P does not contain any critical point or vertical
side.

Figure 5. Critical situations for the the application of the Jordan curve theorem on curvilinear
polygons.

Under these assumptions, let R be a rectangle, often called box, with sides parallel to the cartesian
axes, whose interior contains S, and suppose that we have to establish if P = (Px, Py) belongs to S.

Let P∗ = (P∗x, P
∗
y) be the point in R not internal to S, such that P∗x = Px and P∗y < Py. Geometrically

it means that P∗ is not internal to S, shares the same abscissa of P, but is vertically below P.
In what follows we compute the crossing number c(P), i.e., the number of times in which the vertical

segment P∗P crosses ∂S.
First, we cover ∂S with the union of possibly overlapping rectangles, each one containing a portion

of ∂S that has no vertical turning points and is parametrized by two rational functions, i.e., locally
(x̃(γ), ỹ(γ)) are the ratio of two polynomials (see Figure 6).
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Figure 6. A Jordan domain of curvilinear type and its possibly overlapping monotone boxes.

To this purpose, we observe that since x̃, ỹ are rational splines in each element I(k), k = 1, . . . ,M,
that takes part to the partitioning of [a, b], then there are

I(k)
j = [t(k)

j , t
(k)
j+1] ⊆ I(k), k = 1, . . . ,M, j = 1, . . . ,mk − 1,

where the restriction of x̃, ỹ to I(k)
j are rational functions, i.e.,

x̃(t) =
uk, j,1(t)
vk, j,1(t)

, ỹ(t) =
uk, j,2(t)
vk, j,2(t)

, t ∈ I(k)
j

with uk, j,1, uk, j,2, vk, j,1, vk, j,2 polynomials on the interval I(k)
j , with degree, respectively, ηk,1, ηk,2, δk,1, δk,2

(notice that they do not depend on j but just on the local degree of the splines uk,1, uk,2, vk,1, vk,2 in I(k)).
If x̃ ≡ c in

I(k)
j = [t(k)

j , t
(k)
j+1],

we set
B

( j,k)
1 := c × [min

t∈I(k)
j

ỹ(t),max
t∈I(k)

j

ỹ(t)].

In other words, B( j,k)
1 is a box that actually consists of a vertical segment.

If x̃′ has variable sign in (t(k)
j , t

(k)
j+1), let N (k)

j = {t( j,k)
i }i=1,...,l j,k the set of t( j,k)

i ∈ (t(k)
j , t

(k)
j+1) such that

x̃′(t( j,k)
i ) = 0 (as observed before, the restriction of x̃ to I( j,k) is a rational function with the denominator

nowhere null, and consequently x̃′ exists), otherwise let N (k)
j = ∅. Next, set

T ( j,k) = {t(k)
j , t

(k)
j+1} ∪ N

(k)
j ,

where we suppose that its elements, say T ( j,k)
i , are in increasing order. Since

x̃(t) = uk, j,1(t)/vk, j,1(t), t ∈ I(k)
j ,

from

x̃′(t) =
u′k, j,1(t)vk, j,1(t) − uk, j,1(t)v′k, j,1(t)

v2
k, j,1(t)

, t ∈ I(k)
j ,
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and v2
k, j,1(t) , 0 for each t ∈ I(k)

j , we have that x̃′(t) = 0 if and only if

u′k, j,1(t)vk, j,1(t) − uk, j,1(t)v′k, j,1(t) = 0,

and consequently N (k)
j is available just solving a polynomial equation of degree ηk,1 + δk,1 − 1.

Now define as monotone boxes the rectangles B( j,k)
i ,

B
( j,k)
i := [min

t∈I( j,k)
i

x̃(t),max
t∈I( j,k)

i

x̃(t)] × [min
t∈I( j,k)

i

ỹ(t),max
t∈I( j,k)

i

ỹ(t)],

where
I( j,k)
i := [T ( j,k)

i ,T ( j,k)
i+1 ].

By definition, if N (k)
j = ∅, necessarily there is only the monotone box B( j,k)

1 . Since ỹ is a rational
function in [T ( j,k)

i ,T ( j,k)
i+1 ], the evaluation of

min
t∈[T ( j,k)

i ,T ( j,k)
i+1 ]

ỹ(t), max
t∈[T ( j,k)

i ,T ( j,k)
i+1 ]

ỹ(t)

can be explicitly determined computing the derivative of the polynomial ỹ′, its zeros in [T ( j,k)
i ,T ( j,k)

i+1 ]
and the evaluation of ỹ at T ( j,k)

i and T ( j,k)
i+1 .

At this point, we have determined I( j,k)
i , such that

• the restriction of x̃, ỹ to each interval I( j,k)
i ⊆ [a, b] are rational functions,

• x̃ is a monotone function (with no turning points of ∂S in the interior of each B( j,k)
i ),

and we are ready to apply the crossing theorem to see if P = (Px, Py) is inside the Jordan domain S.
Let

B(P) = {B = [α1, β1] × [α2, β2] ∈ B : Px ∈ [α1, β1], Py ≥ α2}.

be the set that contains all the monotone boxes Bl such that P∗P ∩ Bl , ∅, and that consequently are
the only ones that may contribute to the evaluation of the crossing number c(P).

Consider one of these monotone boxes

Bl = [α(l)
1 , β

(l)
1 ] × [α(l)

2 , β
(l)
2 ] ∈ B(P).

If Py > β(l)
2 then the point is above the box, and thus the segment P∗P surely crosses ∂S once in Bl

and below P, due to the monotonicity of x̃ in Bl.
Otherwise, P ∈ Bl. As assumed before, P∗P is free of critical points and vertical segments of the

boundary, thus Bl includes a certain portion of ∂S described parametrically by two rational functions,
say x̃vBl , ỹvBl , with arguments in the interval IvBl ⊆ [a, b], in which x̃vBl is monotone and such that
Px ∈ x̃vBl(IvBl). This entails that necessarily there is a unique root t∗ ∈ IvBl of the polynomial equation

x̃vBl(t) = Px.

Since x̃vBl(t) =
u(t)
v(t) , for suitable polynomials u, v, then t∗ is the unique solution of the polynomial

equation u(t) − Py · v(t) = 0 in IvBl .
We also observe that,
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• if ỹ(t∗) < Py then the segment P∗P crosses the boundary ∂S once in the monotone box, below P;
• if ỹ(t∗) > Py then the segment P∗P does not cross the boundary ∂S once in B, below P;
• if ỹ(t∗) = Py then P is on the boundary ∂S.

After counting all the crossings, we determine whether a point P is inside or not inside the domain
S, by means of Jordan theorem. In Figure 7 we illustrate by an example the contribution given by
monotone boxes, while in Figure 8 we show the results given by our procedure when applied to two
complicated geometries.

Figure 7. In magenta, the two monotone boxes useful to determine whether or not
P ∈ S. It is immediate to observe that the segment P∗P intersects the boundary ∂S just
once. The monotone box below gives contribution 1, while the monotone box above gives
contribution 0.

Figure 8. In-domain routine applied to grid of 10000 points on two NURBS based Jordan
domains. The CPU time required for the process is respectively 2 · 10−2 and 5 · 10−2 seconds.

When the previous assumptions do not hold, i.e., the vertical segment P∗P contains a critical point
or a portion of a vertical side of ∂S (see Figure 5), one can use an algorithm based on the well-known
winding theorem to determine if P belongs to S. To this purpose, one can compute numerically the so
called winding number wind(P, x̃, ỹ) ∈ Z,

wind(P, x̃, ỹ) :=
1

b − a

∫ b

a

ỹ′(t)(x̃(t) − Px) − x̃′(t)(ỹ(t) − Py)
(x̃(t) − Px)2 + (ỹ(t) − Py)2 dt.
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If the quantity wind(P, x̃, ỹ) is odd then the point belongs to S otherwise is not inside such domain.

In our numerical tests, on a cloud of points, this approach is slower than the evaluation of the
crossing numbers. Our experience is that for general domains the winding number strategy will only
seldomly called by the in-domain routine proposed here.

In [30] the authors take into account techniques to make the implementation efficient and safe from
numerical issues. The numerical codes regarding this in-domain routine have been implemented in
Matlab and are freely available at [28].

8. Numerical tests

This section presents numerical tests to validate the proposed curvilinear VEM methodology for
the homogenization of fibre-reinforced composite materials. In particular, in Section 8.1 we show
a set of simple patch tests on a fictitious square domain with a minimal mesh comprising variously
distorted curvilinear polygons. In Section 8.2 we perform asymptotic homogenization for the basic
case of doubly periodic composite materials with complex fibre shapes. Finally, in Section 8.3 we
address a real scale engineering problem i.e., computational homogenization of composite materials
with randomly distributed highly complex unidirectional fibres, applying Monte Carlo simulations to
obtain statistically averaged effective properties.

8.1. Patch test

In this section we assess accuracy and robustness through representative boundary value problems
on a unit square domain with known solution i.e., patch tests with a linear solution in terms of the
cell function χ. The domain is represented by a unit square and meshes with the lowest number of
curvilinear quadrilaterals both convex and concave (see Figures 9 and 10) which are also progressively
distorted by moving the inner curvilinear polygon which is characterized by having the whole boundary
as a sequence of circular arches. The problem is split in two cases for each examined mesh
configuration, namely applying a unit shear strain es (s = 1, 2) along the y1 and y2 direction (see
Eq (2.10)), respectively, and solving the ensuing homogenized equilibrium equation, Eq (3.5), for each
loading condition.

Numerical results in terms of H1 error measure on the cell function are reported in Table 1,
which shows that the proposed methodology exactly solve a general P1-type patch test with no major
sensitivity to mesh distortion.

Table 1. Curvilinear VEM patch tests H1-error measures on χ.

shear dir. sym rot trsl dist

mesh S-cnv −y1 1.6710e-15 1.4492e-15 2.7327e-15 2.0848e-15
−y2 7.3042e-15 1.3048e-14 2.1801e-15 7.7697e-15

mesh S-cnc −y1 2.7826e-15 1.7097e-15 1.4332e-15 2.0231e-15
−y2 2.5073e-15 5.3894e-15 4.3447e-15 1.8341e-14
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Figure 9. Patch test on a unit square domain. Minimal curvilinear polygon meshes
comprising a quadrilateral with four convex circular edges with same radius and four
quadrilaterals with one concave circular edge. Meshes are progressively distorted through
shift and rotation of inner polygon.

Figure 10. Patch test on a unit square domain. Minimal curvilinear polygon meshes
comprising a quadrilateral with four concave circular edges with same radius and four
quadrilaterals with one convex circular edge. Meshes are progressively distorted through
shift and rotation of inner polygon.

8.2. Doubly periodic composites

In order to verify the capability of the method to tackle complex curvilinear fibre shape in efficient
manner, we here study doubly periodic fibre-reinforced composites for different fibre arrangements
and material setups. A given doubly periodic composite unit cell is identified through the geometrical
features ϕ, κ = L2/L1, f , and the following dimensionless material parameters:

• fibre/matrix stiffness ratio (contrast factor) ξ = Gf/Gm;
• dimensionless interface parameter δ = D/(GmL1);

The simulations refer to square RUC for simplicity i.e., ϕ = π/2, and κ = 1. The first benchmark
corresponds to elliptic cross section inclusions for f = 0.1, 0.2, 0.4, respectively, as can be see
in Figure 11, perfect interfaces i.e., δ = ∞ and a contrast factor ξ = 50. The inclusions scale
homothetically, with a constant ratio between semi-axes fixed at 2/3. For each computational domain
geometry, quadrilateral mesh discretizations are still adopted. Representative meshes of a quarter of the
domain are portrayed in Figure 11, in view of the double symmetry offered by all three cases. Presented
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results are obtained for five mesh sizes applying uniform refinement. Lacking a closed form or semi-
analytical solution for the case under investigation, as reference results we use standard Lagrangian
quadrilateral quadratic finite elements with an overkilling mesh resolution.

Figure 11. Asymptotic homogenization of doubly periodic composite material with elliptical
inclusions. Square RUC, volume fraction f = {0.1, 0.2, 0.4} (upper panel), stiffness contrast
factor ξ = 50, perfect interface s.t. δ = ∞. Curvilinear quadrilateral meshes of a relevant
quarter of domain due to double symmetry with respect to (y1, y2) axes (lower panel).
Elliptical inclusion semi-axis ratio equal to 2/3.

In Figure 12 we report h−convergence plots for the cell function χ(y) in the H1−error norm for
uniform mesh refinement, for the set of examined volume fractions.

The expected convergence rate is linear which is obtained for all examined patterns. We notice
that the exact geometric representation of the curved interface produce accurate results in conjunction
with the implemented NURBS quadrature formula. It is moreover observed that progressively higher
volume fractions of fibres require higher computational cost to reach a given accuracy level. The
second doubly periodic composite under investigation still regards a complex fibre boundary which,
differing from the previous case, exhibits a re-entrant sharp corner. The RUC domain is represented
in Figure 13 indicating still a square RUC which lodges a bilobe-type inclusion made of two circular
fibres with the same radius fused together with an overlapping of a third of the radial length. Due to
symmetry a quarter of the domain is meshed as can be inspected in Figure 13. We examine two sets
of problems for a fixed volume fraction f = 0.2. First, we consider perfect interfaces (δ = ∞) and
values of stiffness ratio ξ = 10, 100, 1000, respectively. Subsequently, we fix ξ = 100 and analyze the
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following values for the interface integrity indicator: δ = 10, 100, 1000,∞.
Optimal (linear) convergence rate for all cases is observed in Figure 14 where H1−error plots are

obtained through uniform mesh refinement sequence. This further set of results confirms method
consistency and capability of exactly representing the curvilinear interface geometry. An additional
improvement which would furtherly enhance the computational performance of the methodology is
adaptive mesh refinement, guided by an efficient and reliable error estimator procedure, which in
principle would indicate localization of the error (hence local refinement) at fibre/matrix interface,
and at unit cell boundary edges (see [3] for a thorough presentation of the method).
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Figure 12. Asymptotic homogenization of doubly periodic composite material with elliptical
inclusions. h−convergence in the H1 error norm on the cell function χ.

Figure 13. Asymptotic homogenization of doubly periodic composite material with complex
bi-lobe inclusions. Square RUC, volume fraction f = 0.2 (left panel), stiffness contrast factor
ξ = {10, 100, 1000}, interface parameter δ = {10, 100, 1000,∞}. Curvilinear quadrilateral
meshes of a relevant quarter of domain due to double symmetry with respect to (y1, y2) axes
(right panel). Bilobed inclusion made up of two circular fibres with a geometric overlapping
of a third of radius.
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Figure 14. Asymptotic homogenization of doubly periodic composite material with complex
bi-lobe inclusions. h−convergence in the H1 error norm on the cell function χ for varying
stiffness contrast factor ξ (left panel), and varying interface parameter δ (right panel).

8.3. Random composites with stocastically distributed inclusions

The engineering relevant case of random composites relies on a statistical homogenization
approach which for instance amounts to solving for large number of RUC random realizations and
subsequently infer homogenized material properties through statistical averaging of the results [17,23].
In this context, one key assumption is to consider statistically homogeneous randomly generated
microstructures, yielding an isotropic effective behaviour [17]. It is known that with this aim,
quantitative estimation of the RUC size plays an important role from accuracy and computational cost
point of view, since the effective modulus G#, obtained by Eq (2.14) is actually a random variable
depending on the realizations of the RUC D examined throughout the statistical homogenization
procedure. The main problem is then to determine a proper RUC size to guarantee a prescribed
accuracy on the effective material moduli. The idea is then not to use too large RUCs requiring heavy
computational effort, instead, sampling a higher number of smaller RUCs setups to get a prefixed
accuracy [17]. To this end, in this context where we focus specifically on solving complex curvilinear
fibre cross sections, we apply the statistical homogenization procedure presented recently in [3] in a
simplified form, i.e., with standard uniform mesh refinement.

As a manufactured benchmark we present numerical simulations on four geometrical arrangements
of square RUCs with equal, homogeneous isotropic trilobe-shaped fibres with volume fraction f = 0.2,
stiffness ratio ξ = 1000, δ = ∞. The RUC-to-fibre number ratio ranges from 2 to 16, see Figure 15
for a pictorial representation of such four typical realizations and relevant quadrilateral meshes. Fibre
cross section profiles are no more axis-symmetric, and are obtained blending three elliptical arcs with as
many circular fillets granting smoothness of the overall boundary. Each ellipse has semi-axes ratio 2/5,
while the ratio between circular arcs radius and minimal elliptical semi-axis is fixed in order to match
the prescribed volume fraction of the composite.

The idea is then to solve a sufficiently large number n of realizations with a standard uniform mesh
refinement strategy and numerically assess the statistics of result distribution. We refer to [3] for
a more detailed description of the computational homogenization procedure based on Monte Carlo
simulations.
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Figure 16 shows the normalized mean value µG#/Gm and the dispersion of G# as a function of the
number of trilobe inclusions per RUC. As it is expected, larger RUCs are associated to higher accuracy
and lower dispersion and hence can be used to obtain a fair estimate of µG# .

Figure 15. Statistic homogenization of a composite with randomly distributed fibres with
complex curvilinear cross section geometry. Stochastic realization of a square RUC of a
composite with prescribed volume fraction f = 0.2 and respectively 2, 3, 4, 16 complex
shaped trilobed fibres: conforming curvilinear quadrilateral meshes.
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Figure 16. Statistic homogenization of a composite with randomly distributed fibres
with complex curvilinear cross section geometry. Mean value µG# and dispersion of G#,
normalized by Gm as a function of the number of trilobe inclusion per RUC obtained through
Monte Carlo simulation; fibre/matrix stiffness ratio ξ = 1000, perfect interface (δ = ∞).

9. Conclusions

In this communication, we have addressed the computational asymptotic homogenization of
reinforced composite materials with long parallel fibres having a complex curvilinear cross section.
An augmented VEM formulation, based on the conjoined use of an efficient quadrature formula for
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NURBS-type curvilinear polygons and an augmented projection space, has been developed for the
effective computational analysis of the above class of heterogeneous materials in the framework of
antiplane deformation. VEM has been recently developed as a generalization of the FEM and it
allows the use of curvilinear polygonal elements of general, including non-convex elements. The
proposed method has been validated through en extensive numerical campaign showing its generality
for modelling accurately multiphase complex material. Further research aims at extending the method
to include material non-linear behaviour and damage.
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