
https://www.aimspress.com/journal/mine

Mathematics in Engineering, 6(2): 339–362.
DOI:10.3934/mine.2024014
Received: 30 June 2023
Revised: 20 March 2024
Accepted: 21 March 2024
Published: 26 March 2024

Research article

A locally conservative staggered least squares method on polygonal meshes†

Lina Zhao1 and Eun-Jae Park2,*

1 Department of Mathematics, City University of Hong Kong, Hong Kong, China
2 Department of Computational Science and Engineering, Yonsei University, Seoul 03722, Korea

† This contribution is part of the Special Issue: Advancements in Polytopal Element Methods
Guest Editors: Michele Botti; Franco Dassi; Lorenzo Mascotto; Ilario Mazzieri
Link: www.aimspress.com/mine/article/6538/special-articles

* Correspondence: Email: ejpark@yonsei.ac.kr.

Abstract: In this paper, we propose a novel staggered least squares method for elliptic equations on
polygonal meshes. Our new method can be flexibly applied to rough grids and allows hanging nodes,
which is of particular interest in practical applications. Moreover, it offers the advantage of not having
to deal with inf-sup conditions and yielding positive definite discrete problems. Optimal a priori error
estimates in energy norm are derived. In addition, a superconvergent estimates in energy norm are also
developed by employing variational error expansion. The main difficulty involved here is to show the
L2 norm error estimates for the potential variable, where duality argument and the superconvergent
estimates are the key ingredients. The single valued flux over the outer boundary of the dual partition
enables us to construct a locally conservative flux. Numerical experiments confirm the theoretical
findings and the performance of the adaptive mesh refinement guided by the least squares functional
estimator are also displayed.

Keywords: staggered grid; least squares; hanging nodes; error estimates; superconvergence; local
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1. Introduction

Staggered discontinuous Galerkin (SDG) methods on triangular meshes have been actively studied
since the pioneering works of Chung and Engquist [20, 21]. SDG methods earn many desirable
features, such as local and global conservations, superconvergence and preservation of physical
laws. Recently, a lowest order SDG method on general meshes has been developed for Poisson
equation [31,39], the Stokes equations [40], linear elasticity equations [43], respectively. The key idea
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of the lowest order SDG method on general meshes is to divide the initial partition into the union of
triangles by connecting the interior point to the vertices of the initial partition. Then two finite element
spaces are defined on the resulting triangulations, and the continuity of them are staggered on the
interelement boundaries. The construction of the SDG method on triangular meshes and on polygonal
meshes shares some similarities, while the lowest order SDG method on polygonal meshes is more
competitive for practical applications. The lowest order SDG method enfolds the following features:
First, it allows arbitrary shapes of polygons. Second, it can be flexibly applied to rough grids. Third,
hanging nodes are allowed, which can be simply treated as additional vertices. Very recently, arbitrarily
high order SDG methods have been developed for various problems of interest [30, 41, 42, 44].

Although SDG methods earn many desirable features, one of the disadvantages is that the inf-
sup condition is needed to establish the stability, which is usually not an easy task. Least squares
method is considered as an alternative to the saddle point formulations and can circumvent the inf-sup
condition. Examples of application of least squares to scalar elliptic equations, Helmholtz equation,
linear elasticity, the Stokes equations and the Navier-Stokes equations can be found in [6,7,13,14,19].
The purpose of this paper is to develop a first-order staggered least squares method for Poisson equation
on polygonal meshes. Different from the standard SDG methods, our method employs the locally
conforming Raviart-Thomas (RT) element and locally conforming linear element as the function
spaces. And the construction of locally conforming RT elements is much simpler than the flux space
employed in the standard SDG methods. Since continuity of the function spaces are staggered on the
interelement boundaries, we impose the flux jump term and potential jump term to stabilize the least
squares functional. The resulting staggered least squares method inherits the aforementioned features
of the lowest order SDG method. Stability and optimal a priori error estimates in energy norm are
developed. It is worth mentioning that in the first-order least squares method, the built-in functional
provides a natural error estimator. One can refer to [22,38] for related works on guaranteed a posteriori
error estimators for the SDG method and to [11, 17, 18, 29, 32, 34] for a posteriori error estimators for
the least squares method.

Superconvergence of finite element methods has drawn great attention for a few decades. It
has strong relevance to a posteriori error estimation. Most of the existing works are devoted to
superconvergence on rectangular meshes, among these, we cite in particular the works [26, 27, 35].
Superconvergence on triangular meshes can be referred to [3, 9, 33, 37]. Superconvergent estimates
for RT elements on triangular meshes are not an easy task, and the variational error expansion for
RT elements on a local triangle in terms of the normal trace (cf. [33]) is the key ingredient. Our
superconvergent estimate in energy norm is motivated by the work given in [33], while some new
techniques are also exploited due to the different expressions of least squares functional. One of the
major differences is Eq (3.9), which can not be bounded by direct application of Lemma 3.4. To
overcome this issue, we introduce piecewise constant projections and employ the equivalence between
the energy norm and divergence norm of RT elements.

Another new contribution is to study the L2 norm error estimates via a duality argument. It is
straightforward for the standard SDG method, while it is less obvious for the staggered least squares
method. Our staggered least squares method is nonconforming in the sense that the function spaces are
partially continuous over the interelement boundaries. If we proceed as in [12], then the L2 norm of
the potential will be expressed in terms of the bilinear form and the edge integration for the potential
error and flux error (see Lemma 3.6). The standard trace theorem will lead to the loss of the optimal
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convergence rates for L2 error. To overcome this issue and achieve the optimal convergence rates in L2

error, the superconvergent estimates measured in energy norm as well as the standard trace theorems
are exploited.

On the other hand, local and global conservations are attractive properties in practical applications,
while standard least squares method can not preserve the conservation properties. The staggered least
squares method also fails to preserve the local and global conservations. Therefore, we attempt to
develop a postprocessing scheme which can ensure local and global conservations. The postprocessing
scheme developed in this paper takes advantage of the single valued flux over the outer boundary of
the dual partition, which can be corrected by using some simple local procedure, yielding locally
conservative flux over the dual partition. Then the locally conservative flux over the resulting
triangulations can be constructed by using direct calculations. We remark that the postprocessing
scheme developed in this paper mimics the one proposed in [8], where quadrilateral elements are
considered. We modify the scheme proposed therein to fit it into polygonal meshes.

The rest of the paper is organized as follows. In the next section, we introduce the staggered
least squares method and present some preliminary results. Then in Section 3, some error estimates,
superconvergent estimates and L2 norm error estimate are proposed. In Section 4, a postprocessing
scheme for flux is established, which ensures the local and global conservations. Several numerical
experiments are carried out in Section 5 to confirm the theoretical findings. Finally, a conclusion is
given at the end of the paper.

2. Least squares method on staggered mesh

Let Ω be a bounded domain in R2 with Lipschitz continuous boundary ∂Ω. We consider the Dirichlet
boundary value problem

−∆p = f in Ω,

p = 0 on ∂Ω.
(2.1)

By introducing a new variable u = −∇p, the original problem can be recast into the first order system:

∇ · u = f in Ω,

u = −∇p in Ω,

p = 0 on ∂Ω.

(2.2)

Next, we introduce some notations that will be used throughout the paper. Let D ⊂ Rd, d = 1, 2,
we adopt the standard notations for the Sobolev spaces H s(D) and their associated norms ‖ · ‖s,D, and
semi-norms | · |s,D for s ≥ 0. The space H0(D) coincides with L2(D), for which the norm and inner
products are denoted as ‖ · ‖D and (·, ·)D, respectively. If D = Ω, the subscript Ω will be dropped unless
otherwise mentioned. In the sequel, we use C to denote a generic positive constant which may have
different values at different occurrences.

Now we can define our staggered least squares method. We start by introducing the meshes
employed in our construction, which is also one of the key ingredients. Following [21,39], three meshes
will be constructed: the primal mesh Tprm, the dual mesh Tdl and the primal simplicial submeshes
Th. We first let Tprm be the initial (primal) partition of the domain Ω into non-overlapping simple

Mathematics in Engineering Volume 6, Issue 2, 339–362.



342

quadrilateral/polygonal elements. We let Fprm be the set of all primal edges in this partition and
F 0

prm be the subset of all interior edges, that is, the set of edges in Fprm that do not lie on ∂Ω. For
each quadrilateral/polygon E in the initial partition Tprm, we select an interior point ν and create new
edges by connecting ν to the vertices of quadrilateral/polygon, and the set collecting all the interior
point is denoted as N1. This process will divide E into the union of triangles, where the triangle
is denoted as τ, and we rename the union of these triangles by S (ν). We remark that S (ν) are the
quadrilaterals/polygons in the initial partition (primal mesh). Moreover, we will use Fdl to denote
the set of all the dual edges generated by this subdivision process and use Th to denote the resulting
triangulations, on which our basis functions are defined. For each triangle τ ∈ Th, we let hτ be the
diameter of τ and h = max{hτ, τ ∈ Th}. Furthermore, Th is assumed to satisfy the local quasi-uniform
assumption in the sense that for any pair of elements τ and τ′ in Th which share an edge, there exists a
constant κ independent of hτ and hτ′ such that κ−1 ≤ hτ/hτ′ ≤ κ. In addition, we define F := Fprm ∪Fdl

and F 0 := F 0
prm ∪ Fdl. This construction is illustrated in Figure 1, where solid lines are edges in Fprm

and dotted lines are edges in Fdl.
For each interior edge e ∈ F 0

prm, we use D(e) to denote the union of the two triangles in Th sharing
the edge e (dual mesh), and for each boundary edge e ∈ Fprm\F

0
prm, we use D(e) to denote the triangle

in Th having the edge e, see Figure 1. We write Tdl as the union of all D(e). In addition, we define
T int

dl as the set collecting D(e) for all interior edges e ∈ F 0
prm and T ext

dl as the set collecting D(e) for
all boundary edges e ∈ Fprm\F

0
prm. In the sequel, we use ∇h and ∇h· to denote element-wise defined

gradient and divergence operators with respect to Th respectively.

S(n)

D(e)

Figure 1. Schematic of the primal mesh, the dual mesh and the primal simplicial submeshes.

For each edge e, we define a unit normal vector ne as follows: If e ∈ F \ F 0, then ne is the unit
normal vector of e pointing towards the outside of Ω. If e ∈ F 0, an interior edge, we then fix ne as one
of the two possible unit normal vectors on e. When there is no ambiguity, we use n instead of ne to
simplify the notation.

The following mesh regularity assumptions are also needed throughout the paper (cf. [5, 15]).

Assumption 2.1. We assume there exists a constant ρ > 0 such that

(1) For every element S (ν) ∈ Tprm and every edge e ∈ ∂S (ν), it satisfies he ≥ ρhS (ν), where he

denotes the length of edge e and hS (ν) denotes the diameter of S (ν).

(2) Every element S (ν) in Tprm is star-shaped with respect to a ball of radius ≥ ρhS (ν).
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We remark that the above assumptions ensure that the triangulation Th is shape-regular.
Let k ≥ 0 be the order of approximation. For every τ ∈ Th and e ∈ F , we define Pk(τ) and Pk(e)

as the spaces of polynomials of degree less than or equal to k on τ and e, respectively. For w and v
belonging to broken Sobolev space, the jump [v] and the jump [v · n] are defined respectively as

[w] = w1 − w2, [v · n] = v1 · n− v2 · n,

where vi = v |τi , vi = v |τi and τ1, τ2 are the two triangles in Th having the edge e ∈ F . In the above
definitions, we assume n is pointing from τ1 to τ2.

In addition, we let Hr(div; D) be the Banach space

Hr(div; D) = {v : v ∈ Lr(D)2, ∇ · v ∈ Lr(D)},

which can be denoted as H(div; D) when r = 2.
Finally, we introduce the finite dimensional spaces earning staggered continuity for defining our

scheme. We first define the following locally H1(Ω) conforming space S h:

S h := {w : w |τ∈ P1(τ) ∀τ ∈ Th; [w] |e= 0 ∀e ∈ F 0
prm; w |∂Ω= 0}.

Here, for w ∈ S h, we have w|D(e) ∈ H1(D(e)) ∀D(e) ∈ Tdl,∀e ∈ Fprm. We next define the following
locally H(div; Ω)−conforming SDG space Vh:

Vh = {v : v |τ∈ R0(τ) ∀τ ∈ Th; [v · n] |e= 0 ∀e ∈ Fdl},

where R0(τ) = P0(τ)2 ⊕ (x, y)T P0(τ). Note that if v ∈ Vh, then v |S (ν)∈ H(div; S (ν)) for each ν ∈ N1.
Based on the above preparations, we define a least squares functional for (v, q) ∈ Vh × S h

L(v, q; f ) =
∑

S (ν)∈Tprm

‖ f − ∇ · v‖20,S (ν) +
∑

D(e)∈Tdl

‖v + ∇q‖20,D(e)

+
∑

e∈F 0
prm

1
he
‖[v · n]‖20,e +

∑
e∈Fdl

1
he
‖[q]‖20,e.

(2.3)

The finite element discretization of our staggered least squares corresponding to the L2 norm least
squares functional is to minimize functional (2.3) over S h × Vh such that

L(uh, ph; f ) = min
v∈Vh,q∈S h

L(v, q; f ). (2.4)

Then, (2.4) can be equivalently written as follows: Find (uh, ph) ∈ Vh × S h such that

A(uh, ph; v, q) = ( f ,∇h · v), ∀(v, q) ∈ Vh × S h, (2.5)

where

A(uh, ph; v, q) =
∑

S (ν)∈Tprm

(∇ · uh,∇ · v)S (ν) +
∑

D(e)∈Tdl

(uh + ∇ph, v + ∇q)D(e)

+
∑

e∈F 0
prm

1
he

∫
e
[uh · n][v · n] ds +

∑
e∈Fdl

1
he

∫
e
[ph][q] ds, (v, q) ∈ Vh × S h.
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We mention the existing methods supporting polygonal meshes with arbitrary polynomial orders
such as DG [1, 4, 16, 24], HHO [25], VEM [5], and WG [36]. Advantages of our formulation are as
follows. First, the current least squares formulation does not require any stabilization parameters as
opposed to the existing polygonal methods. Second, the least square functional itself provides an a
posteriori error estimator for adaptive mesh refinements [17, 18].

For later analysis, we define

‖q‖2V = ‖∇hq‖20 +
∑
e∈Fdl

1
he
‖[q]‖20,e,

‖v‖2Σ = ‖v‖20 + ‖∇h · v‖20.

The following discrete Poincaré inequality will be used for the subsequent analysis (cf. [10])

‖q‖0 ≤ C‖q‖V , ∀q ∈ S h. (2.6)

Lemma 2.1. There exists a positive constant C such that for all (v, q) ∈ Vh × S h one has

A(v, q; v, q) ≥ C(‖q‖2V + ‖v‖2Σ), ∀(v, q) ∈ Vh × S h.

Proof. Integration by parts leads to

‖∇hq‖20 = (∇hq + v,∇hq) − (v,∇hq)

= (∇hq + v,∇hq) + (∇h · v, q) −
∑
τ∈Th

(v · n, q)∂τ

and

‖v‖20 = (v + ∇hq, v) − (∇hq, v)

= (v + ∇hq, v) + (∇h · v, q) −
∑
τ∈Th

(v · n, q)∂τ.

The Cauchy-Schwarz inequality and norm equivalence imply∑
τ∈Th

(v · n, q)∂τ =
∑

e∈F 0
prm

([v · n], q)e +
∑
e∈Fdl

(v · n, [q])e

≤ C
(( ∑

e∈F 0
prm

1
he
‖[v · n]‖20,e

)1/2
‖q‖0 +

( ∑
e∈Fdl

1
he
‖[q]‖20,e

)1/2
‖v‖0

)
.

The preceding arguments and the discrete Poincaré inequality (2.6) lead to

‖v‖20 + ‖∇hq‖20 +
∑
e∈Fdl

1
he
‖[q]‖20,e ≤ C

(
A(v, q; v, q) + A(v, q; v, q)1/2

(
‖q‖V + ‖v‖0

))
≤ C

(
A(v, q; v, q) +

1
2

(
‖q‖2V + ‖v‖20

))
.
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Therefore

‖q‖2V + ‖v‖20 ≤ CA(v, q; v, q).

It is trivial that

‖∇h · v‖20 ≤ CA(v, q; v, q).

Thus, the proof is complete by combining the above estimates. �

Theorem 2.1 (Existence and uniqueness). There exists a unique solution to (2.5).

Proof. Since (2.5) is equivalent to a square linear system, existence follows from uniqueness, it suffices
to prove the uniqueness. Let f = 0 in (2.5) and then (uh, ph) satisfies

A(uh, ph; v, q) = 0, ∀(v, q) ∈ Vh × S h.

By letting v = uh and q = ph in the above equation, we can obtain uh = 0 and ph = 0 (cf. Lemma 2.1).
This completes the proof. �

3. Error analysis

3.1. Energy error estimates

This section presents the convergence estimates for both potential and flux. To begin, we define the
projection operator such that it satisfies

(Ihw − w, ψ)e = 0, ∀ψ ∈ P1(e), e ∈ Fprm,

(Ihw − w, ψ)τ = 0, ∀ψ ∈ P0(τ), τ ∈ Th.

The following approximation properties hold (cf. [21, 23])

‖w − Ihw‖0 ≤ Ch2‖w‖2,

‖w − Ihw‖V ≤ Ch‖w‖2.
(3.1)

A projection operator, denoted by Πh, is defined as a linear mapping from Hr(div; Ω) to Vh for some
r > 2 such that on each element τ ∈ Th∫

e
Πhv · n ds =

∫
e

v · n ds, e ⊂ ∂τ.

It satisfies ∫
τ

∇ · (v − Πhv) dx = 0. (3.2)

In addition, we remark that Πhv ∈ H(div; Ω).
For v ∈ H1(τ)2,∀τ ∈ Th, the local Crouzeix-Raviart interpolant ICR

h v on τ is the unique element in
P1(τ)2 such that ∫

e
ICR
h v ds =

∫
e

v ds, ∀e ⊂ ∂τ, τ ∈ Th.
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Standard approximation theory yields (cf. [23])

‖v − Πhv‖0 ≤ Ch‖v‖1, (3.3)
‖∇ · (v − Πhv)‖0 ≤ Ch‖∇ · v‖1 (3.4)

and

‖q − ICR
h q‖0 ≤ Ch2‖q‖2. (3.5)

In addition, they satisfy (cf. [33])

Lemma 3.1. ΠhICR
h v = Πhv.

Theorem 3.1. Assume that (u, p) is in H1(Ω)2 × H2(Ω) and that the divergence of the flux ∇ · u is in
H1(Ω). Let (uh, ph) denote the numerical solution of (2.5). Then, we have

‖u − uh‖Σ + ‖p − ph‖V ≤ Ch(‖p‖2 + ‖∇ · u‖1).

Proof. Replacing (uh, ph) by (u, p) in (2.5), we can obtain

A(u, p; v, q) = ( f ,∇h · v), ∀(v, q) ∈ Vh × S h.

It then yields the following error equation

A(u − uh, p − ph; v, q) = 0, ∀(v, q) ∈ Vh × S h, (3.6)

which gives

A(Πhu − uh, Ih p − ph; v, q) = A(Πhu − u, Ih p − p; v, q), ∀(v, q) ∈ Vh × S h.

Lemma 2.1 and the definition of the bilinear form A lead to

‖Πhu − uh‖
2
Σ + ‖Ih p − ph‖

2
V ≤ CA(Πhu − uh, Ih p − ph; Πhu − uh, Ih p − ph)

≤ C
(
|(∇ · (Πhu − u),∇ · (Πhu − uh))|

+ |(∇(Ih p − p) + Πhu − u,Πhu − uh + ∇(Ih p − ph))|

+
∑
e∈Fdl

1
he

∫
e
[Ih p − p][Ih p − ph] ds

+
∑

e∈F 0
prm

1
he

∫
e
[Πhu − u][Πhu − uh] ds

)
.

We have from (3.2)

(∇ · (Πhu − u),∇ · (Πhu − uh)) = 0.

Standard approximation theory yields
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|(∇(Ih p − p) + Πhu − u,Πhu − uh + ∇(Ih p − ph))|

≤ Ch
(
‖p‖2 + ‖u‖1

)(
‖Πhu − uh‖Σ + ‖∇(Ih p − ph)‖0

)
.

Trace inequality and standard approximation theory (3.1) imply

∑
e∈Fdl

1
he

∫
e
[Ih p − p][Ih p − ph] ds ≤ C

( ∑
τ∈Th

(
h−2
τ ‖Ih p − p‖20,τ + ‖∇(Ih p − p)‖20,τ

))1/2
‖Ih p − ph‖V

≤ Ch‖p‖2‖Ih p − ph‖V .

Finally, we have from the definition of Πh∑
e∈F 0

prm

1
he

∫
e
[Πhu − u][Πhu − uh] ds = 0.

The preceding arguments, the triangle inequality and the interpolation error estimates (cf. (3.3)–(3.5))
yield the desired estimate.

�

Theorem 3.2. Let (u, p) satisfy the assumption of Theorem 3.1 and let (uh, ph) be the numerical
solution of (2.5). Then, we have

‖∇h · (u − uh)‖−1 ≤ Ch2(‖∇ · u‖1 + ‖p‖2).

Proof. Given φ ∈ H1(Ω), let α solve −∆α = φ in Ω, α = 0 on ∂Ω, and let β = −∇α, so ∇ · β = φ. Then
‖α‖2 ≤ C‖φ‖1, ‖∇ · β‖1 ≤ C‖φ‖1. We have from the definition of the dual norm

‖∇h · (u − uh)‖−1 = sup
φ∈H1(Ω)

(∇h · (u − uh), φ)
‖φ‖1

. (3.7)

Thus,

(∇h · (u − uh), φ) = (∇h · (u − uh),∇ · β) = A(u − uh, p − ph;β, α)
= A(u − uh, p − ph;β − Πhβ, α − Ihα)
≤ (‖u − uh‖Σ + ‖p − ph‖V)(‖β − Πhβ‖Σ + ‖α − Ihα‖V)
≤ Ch2(‖∇ · u‖1 + ‖p‖2)(‖∇ · β‖1 + ‖α‖2)
≤ Ch2(‖∇ · u‖1 + ‖p‖2)‖φ‖1,

which together with (3.7) yields the desired estimate.
�
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3.2. Superconvergence and L2 error estimate

In this section, we aim to derive the superconvergent estimates. Most of the existing literatures are
devoted to the rectangular cases. The function spaces exploited in our method is essentially defined
on the triangular meshes, which makes it more complicated to derive the superconvergent estimate. To
this end, we employ the variational error expansions for RT elements on a local triangle in terms of the
normal trace.

The next two lemmas are given in [33].

Lemma 3.2. For vL ∈ P1(τ)2,

vL − ΠhvL = curl r,

where

r =

3∑
k=1

h2
ek

2
nk ·

∂vL

∂tk
λk−1λk+1

and {ek}
3
k=1 denote the edges of triangle τ ∈ Th, {nk}

3
k=1 the unit outward normal vectors, {tk}

3
k=1 the unit

tangent vectors with counterclockwise orientation, and {λk}
3
k=1 are barycentric coordinate functions. In

addition, k ± 1 permuted cyclically.

Lemma 3.3. For vh ∈ P0(τ)2 and vL ∈ P1(τ)2

∫
τ

(vL − ΠhvL) · vh dx =

3∑
k=1

cot θk

∫
ek

λk−1λk+1

( 3∑
j=1

α
( j)
k A( j)

k vL

)
vh · nk ds,

where

α(1)
k = |τ|, α(2)

k = −|τ|, α(3)
k =

1
2

(h2
ek−1
− h2

ek+1
)

and A( j)
k are operators defined by

A(1)
k = tk ·

∂

∂tk
, A(2)

k = nk ·
∂

∂nk
, A(3)

k = nk ·
∂

∂tk
.

Now we are ready to prove the next lemma, which is crucial in the proof of the superconvergence.

Lemma 3.4. For vh ∈ P0(Th)2, the following estimate holds

|(u − Πhu, vh)| ≤ Ch2|u|2‖vh‖0.

Proof. Lemmas 3.1 and 3.3 imply

(u − Πhu, vh) = (u − ICR
h u, vh) +

∑
τ∈Th

∫
τ

(ICR
h u − ΠhICR

h u) · vh dx

= (u − ICR
h u, vh) +

∑
τ∈Th

3∑
k=1

cot θk

∫
ek

λk−1λk+1

( 3∑
j=1

α
( j)
k A( j)

k (ICR
h u − u)

)
vh · nk
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+
∑
τ∈Th

3∑
k=1

cot θk

∫
ek

λk−1λk+1

( 3∑
j=1

α
( j)
k A( j)

k u
)
vh · nk

=

3∑
i=1

Ri.

Standard interpolation theory (3.5) yields

R1 ≤ Ch2|u|2‖vh‖0.

The elementary identity

|

∫
e

f ds| ≤ C
(
h−1
τ

∫
τ

| f | dx +

∫
τ

|∇ f | dx
)
, ∀e ⊂ ∂τ

leads to

R2 ≤ C
∑
τ∈Th

(
hτ

∫
τ

|∇(ICR
h u − u)| · |vh| dx + h2

τ

∫
τ

|∇2u| · |vh| dx
)

≤ Ch2|u|2‖vh‖0.

The Cauchy-Schwarz inequality and trace inequality yield

R3 ≤ C
∑
τ∈Th

h2
τ‖∇u‖0,∞,τ

3∑
k=1

∫
ek

|vh · nk| ds

≤ Ch2‖∇u‖0,∞‖vh‖0.

�

Let Qh denote the standard linear interpolation operator, and we find the following lemma useful for
the subsequent analysis (cf. [28]).

Lemma 3.5. For any quadratic function pQ, we have

(I − Qh)pQ(x) = −
1
2

3∑
i=1

h2
ei
λi+1λi+2

∂2 pQ

∂t2
i

.

Let Π0 denote the L2 orthogonal projection onto the piecewise constants P0(Th)2, and it satisfies

‖vh − Π0vh‖0,τ ≤ Chτ‖∇vh‖0,τ. (3.8)

The superconvergent estimate can be stated in the next theorem.

Theorem 3.3. (superconvergence) Let (uh, ph) be the numerical solution of (2.5). Then, we have

‖ph − Qh p‖V + ‖uh − Πhu‖Σ ≤ Ch2(|p|2,∞ + |u|2).
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Proof. We can infer from Lemma 2.1

‖ph − Qh p‖2V + ‖uh − Πhu‖2Σ
≤ CA(uh − Πhu, ph − Qh p; uh − Πhu, ph − Qh p)
= CA(u − Πhu, p − Qh p; uh − Πhu, ph − Qh p)

= C
(
(∇ · (u − Πhu),∇ · (uh − Πhu)) + (u − Πhu,uh − Πhu) + (u − Πhu,∇(ph − Qh p))

+ (∇(p − Qh p),uh − Πhu) + (∇(p − Qh p),∇(ph − Qh p))
)
.

It follows from (3.2)

(∇ · (u − Πhu),∇ · (uh − Πhu)) = 0.

Any function vh ∈ Vh can be expressed in the following form on each triangle τ ∈ Th:

vh = (a + cx, b + cy)T in τ.

We have

‖∇vh‖0,τ =

√
2

2
‖∇ · vh‖0,τ.

Then, Lemma 3.4 and (3.8) yield

(u − Πhu,uh − Πhu) = (u − Πhu,uh − Πhu − Π0(uh − Πhu))
+ (u − Πhu,Π0(uh − Πhu))
≤ Ch2|u|2‖uh − Πhu‖Σ

(3.9)

and

(u − Πhu,∇(ph − Qh p)) ≤ Ch2|u|2‖∇(ph − Qh p)‖0.

Integration by parts implies

(∇(p − Qh p),uh − Πhu) =
∑
τ∈Th

(p − Qh p, (uh − Πhu) · n)∂τ − (p − Qh p,∇ · (uh − Πhu)). (3.10)

Without loss of generality, we assume that p ∈ P2, then the first term of (3.10) can be bounded by
Lemma 3.5 ∑

τ∈Th

(p − Qh p, (uh − Πhu) · n)∂τ ≤ Ch2
∑
τ∈Th

∫
∂τ

|∇2 p||Πhu − uh| ds

≤ Ch2|p|2,∞‖Πhu − uh‖0.

Standard interpolation theory and the Cauchy-Schwarz inequality yield the upper bound for the second
term of (3.10)

(p − Qh p,∇ · (uh − Πhu)) ≤ Ch2|p|2‖uh − Πhu‖Σ.
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Assume that p ∈ P2, then we have from Lemma 3.5 and integration by parts∑
τ∈Th

(∇(p − Qh p),∇(ph − Qh p))τ =
∑
τ∈Th

(p − Qh p,∇(ph − Qh p) · n)∂τ

≤ Ch2
∑
τ∈Th

∫
∂τ

|∇2 p||∇(ph − Qh p)| ds

≤ Ch2|p|2,∞‖∇(ph − Qh p)‖0.

The proof is complete by combining the preceding arguments.
�

Lemma 3.6. Let (u, p) be the solution of (2.2) and (uh, ph) be the numerical solution of (2.5). Then
there exists (γ,w) and z such that

‖p − ph‖
2
0 = A(u − uh, p − ph;γ,w) −

∑
τ∈Th

(∇z · n, p − ph)∂τ −
∑
τ∈Th

((u − uh) · n, z)∂τ

and that

‖γ‖1 + ‖∇ · γ‖1 + ‖w‖2 + ‖z‖2 ≤ C‖p − ph‖0. (3.11)

Proof. Let z ∈ H1
0(Ω) be the solution of the following problem

−∆z = p − ph. (3.12)

We assume that the following regularity estimate holds

‖z‖2 ≤ C‖p − ph‖0. (3.13)

Multiplying both sides of (3.12) by p− ph, adding and subtracting (u−uh,∇z), and integration by parts
imply

‖p − ph‖
2
0 = (∇z,∇(p − ph)) + (∇z,u − uh) + (∇ · (u − uh), z)

−
∑
τ∈Th

(∇z · n, p − ph)∂τ −
∑
τ∈Th

((u − uh) · n, z)∂τ.

It suffices to find (γ,w) ∈ Hr(div; Ω) × H1
0(Ω), r > 2 such that

γ + ∇w = ∇z in Ω,

∇ · γ = z in Ω
(3.14)

and that

‖w‖2 + ‖γ‖1 + ‖∇ · γ‖1 ≤ C‖p − ph‖0. (3.15)

To do so, let w ∈ H1
0(Ω) be the solution of the scalar elliptic problem (2.1) with the right hand side

f = z − ∆z. The regularity estimate (3.13) and the triangle inequality imply

‖w‖2 ≤ C‖z − ∆z‖0 ≤ C‖z‖2 ≤ C‖p − ph‖0. (3.16)
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Let γ = ∇(z − w). It is then easy to check that (γ,w) satisfies (3.14). Now (3.15) follows from (3.13),
(3.16), and the facts that

‖γ‖1 = ‖∇(z − w)‖1 ≤ C(‖z‖2 + ‖w‖2)

and that

‖∇ · γ‖1 = ‖z‖1.

The proof is complete by combining the preceding arguments. �

Now we are ready to prove the L2 norm error estimate, which is also the main result of this section.

Theorem 3.4. Let (u, p) be the solution of (2.2) and (uh, ph) be the numerical solution of (2.5). Then,
we have

‖p − ph‖0 ≤ Ch2(|p|2,∞ + |u|2).

Proof. We have from (3.6), (3.11), the Cauchy-Schwarz inequality and standard interpolation theory

A(u − uh, p − ph;γ,w) = A(u − uh, p − ph;γ − Πhγ,w − Ihw)
≤ C(‖u − uh‖Σ + ‖p − ph‖V)(‖γ − Πhγ‖Σ + ‖w − Ihw‖V)
≤ Ch(‖u − uh‖Σ + ‖p − ph‖V)‖p − ph‖0.

On the other hand, we have from the definition of dual norm, trace theorem and the discrete Poincaré
inequality (2.6) that∑

τ∈Th

(∇z · n, p − ph)∂τ =
∑
τ∈Th

(∇z · n, p − Qh p)∂τ +
∑
τ∈Th

(∇z · n,Qh p − ph)∂τ

=
∑
τ∈Th

(∇z · n,Qh p − ph)∂τ

≤ C
∑
τ∈Th

‖∇z · n‖−1/2,∂τ‖Qh p − ph‖1/2,∂τ

≤ C
∑
τ∈Th

‖∇z‖Σ,τ‖Qh p − ph‖1,τ

≤ C‖z‖2‖Qh p − ph‖V ,

where ‖ · ‖Σ,τ denotes ‖ · ‖Σ restricted to each element τ ∈ Th.
Proceeding analogously, we have∑

τ∈Th

((u − uh) · n, z)∂τ =
∑
τ∈Th

((u − Πhu) · n, z)∂τ +
∑
τ∈Th

((Πhu − uh) · n, z)∂τ

=
∑
τ∈Th

((Πhu − uh) · n, z)∂τ

≤ C‖Πhu − uh‖Σ‖z‖1.

The assertion follows by combining the preceding arguments, Theorems 3.1, 3.3 and Lemma 3.6. �

Remark 3.1. The L2 norm error estimate for potential given in Theorem 3.4 is constructed by
exploiting duality argument and superconvergent estimate (cf. Theorem 3.3). The optimal convergence
estimate in L2 norm proposed above requires higher regularity than the one given in [12], which is due
to the superconvergent estimate.

Mathematics in Engineering Volume 6, Issue 2, 339–362.



353

4. Locally conservative flux correction

In this section, we aim to formulate a simple, local procedure that replaces uh by a field ũh ∈

H(div; Ω) and satisfy ∫
τ

∇ · ũh dx =

∫
τ

f dx, ∀τ ∈ Th.

The construction proposed in this section can be flexibly applied to general meshes. There are two
steps involved in our postprocessing scheme: first, inspired by the work given in [8], we construct a
function which satisfies ∫

∂D(e)
ũh · n ds =

∫
D(e)

f dx, ∀D(e) ∈ T int
dl ,

where n denotes the unit outward normal vector of D(e); then, we can construct a function ũh ∈

H(div; Ω) satisfying ∫
τ

∇ · ũh dx =

∫
τ

f dx, ∀τ ∈ Th.

To complete the first step, we proceed as follows. Let D(e) denote an arbitrary dual mesh belonging
to T int

dl . Let ei, i = 1, . . . , 4 denote the (oriented) edges lying on ∂D(e), let φei , i = 1, . . . , 4 denote the
flux of uh across the edge ei and let n denote the unit outward normal vector of ∂D(e). In addition,
σi = 1 if orientation of ei coincides with the outer normal on ∂D(ei) and σi = −1 otherwise. A function
uh ∈ Vh satisfies

uh · n =

4∑
i=1

φeiσi,

which immediately leads to∫
∂D(e)

uh · n ds = σ1φe1he1 + σ2φe2he2 + σ3φe3he3 + σ4φe4he4 ,

where hei , i = 1, . . . , 4 denotes the length of the respective edges.
We seek to define modified flux values φ̃ei = φei − σiδφei and a function ũh which satisfies

ũh · n =

4∑
i=1

φ̃eiσi

such that

σ1φ̃e1he1 + σ2φ̃e2he2 + σ3φ̃e3he3 + σ4φ̃e4he4 = ( f , 1)D(e).

To define the corrected flux values for an element D(e), we proceed as follows. If, for a given edge
ei, the flux φei has already been corrected, we set δφei = 0. If the flux on ei has not yet been corrected,
we set

δφei =
σ1φe1he1 + σ2φe2he2 + σ3φe3he3 + σ4φe4he4 −

∫
D(e)

f dx

nD(e)
,
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where nD(e) > 0 is the summation of the length of all the edges on ∂D(e) whose fluxes have not been
corrected.

Consider now a dual partition T int
dl of Ω with nh interior dual elements. To define the flux-correction

algorithm, some additional notation is necessary. Let

e(i1, . . . , ik) = {e|e ∈ ∂Di, i = i1, . . . , ik}

denote the set of all edges in the union of the dual elements indexed by i1, · · · , ik. For example,
e(il) = ∂Dil is the set of all outer edges of element Dil ∈ T

int
dl . Define

n(i1, . . . , ik) = dim{eik/{e(i1, . . . , ik−1) ∩ eik}} ≥ 0.

Given uh ∈ Vh, the following algorithm finds ũh that is locally conservative over each D(e) ∈ Tdl:

(1) Define a permutation π = {i1, i2, . . . , inel} of all elements in T int
dl such that

n(i1, . . . , ik) > 0 for k = 1, . . . , nh;

(2) For k = 1, . . . , nh, apply the element flux correction procedure to element Dik .

We remark that the above procedure constructs a function ũh satisfying∫
∂D(e)

ũh · n ds =

∫
D(e)

f dx

for D(e) ∈ T int
dl . For elements D(e) in T ext

dl , if the flux value over ∂D(e)\∂Ω has not been corrected,
then we set the flux value to be equal to the flux value of uh over that edge. At this point, we have
determined the flux values of ũh over all the edges belonging to Fdl. To calculate the flux values over
the edges belonging to Fprm, we number the edges of an arbitrary element τ ∈ Th as ei, i = 1, . . . , 3 and
e1 denotes the edge that belongs to Fprm. The flux values over e2 and e3 have already been corrected,
which we denote as φ̃2 and φ̃3, respectively. We can define the flux value over e1 by

φ̃e1 =

∫
τ

f dx − σ2he2 φ̃e2 − σ3he3 φ̃e3

σ1he1

.

Then, ũh in each element can be represented as

ũh |τ=

3∑
i=1

φ̃eiWei ,

where Wei is the RT shape function associated with edge ei. The above procedure yields a function
ũh ∈ H(div; Ω) and satisfies the local conservation.

Remark 4.1. Our locally conservative flux correction is motivated by the work given in [8], while some
modifications are made. First, different from the work in [8], our locally conservative flux correction
is essentially defined on triangular meshes, which makes it well suited to general meshes. Second, our
construction is based on locally conforming H(div; Ω) elements, thus, locally conservative flux on dual
partitions are considered first and then locally conservative flux on each triangle can be constructed
by applying some simple local procedure.
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5. Numerical experiments

In this section, we present several numerical examples to test the performance of the proposed
method. The convergence history for various errors under uniform refinement are displayed. In
addition, some numerical experiments are carried out to test the performance of the adaptive mesh
refinement guided by the least squares functional estimator. Moreover, the adaptive mesh refinement
can be pursued by connecting the midpoint of each planar face of its boundary to the barycenter of the
element, and more details regarding the adaptive mesh refinement strategies can be found in [39]. By
refining in this fashion, hanging nodes may be introduced, which can be simply treated as new nodes
since adjacent co-planar elemental interfaces are perfectly acceptable for our method.

Example 5.1 (Smooth solution on unit square domain). In this example, we consider Ω = (0, 1)2, and
the exact solution is given by p = x(1 − x)y(1 − y), where the right hand side f can be calculated
correspondingly.

We first partition the domain Ω into uniform square grids. Note that the mesh size h ≈ N−1/2, where
N represents the number of degrees of freedom. The convergence history for various errors against
the number of degrees of freedom are displayed in Figure 2, where optimal convergence rates can
be achieved. In addition, we can observe from the numerical tests that the postprocessed flux has
first order convergence and the L2 accuracy is not influenced. Then, we partition the domain Ω into
trapezoidal grids of base h in vertical direction and parallel horizontal edges of size 0.2 h and 1.8 h,
as proposed in [2, 39] and shown in Figure 3. We can observe from the numerical results that optimal
convergence rates can be obtained. Next, we test the performance of the proposed method by using
Voronoi mesh as shown in Figure 4, again, optimal convergence rates can be achieved. The numerical
results in Table 1 indicate that the postprocessed flux can recover local and global conservations for
rough grids. Here, Dofs denotes the number of degrees of freedom.
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Figure 2. Convergence history for various errors.
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Figure 3. The Initial mesh (left) and convergence history for trapezoidal mesh (right).
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Figure 4. The Initial mesh (left) and convergence history for Voronoi mesh (right).

Table 1. Performance of mass conservation.

Dofs 16256 square mesh 16256 trapezoidal mesh 14270 Voronoi mesh

|
∫

Ω
( f − ∇ · uh) dx| 4.48E-5 8.57E-5 2.86E-5

|
∫

Ω
( f − ∇ · ũh) dx| 0.48E-16 1.01E-16 2.77E-17

|
∫
τ̃
( f − ∇ · uh) dx| 2.01E-8 6.37E-8 3.17E-8

|
∫
τ̃
( f − ∇ · ũh) dx| 2.87E-18 9.43E-18 6.56E-18

Let ∫
τ̃

( f − ∇ · ũh) dx = max
τ∈Th
|

∫
τ

( f − ∇ · ũh) dx|,

then we have:
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Example 5.2 (Classical L-shaped domain). In this example, we consider the L-shaped domain

Ω = (0, 1) × (−1, 1)\[0, 1] × [−1, 0].

The exact solution in polar coordinates is given by

u(r, θ) = r2/3 sin(2θ/3).

The convergence history under uniform refinement are reported in Figure 5. As expected, reduced
convergence rates are achieved, which is due to the reduced regularity. In addition, as shown in
Table 2, the postprocessed flux ensures local and global conservations.
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Figure 5. Convergence history for various errors.

Table 2. Performance of mass conservation.

Dofs |
∫

Ω
( f − ∇ · uh) dx| |

∫
Ω

( f − ∇ · ũh) dx| |
∫
τ̃
( f − ∇ · uh) dx| |

∫
τ̃
( f − ∇ · ũh) dx|

48896 4.48E-4 0.48E-15 2.01E-6 2.87E-17

To restore the optimal convergence rates, we aim to exploit the adaptive mesh refinement guided by
least squares functional estimator which is defined by

η2 =
∑

S (ν)∈Tprm

‖ f − ∇ · uh‖
2
0,S (ν) +

∑
D(e)∈Tdl

‖uh + ∇ph‖
2
0,D(e)

+
∑

e∈Fprm

1
he
‖[uh · n]‖20,e +

∑
e∈Fdl

1
he
‖[ph]‖20,e

and the error is defined as

E(p − ph,u − uh) :=
(
‖p − ph‖

2
V + ‖u − uh‖

2
Σ +

∑
e∈F 0

prm

h−1
e ‖[uh · n]‖20,e

)1/2
.
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Indeed, it follows from (2.3) and (2.2) that E(p − ph,u − uh) ≈ η2. Interested readers can also
refer to [17] for the discussions on the equivalence of the error estimator and the error in the least-
square methods. The adaptive mesh pattern and convergence history under adaptive mesh refinement
are reported in Figure 6, where the singularity is well-captured and optimal convergence rates can be
recovered by using adaptive mesh refinement.
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Figure 6. The adaptive mesh pattern (left) and convergence history (right) for L-shaped
domain.

Example 5.3 (Solution with circular inner layer). In this example, we set Ω = (0, 1)2 and the exact
solution is given by

u(x, y) = 16x(1 − x)y(1 − y) ×
(1
2

+
arctan(2(0.252 − (x − 0.5)2 − (y − 0.5)2)/

√
ε)

π

)
and f can be calculated correspondingly. The solution possesses a circular inner layer where its
gradient behaves like O(ε−1/2). In our numerical simulation, we set ε = 10−4.

The plots of the exact solution are shown in Figure 7. The adaptive mesh pattern and convergence
history are reported in Figure 8, and we can observe from the numerical results that the circular inner
layer can be well captured and optimal convergence rates can be restored.
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Figure 7. The exact solution (left) and contour-lines (right) for Example 5.3.
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Figure 8. The adaptive mesh pattern (left) and convergence history (right) for Example 5.3.

6. Conclusions

In this paper, we have developed a staggered least squares method for elliptic equations on general
meshes. Optimal a priori error estimates in energy norm and L2 norm are derived. A postprocessing
scheme is introduced to ensure local and global conservations on general meshes. The numerical
results indicate that the proposed method can be flexibly applied to rough grids, and the postprocessed
flux earns local and global conservations on general meshes. In addition, the adaptive mesh refinement
guided by the least squares functional estimator is efficient in dealing with problems with singularities.
Finally, we remark that the RT element exploited in this paper can also be replaced by BDM1 element,
then optimal convergence rates in energy norm can be proved similarly. Our (undisplayed) numerical
tests indicate that optimal convergence rates in L2 norm can be obtained for BDM1 element, while the
proof for it remains open.
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