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Abstract: Random forests are notable learning algorithms introduced by Breiman in 2001. They are
widely used for classification and regression tasks and their mathematical properties are under ongoing
research. We consider a specific class of random forest algorithms related to kernel methods, the so-
called Kernel Random Forests (KeRF). In particular, we investigate thoroughly two explicit algorithms,
designed independently of the data set, the centered KeRF and the uniform KeRF. In the present article,
we provide an improvement in the rate of convergence for both algorithms and we explore the related
reproducing kernel Hilbert space defined by the explicit kernel of the centered random forest.

Keywords: nonparametric statistics; kernel random forests; reproducing kernel spaces

1. Introduction

Random forests are a class of non-parametric statistic machine learning algorithms used for
regression and classification tasks. Random forest algorithms have the capability to perform sparse
tasks with high accuracy in high dimensions, avoiding overfitting. In particular, random forests
are considered to be among the most accurate learning algorithm classes for general tasks. They
are routinely used in many fields including bio-informatics [15], economics [30], biology [10], and
linguistics [18].

The most widely used random forest algorithm was introduced by Breiman [13], who was inspired
by the work on random subspaces of Ho [19], and geometrical feature selection of Amit and Geman [2].
In Breiman’s random forest, the trees are grown based on the classification and regression trees (CART)
procedure, where both splitting directions and training sets are randomized. However, despite the
few parameters that need to be tuned [16, 21], their mathematical properties are still areas of active
research [6, 22]. A significant distinction among the class of random forest algorithms consists in the
way each individual tree is constructed, and, in particular, the dependence of each tree on the data set.
Some of the researchers consider random forests designed independently from the data set [7, 14, 25].

In 2012, Biau [5] studied a random forest model proposed by Breiman, where the construction is
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independent of the data set, called in literature centered random forest. In [5] an upper bound on the
rate of consistency of the algorithm and its adaption to sparsity were proven. More precisely, about the

first item, for a data set of n samples in a space of dimension d, the convergence rate was O
(
n
− 1

d 4
3 log 2+1

)
.

In 2021, Klusowski [20] improved the rate of convergence to O
(
(n log

d−1
2 n)−( 1+δ

d log 2+1 )
)
, where δ is a

positive constant that depends on the dimension of the feature space d and converges to zero as d
approaches infinity. In addition, in the same paper, Klusowski proved that the rate of convergence of
the algorithm is sharp, although it fails to reach the minimax rate of consistency over the class of the
Lipschitz functions O

(
n
−2

d+2

)
[29]. There is also important work on the consistency of algorithms that

depend on data [23, 27, 28]. For a comprehensive overview of both theoretical and practical aspects of
the random forests, see [8], which surveys the subject up to 2016.

An important tool for algorithmically manipulating random forests is through kernel methods.
Breiman [11] observed the connection between kernel theory and random forests by showing the
equivalence between tree construction and kernel action. Later this was formalized by Geurts et al.
in [17]. In the same direction Scornet in [26] defined Kernel Random Forest (KeRF) by modifying the
original algorithm, and providing theoretical and practical results. In particular, in his important work,
Scornet provided explicit kernels for some generalizations of algorithms, their rate of consistency, and
comparisons with the corresponding random forests. Furthermore, Arnould et al. [3] investigated the
trade-off between interpolation of several random forest algorithms and their consistency results.

In the first part of the paper, we provide the notation and the definitions of the centered and uniform
random forests and their corresponding kernel-related formulations. In addition, we improve the rate
of consistency for the centered KeRF algorithm. Let k ≥ 1 be the depth of the trees used to estimate
the target variable Y (see Section 2 for definitions and notation).

Theorem 1. Suppose that X = (X1, . . . , Xd) and Y are related by Y = m(X) + ε where: ε is a zero mean
Gaussian noise with finite variance independent of X, X is uniformly distributed in [0, 1]d, and m is a
regression function, which we assume to be Lipschitz. Then, there exists a constant C̃ such that, for
every n > 1 and for every x ∈ [0, 1]d,

E(m̃Cen
∞,n(x) − m(x))2 ≤ C̃n−

(
1

1+d log 2

)
(log n).

Here, m(x) = E [Y |X = x] is the predicted value of Y for X = x ∈ [0, 1]d, while m̃Cen
∞,n(x) is the

estimate for m provided by the kernel version of the centered random forest algorithm.
Similarly, with m̃Un

∞,n(x) playing for the uniform KeRF algorithm the role m̃Cen
∞,n(x) had above, we

have:

Theorem 2. Let X, Y, m, and ε be as in Theorem 1, with Y = m(X) + ε. Then there exists a constant C̃
such that for every n > 1, for every x ∈ [0, 1]d

E(m̃Un
∞,n(x) − m(x))2 ≤ C̃n

−
(

1
1+ 3

2 d log 2

)
(log n).

Moreover, in Section 4, we provide numerical examples and experiments concerning the tuning
parameter k, which is the tree depth of the two kernel-based random forest algorithms, by comparing
the L2-error for different values and under specific assumptions on the data set.
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In the final part of the article, we consider the reproducing kernel K used in the centered KeRF
algorithm per se. It is rewarding looking at it as defined on the finite Abelian group Zkd

2 , where,
as above, d is the dimension of the vector X and k is the depth of the tree. By using elementary
Fourier analysis on groups, we obtain several equivalent expressions for K and its group transform, we
characterize the functions belonging to the corresponding Reproducing Kernel Hilbert Space (RKHS)
HK , we derive results on multipliers, and we obtain bounds for the dimension of HK , which is much
smaller than what one might expect.

2. Notation

A usual problem in machine learning is, based on n observations of a random vector (X,Y) ∈
X ×R ⊆ Rd ×R, to estimate the function m(x) = E(Y |X = x). In classification problems, Y ranges over
a finite set. In particular we assume that we are given a training sample Dn = {(X1,Y1), ..., (Xn,Yn)} of
independent random variables, where Xi ∈ [0, 1]d for every i = 1, ..., n and Y ∈ R with a shared joint
distribution PX,Y . The goal is using the data set to construct an estimate mn : X ⊆ [0, 1]d → R of the
function m. Our convergence rate requires an a priori assumption on the regularity of the function m.
Following [26], we suppose that m belongs to the class of L Lipschitz functions,

|m(x) − m(x′)| ≤ L · ‖x − x′‖.

Here, as is [26], we consider on Rd the distance

‖x − x′‖ =

d∑
j=1

|x j − x′j|.

2.1. The random forest algorithm

Next, we provide the general random forest framework by defining firstly the notion of a random
tree. Additionally, we present two specific variations of the original random forest algorithm, namely,
the centered and uniform random forest algorithms.

Let’s assume Θi for i = 1, ...,M is a collection of independent random variables, distributed as Θ.

The random variables Θi correspond to sample the training set or select the positions for splitting. The
detailed construction in the case of the centered random forest is performed in Appendix.

Definition 1. For the j-th tree in the forest, the predicted value x will be denoted by

mn,Θ j,Dn(x) =

n∑
i=1

1Xi∈An,Θ j ,Dn (x)Yi

Nn,Θ j,Dn(x)
.

Where An,Θ j,Dn(x) is the cell containing x and Nn,Θ j,Dn(x) is the number of points that fall into the cell
that x belongs to.

For a fixed value of x ∈ [0, 1]d, the value of the tree is the empirical expectation of Y in the unique
cell containing x; which is, this is the hope, a good guess for the target value corresponding to x.

A random forest is a finite collection (average) of independent, finite random trees {Θ1, . . . ,ΘM}.
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Definition 2. The finite M forest is

mM,n(x) =
1
M

M∑
j=1

mn,Θ j,Dn(x).

From a modeling point of view, we let M → ∞ and consider the infinite forest estimate

m∞,n,Dn(x) = EΘ(mn,Θ,Dn(x)).

The convergence holds almost surely by the law of the large numbers conditionally onDn [12] and [25,
Theorem 3.1].

2.2. Kernel random forest algorithm

In 2016, Scornet [26] introduced kernel methods in the random forest world (KeRF), producing
a kernel-based algorithm, together with estimates on how this compares with the old one, described
above.

To understand the intuition behind KeRF construction, we reformulate the random forest algorithm.
For all x ∈ [0, 1]d,

mM,n(x) =
1
M

M∑
j=1

( n∑
i=1

1Xi∈An,Θ j ,Dn (x)Yi

Nn,Θ j,Dn(x)
)
.

Therefore we can define the weights of every observation Yi as

Wi, j,n(x) =
1Xi∈An,Θ j ,Dn (x)

Nn,Θ j,Dn(x)
.

Hence it is clear that the value of weights changes significantly concerning the number of points in
each cell. A way to overcome this nuisance is by simultaneously considering all tree cells containing
x, as the tree is randomly picked in the forest.

For all x ∈ [0, 1]d,

m̃M,n,Θ1,Θ2,...,ΘM (x) =
1∑M

j=1 Nn,Θ j(x)

M∑
j=1

n∑
i=1

Yi1Xi∈An,Θ j (x).

This way, empty cells do not affect the computation of the prediction function of the algorithm.
It is proven in [26], that this representation has indeed a kernel representation.

Proposition 1. [26, Proposition 1] For all x ∈ [0, 1]d almost surely, it holds

m̃M,n,Θ1,Θ2,...,ΘM (x) =

∑n
i=1 KM,n(x, Xi)Yi∑n

i=1 KM,n(x, Xi)
,

where

KM,n(x, z) =
1
M

M∑
i=1

1x∈An,Θi ,Dn (z)

is the proximity function of the M forest.
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The infinite random forest arises as the number of trees tends to infinity.

Definition 3. The infinite KeRF is defined as:

m̃∞,n(x) = lim
M→∞

m̃M,n(x,Θ1,Θ2, ...,ΘM).

The extension of the kernel follows also in the infinite random forest.

Proposition 2. [26, Proposition 2] Almost surely for all x, y ∈ [0.1]d

lim
M→∞

KM,n(x, y) = Kn(x, y),

where

Kn(x, y) = PΘ(x ∈ An(y,Θ)),

where the left-hand side is the probability that x and y belong to the same cell in the infinite forest.

2.3. The centered random forest vs centered KeRF, and the uniform random forest vs uniform KeRF

In this paper, we say that an estimator function mn of m is consistent if the following L2−type of
convergence holds,

E(mn(x) − m(x))2 → 0,

as n→ ∞.
In the centered and uniform forest algorithms, the way the data setDn is partitioned is independent

of the data set itself.

2.3.1. The centered random forest/centered KeRF

The centered forest is designed as follows:

1) Fix k ∈ N.
2) At each node of each individual tree choose a coordinate uniformly from {1, 2, ..d}.
3) Split the node at the midpoint of the interval of the selected coordinate.

Repeat steps 2) and 3) k times. At the end, we have 2k leaves, or cells. A toy example of this iterative
process for k = 1, 2 is in Figures 1 and 2. Our estimation at a point x is achieved by averaging the Yi

corresponding to the Xi in the cell containing x.
Scornet in [26] introduced the corresponding kernel-based centered random forest providing

explicitly the proximity kernel function.
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Figure 1. Centered algorithm with tree level k = 1 with the convention that 1 corresponds to
x axis and 2 to the y axis.

Figure 2. Centered algorithm with tree level k = 1 with the convention that 1 corresponds to
x axis and 2 to the y axis.
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Proposition 3. A centered random forest kernel with k ∈ N parameter has the following multinomial
expression [26, Proposition 5],

KCen
k (x, z) =

∑
∑d

j=1 k j=k

k!
k1!...kd!

(
1
d

)k
d∏

j=1

1⌈
2k j x j

⌉
=
⌈
2k j z j

⌉,

where KCen
k is the kernel of the corresponding centered random forest.

2.3.2. The uniform random forest/kernel random forest

Uniform random forest was introduced by Biau et al. [7] and is another toy model of Breinman’s
random forest as a centered random forest. The algorithm forms a partition in [0, 1]d as follows:

1) Fix k ∈ N.
2) At each node of each individual tree choose a coordinate uniformly from {1, 2, ..d}.
3) The splitting is performed uniformly on the side of the cell of the selected coordinate.

Repeat steps 2) and 3) k times. At the end, we have 2k leaves. Our final estimation at a point x is
achieved by averaging the Yi corresponding to the Xi in the cell x.

Again Scornet in [26, Proposition 6] proved the corresponding kernel-based uniform random forest.

Proposition 4. The corresponding proximity kernel for the uniform KeRF for parameter k ∈ N and
x ∈ [0, 1]d has the following form:

KUn
k (0, x) =

∑
∑d

j=1 k j=k

k!
k1!...kd!

(
1
d

)k
d∏

m=1

(
1 − xm

km−1∑
j=0

(− ln xm) j

j!

)

with the convention that
−1∑
j=0

(− ln xm) j

j!
= 0

and by continuity we can extend the kernel also for zero components of the vector.

Unfortunately, it is very hard to obtain a general formula for KUn(x, y) but we consider instead a
translation invariant KeRF uniform forest:

mUn
∞,n(x) =

∑n
i=1 YiKUn

k (0, |Xi − x|)∑n
i=1 KUn

k (0, |Xi − x|)
.

3. Proofs of the main theorems

In this section, after providing some measure concentration type results [9], we improve the rate of
consistency of the centered KeRF algorithm. The following lemmata will provide inequalities to derive
upper bounds for averages of iid random variables. Lacking a reference, for completeness, we provide
detailed proofs of these lemmata. Moreover, we assume for this article that all random variables are
real-valued and ||X||Lp : = (E|X|p)

1
p and ||X||∞ : = inf{t : P(|X| ≤ t) = 1}.
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Lemma 1. Let X1, ..., Xn be a sequence of real independent and identically distributed random
variables with E(Xi) = 0. Assuming also that there is a uniform bound for the L1-norm and the
supremum norm i.e., E(|Xi|) ≤ C, ||Xi||∞ ≤ CM for every i = 1, ..., n. Then for every t ∈ (0, 1)

P
(
{
|
∑n

i=1 Xi|

n
≥ t}

)
≤ 2e−C̃C

t2n
M

for some positive constant C̃C that depends only on C.

Proof. ∀x ∈ [0, 1] one has that ex ≤ 1 + x + x2. By using the hypothesis for every λ ≤ 1
CM ,

eλXi ≤ 1 + λXi + (λXi)2 ⇒

EeλXi ≤ 1 + λ2E(Xi)2

≤ 1 + λ2||Xi||1||Xi||∞

≤ 1 + λ2C2M

≤ eλ
2C2 M.

By the independence of the random variables Xi,

Ee
∑n

i=1 λXi =

n∏
i=1

EeλXi

≤

n∏
i=1

eλ
2C2 M = enλ2C2 M.

Therefore, by Markov inequality

P
(
{

∑n
i=1 Xi

n
≥ t}

)
≤ e−λtnEe

∑n
i=1 λXi ≤ e−λtnenλ2C2 M = enλ2C2 M−λtn.

Finally if C ≥ 1
4 we choose, λ = t

2C2 M , otherwise for λ = t
16CM

P
(
{

∑n
i=1 Xi

n
≥ t}

)
≤ e−C̃C

t2n
M .

By replacing Xi with −Xi we conclude the proof. �

Lemma 2. Let X1, ..., Xn be a non-negative sequence of independent and identically distributed random
variables with E(Xi) ≤ 2, ||Xi||∞ ≤ M for every i = 1, ..., n. Let also a sequence of independent random
variables εi following normal distribution with zero mean and finite variance σ2, for every i = 1, ..., n.
We assume also that εi are independent from Xi for every i = 1, ..., n.

Then for every t ∈ (0, 1),

P
(1
n

n∑
i=1

|εiXi| ≥ t
)
≤ 2 exp (−Ct2 n

M
)

with the positive constant C depending only on σ.
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Proof.

P
(1
n

n∑
i=1

εiXi ≥ t
)

= P
(
exp

(
λ

n

n∑
i=1

εiXi ≥ exp(λt)
)

(for a positive λ)

≤ exp(−λt)E exp
(
λ

n

n∑
i=1

εiXi

)
(by Chebyshev’s inequality)

= exp(−λt)
n∏

i=1

E exp
(
λ

n
εiXi

)
(by independence)

= exp(−λt)
n∏

i=1

(
1 +

∞∑
k=2

λkEXk
i Eε

k
i

nkk!

)
≤ exp(−λt)

n∏
i=1

(
1 +

2
M

∞∑
k=2

λkMkEεk
i

nkk!

)
= exp(−λt)

n∏
i=1

(
1 +

2
M

(
E exp

(
λM
n
εi

)
− 1

))
≤ exp(−λt)

n∏
i=1

(
1 +

2
M

(
exp

(
λ2σ2M2

n2

)
− 1

))
= exp(−λt) exp

( n∑
i=1

(
log

(
1 +

2
M

(
exp

(
λ2σ2M2

n2

)
− 1

))))
≤ exp(−λt) exp

( n∑
i=1

2
M

(
exp

(
λ2σ2M2

n2

)
− 1

))
≤ exp(−λt) exp

(2n
M

(
exp

(
λ2σ2M2

n2

)
− 1

))
≤ exp(−λt) exp

(2n
M

(
2
λ2σ2M2

n2

))
(for λ ≤

n
σM

)

= exp
(
−λt +

4M
n
λ2σ2

)
.

Finally, we select λ = tn
8Mσ2 , when σ ≥ 1

8 and λ = tn
Mσ
, when σ ≤ 1

8

P
(1
n

n∑
i=1

εiXi ≥ t
)
≤ exp

(
−C

t2n
M

)
.

Replacing Xi with −Xi we conclude the proof. �

Theorem 3. Y = m(X) + ε where ε is a zero mean Gaussian noise with finite variance independent of
X. Assuming also that X is uniformly distributed in [0, 1]d and m is a Lipschitz function. Then there
exists exists a constant C̃ such that for every n > 1 , for every x ∈ [0, 1]d

E(m̃Cen
∞,n(x) − m(x))2 ≤ C̃n−

(
1

1+d log 2

)
(log n).
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Proof. Following the notation in [26], let x ∈ [0, 1]d, ‖m‖∞ = supx∈[0,1]d |m(x)|, and by the construction
of the algorithm

m̃Cen
n,∞(x) =

∑n
i=1 YiKk(x, Xi)∑n

i=1 Kk(x, Xi)
.

Let

An(x) =
1
n

n∑
i=1

(
YiKk(x, Xi) − E(YKk(x, X))

E(Kk(x, X))

)
,

Bn(x) =
1
n

n∑
i=1

(
Kk(x, Xi) − E(Kk(x, X))

E(Kk(x, X))

)
,

and

Mn(x) =
E(YKk(x, X))
E(Kk(x, X))

.

Hence, we can reformulate the estimator as

m̃Cen
n,∞(x) =

Mn(x) + An(x)
Bn(x) + 1

.

Let t ∈ (0, 1
2 ) and the event Ct(x) where {An(x), Bn(x) ≤ t}.

E(m̃cc
n,∞(x) − m(x))2 = E(m̃cc

n,∞(x) − m(x))2
1Ct(x) + E(m̃cc

n,∞(x) − m(x))2
1Cc

t (x)

≤ E(m̃cc
n,∞(x) − m(x))2

1Cc
t (x) + c1

(
1 −

1
2d

)2k

+ c2t2

where the last inequality was obtained in [26, p.1496]. Moreover, in [26],

E(m̃cc
n,∞(x) − m(x))2

1Cc
t (x) ≤ c3(log n)(P(Cc

t (x)))
1
2 .

In order to find the rate of consistency we need a bound for the probability P(Cc
t (x)). Obviously,

P(Cc
t (x)) ≤ P(|An(x)| > t) + P(|Bn(x)| > t).

We will work separately to obtain an upper bound for both probabilities.

Proposition 5. Let

X̃i =
Kk(x, Xi)
E(Kk(x, X))

− 1,

a sequence of iid random variables. Then for any t ∈ (0, 1),

P
(
{
|
∑n

i=1 X̃i|

n
≥ t}

)
= P

(
|Bn(x)| ≥ t

)
≤ 2e−C̃1

t2n
2k

for some positive constant C̃1.
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Proof. It is easy to verify that EX̃i = 0, and

|X̃i| = |
Kk(x, Xi)
E(Kk(x, X))

− 1| ≤
Kk(x, Xi)
E(Kk(x, X))

+ 1,

hence, E|X̃i| ≤ 2.
Finally,

||X̃i||∞ = sup{|X̃i|} = sup{|
Kk(x, Xi)
E(Kk(x, X))

− 1|} ≤
1

E(Kk(x, X))
sup Kk(x, Xi) + 1 ≤ 2k + 1 ≤ 2k+1.

By Lemma 1,

P
(
{
|
∑n

i=1 X̃i|

n
≥ t}

)
= P

(
|Bn(x)| ≥ t

)
≤ 2e−C̃1

t2n
2k .

�

We need a bound for P
(
|An(x)| > t

)
where,

An(x) =
1
n

n∑
i=1

(YiKk(x, Xi) − E(YKk(x, X))
E(Kk(x, X))

)
.

Proposition 6. Let

Z̃i =
YiKk(x, Xi) − E(YKk(x, X))

E(Kk(x, X))
for i = 1, ..., n, then for every t ∈ (0, 1),

P
(
{
|
∑n

i=1 Z̃i|

n
≥ t}

)
= P

(
|An(x)| ≥ t

)
≤ 4e−C t2n

2k ,

for some constant C depending only on σ, ‖m‖∞.

Proof.

An(x) =
1
n

n∑
i=1

(YiKk(x, Xi) − E(YKk(x, X))
E(Kk(x, X))

)
=

1
n

n∑
i=1

(m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X))
E(Kk(x, X))

)
+

1
n

n∑
i=1

(
εiKk(x, Xi) − E(εKk(x, X))

E(Kk(x, X))

)
=

1
n

n∑
i=1

(m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X))
E(Kk(x, X))

)
+

1
n

n∑
i=1

(
εiKk(x, Xi)
E(Kk(x, X))

)
.

Therefore,

P
(
|An(x)| ≥ t

)
≤ P

(∣∣∣∣∣2n
n∑

i=1

m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X))
E(Kk(x, X))

∣∣∣∣∣ ≥ t
)

+ P
(∣∣∣∣∣2n

n∑
i=1

εiKk(x, Xi)
E(Kk(x, X))

∣∣∣∣∣ ≥ t
)
.
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Let
Zi =

2(m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X)))
E(Kk(x, X))

,

a sequence of iid random variables. It is easy to verify that Z̃i are centered and

|Z̃i| = |
m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X))

E(Kk(x, X))
| ≤ 2||m||∞

Kk(x, Xi) + E(Kk(x, X))
E(Kk(x, X))

.

Hence, E|Zi| ≤ 4||m||∞. Finally,

||Zi||∞ = sup{|Zi|}

= 2 sup{|
m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X))

E(Kk(x, X))
|}

≤ 2||m||∞(2k + 1)
≤ 4||m||∞2k.

By Lemma 1,

P

(∣∣∣∣∣∣1n
n∑

i=1

m(Xi)Kk(x, Xi) − E(m(X)Kk(x, X))
E(Kk(x, X))

∣∣∣∣∣∣ ≥ t
)
≤ 2e−C nt2

2k .

Furthermore, let

W̃i =
2εiKk(x, Xi)
E(Kk(x, X))

for i = 1, ..., n, a sequence of independent and identically distributed random variables. We can verify
that for every for i = 1, ..., n:

E

(
2Kk(x, Xi)
E(Kk(x, X))

)
≤ 2.

Finally,

sup
{∣∣∣∣∣ 2Kk(x, Xi)
E(Kk(x, X))

∣∣∣∣∣} ≤ 2
E(Kk(x, X))

sup{Kk(x, Xi)} ≤ 2k+1.

By Lemma 2 it is clear,

P
(∣∣∣∣∣2n

n∑
i=1

εiKk(x, Xi)
E(Kk(x, X))

∣∣∣∣∣ ≥ t
)
≤ 2e−C2

nt2

2k .

We conclude the proposition by observing

P
(
|An(x)| ≥ t

)
≤ 4e−min {C2,C} nt2

2k .

�

Finally, let us compute the rate of consistency of the algorithm-centered KeRF. By Propositions 5
and 6, one has that (

P(Cc
t (x))

) 1
2

≤

(
P(|An(x)| > t) + P(|Bn(x)| > t)

) 1
2

≤ c3e−c4
nt2

2k ,
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for some constants c3, c4 independent of k and n.
Thus,

E(m̃∞,n − m(x))2 ≤ c1

(
1 −

1
2d

)2k

+ c2t2 + c3 log ne−c4t2 n
2k .

We compute the minimum of the right-hand side of the inequality for t ∈ (0, 1),

2c2t − 2tc4 log nc3
n
2k e−c4t2 n

2k = 0 ⇒

e−c4t2 n
2k =

c2

c3c4

2k

n log n
and

t2 =
1
c4

2k

n
log

(
c2

c3c4

n log n
2k

)
.

Hence, the inequality becomes

E(m̃∞,n − m(x))2 ≤ c1

(
1 −

1
2d

)2k

+ c2
1
c4

2k

n
log

(
c2

c3c4

n log n
2k

)
+ c3 log n

c2

c3c4

2k

n log n

= c1

(
1 −

1
2d

)2k

+ c2
1
c4

2k

n
log

(
c2

c3c4

n log n
2k e

c2
c4

)
.

For every εn ∈ (0, 2] it holds, log x ≤ 1
εn

xεn . Then one has that

E(m̃∞,n − m(x))2 ≤ c1

(
1 −

1
2d

)2k

+
c2(e

c2
c4

c2
c3c4

)n

c4εn

(
2k

n
(log n)

εn
1−εn

)1−εn

.

We pick
k = c(d) log2

n

(log n)
εn

1−εn

,

thus,
c2(e

c2
c4

c2
c3c4

)n

c4εn

(
2k

n
(log n)

εn
1−εn

)1−εn

≤
c′

εn
n(c(d)−1)(1−εn) log nεn(1−c(d)),

for a constant c′ independent of n and,

c1

(
1 −

1
2d

)2k

= c1

(
1 −

1
2d

)2(c(d) log2
n

(log n)
εn

1−εn
)

= c12
2c(d) log2 (1− 1

2d ) log2
n

(log n)
εn

1−εn

= c1n2c(d) log2 (1− 1
2d ) 1

(log n)c(d) 2εn
1−εn

log2 (1− 1
2d )
.

Therefore,

c(d) =
εn − 1

2 log2

(
1 − 1

2d

)
− (1 − εn)

.
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Finally,

c1n2c(d) log2 (1− 1
2d ) 1

(log n)c(d) 2εn
1−εn

log2 (1− 1
2d )

= c1n
2(εn−1)

2 log2 (1− 1
2d )−(1−εn)

log2 (1− 1
2d )
×

1

(log n)
2(εn−1)

2 log2 (1− 1
2d )−(1−εn)

2εn
1−εn

log2 (1− 1
2d )

= c1n

2(εn−1)

2
(
− 1

2d
log 2

)
−(1−εn)

( − 1
2d

log 2

)
×

1

(log n)
2(εn−1)

2 log2

(
1− 1

2d

)
−(1−εn)

2εn
1−εn

log2

(
1− 1

2d

)
= c1n−

(
1−εn

1+(1−εn)d log 2

)
(log n)

(
εn

1+d log 2(1−εn)

)
and, for the second term, with the same arguments

c̃
εn

n(c(d)−1)(1−εn) log nεn(1−c(d)) =
c̃
εn

n−
(

1−εn
1+(1−εn)d log 2

)
(log n)

(
εn

1+d log 2(1−εn)

)
for a constant c̃ independent of εn, hence,

E(m̃Cen
∞,n(x) − m(x))2 ≤

C
εn

n−
(

1−εn
1+(1−εn)d log 2

)
(log n)

(
εn

1+d log 2(1−εn)

)
,

and consequently,

C
εn

n−
(

1−εn
1+(1−εn)d log 2

)
(log n)

(
εn

1+d log 2(1−εn)

)
=

C
εn

n−
(

1
1+d log 2

)
(log n)

(
εn

1+d log 2(1−εn)

)
× n

(
εn

(1+d log 2)(1+(1−εn))d log 2

)
≤

C
εn

n−
(

1
1+d log 2

)
(log n)

(
εn

d log 2(1−εn)

)
× (log n)

log n
log log n

(
εn

(d log 2)2(1−εn)

)
.

Finally we finish the proof by selecting εn = 1
log n , and

E(m̃Cen
∞,n(x) − m(x))2 ≤ C̃n−

(
1

1+d log 2

)
(log n).

�

Theorem 4. Y = m(X) + ε where ε is a zero mean Gaussian noise with finite variance independent
of X. Assuming also that X is uniformly distributed in [0, 1]d and m is a Lipschitz function. Providing
k → ∞, there exists a constant C̃ such that for every n > 1 , for every x ∈ [0, 1]d

E(m̃Un
∞,n(x) − m(x))2 ≤ C̃n

−
(

1
1+ 3

2 d log 2

)
(log n).

Proof. By arguing with the same reasoning as the proof of the centered random forest we can verify
that (

P(Cc
t (x))

) 1
2

≤

(
P(|An(x)| > t) + P(|Bn(x)| > t)

) 1
2

≤ c3e−c4
nt2

2k

Mathematics in Engineering Volume 6, Issue 2, 305–338.



319

for some constants c3, c4 independent of k and n. The rate of consistency for the Uniform KeRF is the
minimum of the right hand in the inequality in terms of n

E(m̃Un
∞,n − m(x))2 ≤ c1

(
1 −

1
3d

)2k

+ c2t2 + c3 log ne−c4t2 n
2k .

We compute the minimum of the right-hand side of the inequality for t ∈ (0, 1),

2c2t − 2tc4 log nc3
n
2k e−c4t2 n

2k = 0 ⇒

e−c4t2 n
2k =

c2

c3c4

2k

n log n
and

t2 =
1
c4

2k

n
log

(
c2

c3c4

n log n
2k

)
.

Hence, the inequality becomes

E(m̃Un
∞,n(x) − m(x))2 ≤ c1

(
1 −

1
3d

)2k

+ c2
1
c4

2k

n
log

(
c2

c3c4

n log n
2k

)
+ c3 log n

c2

c3c4

2k

n log n

= c1

(
1 −

1
3d

)2k

+ c2
1
c4

2k

n
log

(
c2

c3c4

n log n
2k e

c2
c4

)
.

For every εn ∈ (0, 2] it holds, log x ≤ 1
εn

xεn . Then one has that,

E(m̃Un
∞,n − m(x))2 ≤ c1

(
1 −

1
3d

)2k

+
c2(e

c2
c4

c2
c3c4

)n

c4εn

(
2k

n
(log n)

εn
1−εn

)1−εn

.

We pick
k = c(d) log2

n

(log n)
εn

1−εn

.

Therefore,
c2(e

c2
c4

c2
c3c4

)n

c4εn

(
2k

n
(log n)

εn
1−εn

)1−εn

≤
c′

εn
n(c(d)−1)(1−εn) log nεn(1−c(d)),

for a constant c′ independent of n and,

c1

(
1 −

1
3d

)2k

= c1

(
1 −

1
3d

)2c(d) log2
n

(log n)
εn

1−εn

= c12
2c(d) log2 (1− 1

3d ) log2
n

(log n)
εn

1−εn

= c1n2c(d) log2 (1− 1
3d ) 1

(log n)c(d) 2εn
1−εn

log2 (1− 1
3d )
.

Mathematics in Engineering Volume 6, Issue 2, 305–338.



320

Therefore,

c(d) =
εn − 1

2 log2

(
1 − 1

3d

)
− (1 − εn)

.

Finally,

c1n2c(d) log2 (1− 1
3d ) 1

(log n)c(d) 2εn
1−εn

log2 (1− 1
3d )

= c1n
2(εn−1)

2 log2 (1− 1
3d )−(1−εn)

log2 (1− 1
3d )
×

1

(log n)
2(εn−1)

2 log2 (1− 1
3d )−(1−εn)

2εn
1−εn

log2 (1− 1
3d )

= c1n

2(εn−1)

2
(
− 1

3d
log 2

)
−(1−εn)

( − 1
3d

log 2

)
×

1

(log n)

2(εn−1)

2

 − 1
3d

log 2

−(1−εn)

2εn
1−εn

(
− 1

3d
log 2

)

= n−
(

2(1−εn)
1+(1−εn)d log 2

) 1

(log n)
2εn

−2+3d log 2(εn−1)

= n−
(

2(1−εn)
2+(1−εn)3d log 2

)
(log n)

(
2εn

2+3d log 2(1−εn)

)

and, for the second term, with the same arguments

c̃
εn

n(c(d)−1)(1−εn) log nεn(1−c(d)) =
c̃
εn

n
−
(

1−εn
1+(1−εn) 3

2 d log 2

)
(log n)

(
εn

1+d 3
2 log 2(1−εn)

)
,

for a constant c̃ independent of εn hence,

E(m̃Un
∞,n(x) − m(x))2 ≤

C
εn

n
−
(

1−εn
1+(1−εn) 3

2 d log 2

)
(log n)

(
εn

1+ 3
2 d log 2(1−εn)

)
,

and consequently,

C
εn

n
−
(

1−εn
1+(1−εn) 3

2 d log 2

)
(log n)

(
εn

1+ 3
2 d log 2(1−εn)

)
=

C
εn

n
−
(

1
1+ 3

2 d log 2

)
(log n)

(
εn

1+ 3
2 d log 2(1−εn)

)
× n

(
εn

(1+ 3
2 d log 2)(1+(1−εn))d log 2

)
≤

C
εn

n
−
(

1
1+ 3

2 d log 2

)
(log n)

(
εn

3
2 d log 2(1−εn)

)
× (log n)

log n
log log n

(
εn

( 3
2 d log 2)2(1−εn)

)
.

Finally we finish the proof by selecting εn = 1
log n , and

E(m̃Un
∞,n(x) − m(x))2 ≤ C̃n

−
(

1
1+ 3

2 d log 2

)
(log n).

�
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4. Plots and experiments

In the following section, we summarize the rates of convergence for the centered KeRF and
the uniform KeRF, and we compare them with the minimax rate of convergence over the class of
the Lipschitz functions [29]. In addition, we provide numerical simulations where we compare
the L2−error for different choices of the tree depth. All experiments performed with the software
Python (https://www.python.org/), mainly with the numpy library, where random sets uniformly
distributed in [0, 1]d have been created, for various examples for the dimension d and the function Y.
For every experiment the set is divided into a training set (80 %) and a testing set (20 %); then the
L2−error (

∑
Xi∈ test set(m̃(Xi) − Yi)2) and the standard deviation of the error is computed.

For the centered KeRF we compare three different values of tree depth, which from theory provide
different convergence rates. First, the choice of k in [26, Theorem 1] that provides the previous
convergence rate; second, the selection of k as it was delivered from the Theorem 1; and, third, the
case where the estimator, in probability, interpolates the data set, but the known convergence rate is
slow [3, Theorem 4.1], O(log n−

d−5
6 ) for the dimension of the feature space d > 5.

For the uniform KeRF, we compare the two values of tree depth as they were derived from [26] and
Theorem 2 nevertheless, it is not known if the uniform-KeRF algorithm converges when our estimator
function interpolates the data set. Of course, in practice, since real data might violate the assumptions
of the theorems, one should try cross-validation for tuning the parameters of the algorithms.

Comparing the rates of consistency for centered KeRF and the depth of the corresponding trees:

• Scornet in [26, Theorem 1] rate of convergence:

n−( 1
d log 2+3 )(log n)2, and k = d

1
log 2 + 3

d

log
n

log n2 e.

• New rate of convergence:

n−
(

1
1+d log 2

)
(log n), and k = d

1
log n − 1

2 log2(1 − 1
2d ) − (1 − 1

log n )
log2

n

(log n)

1
log n

1− 1
log n

e.

• Minimax [29] rate of consistency over the class of Lipschitz functions: n
−2

d+2 functions.

Thus, theoretically, the improved rate of consistency is achieved when trees grow at a deeper level
compared with the parameter selection in [26, Theorem 1].

As it is evident from Figure 3, the improvement in the convergence rate is more significant in the low
dimensional feature space scenarios. The constant C̃ = C̃(d) of Theorem 1 depends on the dimension
d of the space. The convergence rates in the literature do not try to have a good estimate for C̃, and
they are significant for fixed values of d only.
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Figure 3. Plot of the exponents of n, for the previous rate of convergence for the centered
KeRF algorithm, the new rate of convergence, and the optimal over the class of the Lipschitz
functions.

Finally, we note that Klusowski’s rate of convergence in [20], O
(
(n log

d−1
2 n)−( 1+δ

d log 2+1 )
)
, where δ is

a positive constant that depends on the dimension of the feature space d and converges to zero as d

approaches infinity, is sharp and better than the one in Theorem 1 O
(
n−

(
1

1+d log 2

)
(log n)

)
for small values

of d. For large values of n and d the two estimates are essentially the same, but for now, we do not
know if in general, the rate of convergence of the centered KeRF is not improvable.

Comparing the rates of convergence for uniform KeRF and the depth of the corresponding trees:

• Scornet in [26, Theorem 2] rate of convergence:

n−( 2
3dlog2+6 )(log n)2, and k = d

1
log 2 + 3

d

log
n

log n2 e.

• New rate of convergence:

n−( 2
3d log 2+2 )(log n), and k = d

1
log n − 1

2 log2(1 − 1
3d ) − (1 − 1

log n )
log2

n

(log n)

1
log n

1− 1
log n

e.

• Minimax [29] rate of convergence for the consistency over the class of Lipschitz functions: n
−2

d+2

functions.

Thus, theoretically, as in the case of centered random KeRF, the improved rate of consistency is
achieved when trees grow at a deeper level compared with the parameter selection in [26, Theorem 2].

The same considerations on the dependence of the constant C̃ on d we made for the centered KeRF
hold in the uniform KeRF case, as it is evident in Figure 4. Moreover, as of now, it is still unknown to
us if the convergence rate of the uniform KeRF can be improved.
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Figure 4. Plot of the exponents of n, for the previous rate of convergence for the uniform
KeRF algorithm, the new rate of convergence, and the optimal over the class of the Lipschitz
functions.

Finally, numerical simulations of the L2−error of the centered KeRF-approximation for three
different values of k in Figure 5 are reported with the standard deviation of the errors in Figure 6.
In Appendix, more simulations and plots for different target functions and for both algorithms are
illustrated.

Figure 5. Plot of the L2−error of the centered KeRF-approximation for three different values
of k for the function Y = X2

1 + e−X2
2 + ε, where ε ∼ N(0, 1

2 ), against different data set size.
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Figure 6. Plot of the standard deviation of errors, for the centered KeRF-approximation for
three different values of k of the function Y = X2

1 + e−X2
2 + ε, where ε ∼ N(0, 1

2 ), against
different data set size.

5. Conclusions

In this paper, we have obtained improved rates of convergence for two kernel-based random forests,
the centered KeRF and the uniform KeRF. In addition, we provided numerical simulations for both
algorithms concerning the parameters of the methods. Finally, we explored the reproducing kernel
Hilbert space related to the centered KeRF providing bounds for the dimension of the aforementioned
space.
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Appendix

In this last section, we provide more experiments of low dimensional regression examples with
additive noise, regarding the centered and the uniform KeRF. In particular, we calculate and compare
the L2−errors and the standard deviations against different sample sizes for different values of the
parameter k of the estimator. Moreover, in the following subsection, we study the corresponding
RKHS produced by the kernel

KCen
k (x, z) =

∑
∑d

j=1 k j=k

k!
k1!...kd!

(
1
d

)k
d∏

j=1

1⌈
2k j x j

⌉
=
⌈
2k j z j

⌉,

defined in the abelian group Zkd
2 . To conclude we recall some notation for finite abelian groups,

necessary to define the aforementioned RKHS and estimate its dimension.
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Appendix A. Analysis of the kernel

We provide here an alternative description of the centered random forest algorithm, where the
dyadic tiling of the hypercube motivates us to define the kernel in the abelian group Zkd

2 . First, we
define a Random Tree Θ. Start with a random variable Θ0, uniformly distributed in {1, . . . , d}, and split

I := [0, 1]d = IΘ0

0 ∪ IΘ0

1 ,

where
IΘ0
l = [0, 1] × · · · × [l/2, (l + 1)/2] × . . . [0, 1],

where for l = 0, 1 the splitting was performed in the Θ0-th coordinate. Choose then random variables
Θ1,l (l = 0, 1), distributed as Θ0, and split each

IΘ0

l = IΘ0,Θ1

l,0 ∪ IΘ0,Θ1

l,1 ,

where, as before, the splitting is performed at the Θ1-th coordinate, and IΘ0,Θ1

l,0 is the lower half of
IΘ0

l . Iterate the same procedure k times. In order to do that, we need random variables Θ j;η0,...,η j , with
ηl ∈ {1, . . . , d} and j = 1, . . . , k. We assume that all such random variables are independent. It is useful
think of Θ = {Θ j;η0,...,η j} as indexed by a d-adic tree, and, in fact, we refer to Θ as a random tree in
[0, 1]d. We call cells, or leaves, each of the 2k rectangles into which [0, 1]d is split at the end of the kth

subdivision.
On Figure A1 we see the L2−error of the centered KeRF-approximation for a three dimensional

feature space and on Figure A2 the standard deviation of the errors.
Figures A3 and A4 show the L2−error and the standard deviation for the uniform KeRF in a two

dimensional feature space and Figures A5 and A6 present a three dimensional example respectively.

Figure A1. Plot of the L2−error of the centered KeRF-approximation for three different
values of k for the function Y = X2

1 + 1

eX2
2 +eX2

3
+ ε where ε ∼ N(0, 0.5), against different data

set size.
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Figure A2. Plot of the standard deviation of errors, of the centered KeRF-approximation for
three different values of k of the function Y = X2

1 + 1

eX2
2 +eX2

3
+ ε where ε ∼ N(0, 0.5), against

different data set size.

Figure A3. Plot of the L2−error of the uniform KeRF-approximation for two different values
of k for the function Y = X2

1 + e−X2
2 + ε where ε ∼ N(0, 0.5), against different data set size.
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Figure A4. Plot of the standard deviation of errors, of the uniform KeRF-approximation for
two different values of k for the function Y = X2

1 + e−X2
2 + ε where ε ∼ N(0, 0.5), against

different data set size.

Figure A5. Plot of the L2−error of the uniform KeRF-approximation for two different values
of k for the function Y = X2

1 + 1

(eX2
3 +eX2

2 )
+ ε where ε ∼ N(0, 0.5), against different data set size.
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Figure A6. Plot of the standard deviation of the errors, of the uniform KeRF-approximation
for two different values of k for the function Y = X2

1 + 1

(eX2
3 +eX2

2 )
+ ε where ε ∼ N(0, 0.5),

against different data set size.

Appendix B. A reproducing kernel from the centered KeRF

B.1. The Fourier analysis of the kernel

The kernel in the centered KeRF defines a RKHS HK structure on a set Γ having 2kd points [4].
In fact, Γ has a group structure, and Fourier analysis can be used. Much research is done in RKHS
theory, and in this section (see [1]), we study the structure of HK in itself. A priori, HK might have any
dimension less or equal to #Γ. We show in fact that its dimension is much lower than that, a fact which
is somehow surprising, and we believe it is interesting in itself. Furthermore, we prove that there are
no nonconstant multipliers in the space HK . For completeness we provide definitions and notation on
Fourier analysis on Abelian groups in Appendix C.

We identify every real number x ∈ [0, 1] with its binary expression x = 0.x1x2x3... with xi ∈ {0, 1}
for i ∈ N.

Here we consider the group

G = Zkd
2 3 x = (x j

i ) i=1,...,k
j=1,...,d

= (x1|x2| . . . |xd) =


x1

x2

. . .

xk

 . (B.1)

The kernel K : Γ × Γ→ C corresponding to the kernel Kcen
k is,
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K(a, b) =
∑
l∈Nd
|l|=k

1
dk

(
k
l

) d∏
j=1

χ
(
a j

1 = b j
1, . . . , a

j
k j

= b j
k j

)

=
∑
l∈Nd
|l|=k

1
dk

(
k
l

) d∏
j=1

k j∏
i=1

χ
(
a j

i = b j
i

)
= ϕ(a − b), (B.2)

where
(

k
l

)
is the multidimensional binomial coefficient, χE is the characteristic function of the set E,

and a − b is the difference in the group Zkd
2 . Incidentally, (B.2) shows that the kernel K can be viewed

as a convolution kernel on the appropriate group structure. For the last equality, we consider the binary
representation of a number in (0, 1] whose digits are not definitely vanishing. The fact that 0 does
not have such representation is irrelevant since the probability that one of the coordinates of the data
vanishes is zero.

We now compute the anti-Fourier transform µ = ϕ̌. We know that ](Γ) = 2kd, and that the characters
of Zkd

2 have the form

γa(x), x ∈ Zkd
2 , a ∈ Ẑkd

2 , a · x = a1
1x1

1 + · · · + ad
k xd

k . (B.3)

Hence,

2kd pnµ(x) = dk
∑
a∈Γ

ϕ(a)γa(x)

= dk
∑
a∈Γ

ϕ(a)(−1)a·x

=
∑
a∈Γ

∑
l∈Nd
|l|=k

(
k
l

) d∏
j=1

k j∏
i=1

χ
(
a j

i = 0
)

(−1)a·x

=
∑
a∈Γ

∑
l∈Nd
|l|=k

(
k
l

) d∏
j=1

(−1)ã
k j
j ·x̃

k j
j

k j∏
i=1

[
χ
(
a j

i = 0
)

(−1)a j
i x j

i

]

where ãk j

j =


a j

k j+1

. . .

a j
n

 is the lower, (k − k j)-dimensional

part of the column a j,

=
∑
l∈Nd
|l|=k

(
k
l

) d∏
j=1

(−1)ã
k j
j ·x̃

k j
j

k j∏
i=1

χ
(
a j

i = 0
)

=
∑
l∈Nd
|l|=k

(
k
l

) ∑
a∈Γ

a1
1=...a1

k1
=a2

1=···=ad
kd

=0

d∏
j=1

(−1)ã
k j
j ·x̃

k j
j . (B.4)

The last expression vanishes exactly when for all l, there are some 1 ≤ j ≤ d, and some k j + 1 ≤ i ≤ k
such that x j

i = 1, due to the presence of the factor (−1)a j
i x j

i = (−1)a j
i which takes values ±1 on summands

having, two by two, the same absolute values.
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If, on the contrary, there is l such that for all 1 ≤ j ≤ d, and k j + 1 ≤ i ≤ k, we have that x j
i = 0, then

µ(x) , 0. Since |l| = k and there are kd binary digits involved in the expression of x, the latter occurs
exactly when the binary matrix representing x has a large lower region in which all entries are 0. More
precisely, the number of vanishing entries must be at least

(k − k1) + · · · + (k − kp) = (d − 1)k. (B.5)

The number N(d, k) of such matrices is the dimension of HK , the Hilbert space having K as a
reproducing kernel.

Next, we prove some estimates for the dimension of the RKHS.
We summarize the main items in the following statement.

Theorem B.1. Let K : Γ × Γ→ C be the kernel in (B.2), K(a, b) = ϕ(a − b), and let

EK = supp(ϕ̌) ∈ K. (B.6)

Then,

(i) As a linear space, HK = LEK , where

EK = {x = (x1| . . . |xd) : x j
i = 0 for k j + 1 ≤ i ≤ k, for some l

= (k1, . . . , kd) ∈ Nd with k1 + · · · + kd = k}; (B.7)

(ii) For x ∈ EK ,

ϕ̌(x) =
1

2kdk

∑
l∈Nd , |l|=k

x j
i =0 for k j+1≤i≤k

(
k
l

)
. (B.8)

To obtain the expression on (B.8), we used the fact that

]{a : a1
1 = . . . a1

k1
= a2

1 = · · · = ap
kp

= 0} = 2(d−1)k.

B.2. Some properties of HK

Linear relations. Among all functions ψ : Γ → C, those belonging to HK (i.e., those belonging to
LEK ) are characterized by a set of linear equations,

0 = 2np pnµ(x) =
∑

k∈Np , |k|=n

x j
i =0 for k j+1≤i≤n

(
n
k

)
for x < EK . (B.9)

Multipliers. A multiplier of HK is a function m : Γ→ C such that mψ ∈ HK whenever ψ ∈ HK .

Proposition B.1. The space HK has no nonconstant multiplier.

In particular, it does not enjoy the complete Pick property, which has been subject of intensive
research for the past twenty-five years [1].
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Proof. The space HK coincides as a linear space with LEK . Let ΛE = ĽE, which is spanned by {δx : x ∈
E}. Observe that, since 0 = (0| . . . |0) ∈ EK , the constant functions belong to HK , hence, any multiplier
m of HK lies in HK; m = m · 1 ∈ HK .

Suppose m is not constant. Then, m̌(a) , 0 for some a ∈ EK , a , 0. Let a be an element in EK such
that m̌(a) , 0. Since HK 3 m · δ̂x for all x in EK , and m · δ̂x = ˇ̂m ∗ δx, we have that the support of m̌ ∗ δx

lies in HK . Now,
m̌ ∗ δx(y) = m̌(x − y),

hence, we have that, for any x in EK , y = x − a lies in EK as well. This forces a = 0, hence m to be
constant. �

B.3. Bounds for dimension and generating functions

Theorem B.2. For fixed d ≥ 1, we have the estimates:

dim(HK) ∼
2k−d+1kd−1

(d − 1)!
, hence

dim(HK)
2kd ∼

kd−1

2d−1(d − 1)!2k(d−1) . (B.10)

Proof. Let l1, l2, ..., ld such that
0 ≤ l1 + l2 + ... + ld = m ≤ k

where m is a parameter and let also λ = | j : l j ≥ 1| = |{stop 1-digits}| = |{back-entries}| where |·|
denotes the size of the sets, and of course we have that 0 ≤ m ≤ k and 0 ≤ λ ≤ d,m. Goal to obtain a
bound for

N(k, d) =

k∑
m=0

d∧m∑
λ=0

2m−λ

(
d
λ

)
|{(l1, l2, ..., ld) : l1 + l2 + ... + ld = m|

and
|{ j : l j = 1} = 1|}.

Let A(m, λ) the m-th coefficient of x in the polynomial

(x + x2 + ...xm + ...)λ = (x(1 + x + x2 + ...)λ

= (xλ(1 + x + ...)λ)

=
xλ

(1 − x)λ

and 2mA(m, λ) is the m-th coefficient of x, for the fraction (2x)λ

(1−2x)λ , therefore 2m−λA(m, λ) is the m-th

coefficient of xλ
(1−2x)λ . Let’s see the first sum, B(m, d) is the m-th coefficient of x:

d∧m∑
λ=0

(
d
λ

)
2m−λA(m, λ) =

d∧m∑
λ=0

(
d
λ

)
(

x
1 − 2x

)λ

= (1 +
x

1 − 2x
)d

= (
1 − x

1 − 2x
)d.
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Again by the same combinatoric argument we are looking the k-th coefficient of the function

f (x) =
1

1 − x
(

1 − x
1 − 2x

)d.

Back to the estimate, Let ak the coefficient of the power series centered at z = 0.

max
|z|=r
| f (z)| = max

|z|=r

∣∣∣∣∣ (1 − z)d−1

(1 − 2z)d

∣∣∣∣∣ = max
|z|=r

∣∣∣∣∣ 1
1 − z

( 1 − z
1 − 2z

)d∣∣∣∣∣ ≤ 2 max
θ∈(−π,π)

∣∣∣∣∣ 1 − reiθ

1 − 2reiθ

∣∣∣∣∣d.
After some calculations since r is fixed one has that the maximum is achieved for θ = 0. So

max
|z|=r
| f (z)| ≤ 2(

1 − r
1 − 2r

)d.

Our estimation finally becomes:

|ak| ≤
2
( 1−r

1−2r

)d

rk

=
2(1 − r)d

rk(1 − 2r)k

= kd2k(
1
2

+
1
2k

)d, (since, r =
1
2

(1 −
1
k

))

= kd(1 +
1
k

)d2k−d.

Thus an estimate for the dimension of HK is

|ak|

2kd .
kd(1 + 1

k )d2k(1−d)

2d .

Another estimate about the dimension of HK . For f (z) =
∑∞

n=0 anzn, we have

|an| ≤
max{| f

(
reit

)
| : |t| ≤ π}

rn .

Consider the function

f (z) =
(1 − z)d−1

(1 − 2z)d

in |z| < 1/2 and let r = 1−1/k
2 . Then,

|ak| ≤
(3/2)d−1

(1/k)d(1 − 1/k)k2−k

≤ (3/2)d−12kekd.

Thus,
|ak|

2kd .
kd(3/2)d

2k(d−1) .

Recursively working out the generating function one gets the estimates in (B.10). �
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Appendix C. Some results from Fourier analysis on finite groups

Following the notation of [24], we recall here the basic notions of Fourier theory for a finite, abelian
group G, which we employed above. Here, G is endowed with its counting measure. The dual group
Γ = Ĝ of G is populated by labels a for homomorphisms γa : G → T = {eit : t ∈ R}. Given a function
f : G → C, its Fourier transform f̂ : Γ→ C is defined as

f̂ (a) =
∑
x∈G

f (x)γa(x). (C.1)

We make Γ into a (finite), additive group by setting

γa+b = γa · γb, and γx(a) := γa(x).

It turns out that they have the same number of elements, ](G) = ](Γ). Some basic properties are:

f (x) =
1
](Γ)

∑
a∈Γ

f̂ (a)γa(x) (inverse Fourier transform)∑
x∈G

| f (x)|2 =
1
](Γ)

∑
a∈Γ

| f̂ (a)|2 (Plancherel)

f̂ ∗ g = f̂ · ĝ,

where
( f ∗ g)(x) =

∑
y∈G

f (x − y)g(y). (C.2)

We write
ϕ̌(x) = ](Γ)−1

∑
a∈Γ

ϕ(a)γa(x), so that ̂̌ϕ = ϕ. (C.3)

The unit element of convolution in G is δ0.
In the other direction, for ϕ, ψ : Γ→ C we define

(ϕ ∗ ψ)(a) =
1
](Γ)

∑
b∈Γ

ϕ(a − b)ψ(b), (C.4)

and similarly to above, ̂̌ϕψ̌ = ϕ ∗ ψ. The unit element on convolution in Γ is ](Γ)δ0.
A function ϕ on Γ is positive definite if

n∑
a,b∈Γ

c(a)c(b)ϕ(b − a) ≥ 0.

Theorem C.1. [Bochner’s theorem] A function ϕ : Γ→ C is positive definite if and only if there exists
µ : G → R+ such that ϕ = µ̂.

The theorem holds in great generality, and its proof in the finite group case is elementary. We
include it because it highlights the relationship between the measure µ on G and the positive definite
function (the kernel) ϕ.
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Proof. If

](Γ)−2
∑
a,b∈Γ

µ̂(b − a)c(a)c(b) =
∑
x∈G

](Γ)−2
∑
a,b∈Γ

µ(x)γb−a(x)c(a)c(b)

=
∑
x∈G

](Γ)−2
∑
a,b∈Γ

µ(x)γb(x)c(b)γa(x)c(a)

=
∑
x∈G

µ(x)

∣∣∣∣∣∣∣](Γ)−1
∑
a∈Γ

c(a)γa(x)

∣∣∣∣∣∣∣
2

=
∑
x∈G

µ(x) |č(x)|2 ≥ 0. (C.5)

Only if, since for all b in Γ,

µ(x)](Γ) =
∑
a∈Γ

ϕ(a)γx(a)

=
∑
a∈Γ

ϕ(a − b)γx(a − b)

=
∑
a∈Γ

ϕ(a − b)γx(a)γx(b), (C.6)

we have
µ(x)](Γ)2 =

∑
a,b∈Γ

ϕ(a − b)γx(a)γx(b) ≥ 0, (C.7)

by the assumption. �

We now come to reproducing kernels on Γ which are based on positive definite functions ϕ : Γ →

R+. Set
K(a, b) = ϕ(a − b) = Kb(a), K : Γ × Γ→ C, (C.8)

and set
HK = span{Kb : b ∈ Γ} 3

∑
b∈Γ

c(b)Kb, (C.9)

where HK is the Hilbert space having K as reproducing kernel. We wish to have a more precise
understanding of it.

We start by expressing the norm of an element on HK is several equivalent ways,∥∥∥∥∥∥∥∑b∈Γ c(b)Kb

∥∥∥∥∥∥∥
2

HK

=
∑
a,b∈Γ

c(a)c(b)〈Kb,Ka〉

=
∑
a,b∈Γ

c(a)c(b)K(a, b) =
∑
a,b∈Γ

c(a)c(b)̂µ(a − b)

=
∑
a,b∈Γ

c(a)c(b)
∑
x∈G

µ(x)γb−a(x)

=
∑
x∈G

µ(x)
∑
a,b∈Γ

c(a)c(b)γb(x)γa(x)

=
∑
x∈G

µ(x)

∣∣∣∣∣∣∣∑b∈Γ c(b)γb(x)

∣∣∣∣∣∣∣
2
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= ](Γ)2
∑
x∈G

µ(x) |č(x)|2

= ](Γ)2
∑
x∈G

∣∣∣µ(x)1/2č(x)
∣∣∣2 . (C.10)

In other terms,
](Γ)−1

∑
b∈Γ

c(b)Kb 7→ č (C.11)

is an isometry of HK onto L2(µ). This will become important later, when we verify that for our kernels
supp(µ) is sparse in G. In fact, dim(HK) = ](supp(µ)).

Corollary C.1. As a linear space, HK is determined by supp(µ):

ψ ∈ HK if and only if supp(ψ̌) ⊆ supp(µ).

Let E ⊆ G. We denote
LE = {G

ψ
−→ C : supp(ψ̌) ⊆ E}. (C.12)

Next, we look for the natural orthonormal system provided by the Fourier isometry (C.11). Fr x ∈ G,
let čx = µ(x)−1/2δx: {čx : x ∈ E := supp(µ)} is a orthonormal system for L2(µ), and so {ex : x ∈ E} is
an orthonormal basis for HK , where

cx(b) =
∑
y∈G

µ(x)−1/2δx(y)γb(y) = µ(x)−1/2γb(x), (C.13)

and

ex(a) = ](Γ)−1
∑
b∈Γ

cx(b)Kb(a)

=
µ(x)−1/2

](Γ)

∑
b∈Γ

Kb(a)γb(x)

=
µ(x)−1/2

](Γ)

∑
b∈Γ

ϕ(a − b)γb(x)

=
µ(x)−1/2

](Γ)

∑
b∈Γ

ϕ(a − b)γa−b(x)γa(x)

= µ(x)−1/2µ(x)γa(x)
= µ(x)1/2γa(x). (C.14)

Let’s verify that we obtain the reproducing kernel from the o.n.b. as expected,∑
x∈Γ

ex(a)ex(b) =
∑
x∈Γ

µ(x)γx(a)γx(b)

=
∑
x∈Γ

µ(x)γx(a − b)

= µ̂(a − b)
= ϕ(a − b). (C.15)
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Remark C.1. Since any finite, abelian group can be written as the direct product of cyclic groups,

G =

L⊕
l=1

Zml , (C.16)

its dual Γ can be written in the same way, because Ẑm ≡ Zm. From the Fourier point of view, the
only difference is that, if on G we consider the counting measure, then on Γ we consider normalized
counting measure, as we did above.
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