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Abstract: In this article we consider the application of Euler’s homogeneous function theorem
together with Stokes’ theorem to exactly integrate families of polynomial spaces over general
polygonal and polyhedral (polytopic) domains in two and three dimensions, respectively. This
approach allows for the integrals to be evaluated based on only computing the values of the integrand
and its derivatives at the vertices of the polytopic domain, without the need to construct a sub-
tessellation of the underlying domain of interest. Here, we present a detailed analysis of the
computational complexity of the proposed algorithm and show that this depends on three key factors:
the ambient dimension of the underlying polytopic domain; the size of the requested polynomial space
to be integrated; and the size of a directed graph related to the polytopic domain. This general approach
is then employed to compute the volume integrals arising within the discontinuous Galerkin finite
element approximation of the linear transport equation. Numerical experiments are presented which
highlight the efficiency of the proposed algorithm when compared to standard quadrature approaches
defined on a sub-tessellation of the polytopic elements.

Keywords: polytopic elements; numerical integration; discontinuous Galerkin methods

1. Introduction

Over the past 10–15 years there has been increasing widespread interest in the development of
numerical methods for the approximation of partial differential equations (PDEs) based on employing
general element shapes such as polygons in 2D and polyhedra in 3D (which we collectively refer to
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as polytopic elements), cf. [1, 3, 5, 6, 9], for example, and the references cited therein. Exploiting
such flexible computational meshes is highly attractive for a number of key reasons: Complicated
geometries may be meshed by employing relatively coarse meshes, without the need to simplify the
boundary or other features within the given domain; moving meshes and/or overlapping meshes arising,
for example, in applications such as fluid structure interaction can easily be accommodated; hanging
nodes are treated in a very simple and natural manner; finally, multi-level solvers, such as domain
decomposition methods and multigrid can easily be implemented employing embedded polytopic
meshes.

However, a major bottleneck in the exploitation of general polytopic elements within, for example,
finite element methods is the construction of suitable element quadratures needed for the assembly of
the underlying matrix system. With this in mind several approaches have been proposed within the
literature. The simplest approach is to construct a sub-tessellation of a given polytope into standard
element shapes, for example, simplices and/or tensor-product elements (quadrilaterals in 2D and
hexahedra in 3D) and employ known quadrature rules on these sub-elements. We remark that when the
underlying polytopic mesh is constructed from the agglomeration of a given fine mesh consisting of
standard element shapes, then the sub-tessellation need not be computed, as it will already be provided.
The major problem with this approach is that the number of quadrature points can be extremely large,
depending on the cardinality of the sub-tessellation and the required accuracy. Of course, quadrature
is naturally highly parallisable, and hence such an implementation can be accelerated, cf. [10]
for example, who employed a GPU approach. Alternatively, one may for example, use this initial
quadrature and attempt to optimise it by successively removing points until a minimal number is
attained; here, we mention the moment fitting approaches, cf. [19–21, 24, 27], for example, and
the references cited therein.

In this article we pursue an alternative approach based on the integration of homogeneous functions.
This idea was first developed in the articles [7, 18], cf. also [8]. Here, the essential idea is to employ
Euler’s homogeneous function theorem, together with Stokes’ theorem, which allows for the integral
of a homogeneous function over a given polytope to be written as a boundary integral. Recursively
applying this approach allows for the integral to be exactly evaluated based on only computing values
of the integrand and its derivatives at the vertices of the polytopic domain, and hence leads to an exact
quadrature rule whose quadrature points are the vertices of the polytope. In our recent paper [2]
we considered the application of this algorithm within the discontinuous Galerkin finite element
(DGFEM) approximation of the Poisson problem. In this article, we extend this work by presenting
a detailed complexity analysis of both a quadrature based algorithm and the proposed quadrature-free
approach. Here, the primary focus is to consider the number of flops required to integrate an entire
space of polynomials up to a given fixed degree, which is typically required within a finite element
implementation. In particular, we show that the computational complexity of the proposed algorithm
depends on three key factors: the ambient dimension of the underlying polytopic domain; the size of
the requested polynomial space to be integrated; and the size of a directed graph related to the polytopic
domain. By a careful selection of the so-called local origins needed on each of the polytope’s lower
dimensional facets, which is needed in the specification of the quadrature-free algorithm, we are able
to considerably optimise the number of required flops within this approach by reducing the size of the
associated directed graph. To demonstrate the application of this optimised quadrature-free algorithm,
we utilise this within a DGFEM approximation of the linear transport equation, though we stress that
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this approach can naturally be employed for the numerical approximation of a wide range of PDE
problems. We point out that the specific application we have in mind is the numerical approximation
of the linear Boltzmann transport equation. This is a high-dimensional integro-differential equation
employed within applications including neutron and radiation transport. In our recent article [13],
we illustrate that by employing a judicious choice of local basis functions and quadratures within
the angular and energy domains, the DGFEM approximation of the underlying problem may be
computed by simply solving a sequence of linear transport equations in space corresponding to each
angular quadrature point (which defines a constant advection direction) and each energy quadrature
point. In typical 3D applications utilising either source iteration, or a source iteration preconditioner
within a Krylov space solver, means that an extremely large number of these transport solves must
be computed. With that in mind, efficiency is of paramount concern, and hence the need to develop
optimised quadrature-free implementations of the linear transport equation. Numerical experiments
presented here highlight the gains in efficiency with our proposed optimised quadrature-free algorithm
in comparison with standard sub-tessellation based quadrature. In particular, we study the dependence
of both algorithms on the shape of the underlying polytope.

The outline of this article is as follows. In Section 2 we recall the quadrature-free integration
technique introduced in [7] and its application to the integration of families of monomial functions
over general d-dimensional polytopes as in [2]. The time and space (memory) complexities of
this algorithm in the case where the integration domain is polygonal or polyhedral are analysed. In
Section 3 we introduce the DGFEM approximation of a linear first-order transport equation on general
polytopic meshes. In Section 4 we compare the time complexities associated with the assembly
of the local DGFEM element matrices via quadrature based and quadrature-free based approaches,
where we exploit a known decomposition of the integrands into a linear combination of monomials.
For simplicity of presentation, we do not consider the application of the quadrature-free approach
for the evaluation of the face terms arising within the DGFEM, but instead refer to our previous
paper [2] where this issue is discussed. In particular, we recall that the monomial coefficients of the
underlying basis restricted to a given face must be computed online, i.e., for every face individually.
As a consequence, the numerical experiments presented in [2] indicate that when the faces consist of
standard shapes, for example, simplices or tensor-product shapes (when a sub-mesh is not required to
compute an appropriate quadrature) the speed-up facilitated by employing the quadrature-free approach
is relatively modest, compared to the cost of exploiting a standard quadrature rule. Though, again, we
stress that when the faces consist of arbitrary planar polytopes the application of a sub-mesh quadrature
approach may become very expensive. Several numerical experiments are performed in Section 5 in
order to demonstrate the accelerated assembly time of the quadrature-free based approach. Finally, in
Section 6 we summarise the work undertaken in this article and discuss future extensions.

2. Quadrature-free integration of monomials

In this section we review the procedure for the numerical integration of homogeneous functions
over a polytopic domain as introduced by Lasserre [17,18] for convex polytopes and extended by Chin
et al. in [7] to non-convex ones.
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2.1. Integration of homogeneous functions

We consider the problem of evaluating integrals of the form
∫
P

f (x) dx, where:

• f : P → R denotes a (positively) homogeneous function of degree q ∈ R; that is, for all λ > 0 we
have that f (λx) = λq f (x) for all x ∈ P. The function f satisfies Euler’s homogeneous function
theorem [22]: If f is a continuously differentiable positively homogeneous function of degree q,
then we have

q f (x) = x · ∇ f (x)

for all x in the domain of definition of f .
• P ⊂ Rd, d = 2, 3, denotes a closed polytope whose boundary ∂P is defined by m(P) polytopic

facets {Fi}
m(P)
i=1 of dimension (d − 1). To each facet Fi, we associate the hyperplaneHi containing

Fi defined for any x0 ∈ R
d by

Hi = {x ∈ Rd : (x − x0) · ni = ai}

for some ai ∈ R and some vector ni ∈ R
d of unit length. We note that ni may be chosen to be the

unit outward normal to P on Fi and that ai denotes the (signed) distance betweenHi and x0.

We also recall the generalised Stokes’ theorem [26]: For a continuously differentiable vector field
X : P → Rd defined on a neighbourhood of P, we have∫

P

∇ · X dx =

∫
∂P

X · n dσ,

where dσ denotes the Lebesgue measure on ∂P and n denotes the unit outward normal to P on ∂P.
By setting X = (x − x0) f (x) and invoking Euler’s homogeneous function theorem, it can be shown

that ∫
P

f (x) dx =
1

d + q

m(P)∑
i=1

ai

∫
Fi

f (x) dσ +

∫
P

x0 · ∇ f (x) dx

 . (2.1)

Equation (2.1) relates integration of f over P in terms of integration of f over the facets of P, as well
as the integration of ∇ f over P. By selecting x0 = 0, (2.1) reduces to the more common expression
relating the integrals of f over P and ∂P [2, 7, 8, 18]:∫

P

f (x) dx =
1

d + q

m(P)∑
i=1

ai

∫
Fi

f (x) dσ.

As shown in [2, 7, 17, 18], for example, one may recursively apply the generalised Stokes’ theorem
to express the integral

∫
Fi

f (x) dσ in terms of integrals over the (d − 2)-dimensional boundary facets

{Fi j}
m(Fi)
j=1 of Fi: ∫

Fi

f (x) dσ =
1

d − 1 + q

m(Fi)∑
j=1

ai j

∫
Fi j

f (x) dν +

∫
Fi

x1 · ∇ f (x) dσ

 , (2.2)

where dν denotes the Lebesgue measure on ∂Fi, x1 ∈ Hi is arbitrary and ai j denotes the Euclidean
distance from x1 to Fi j.
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Equations (2.1) and (2.2) can be generalised to give the integral of f over any k-dimensional facet
F , 0 ≤ k ≤ d, in terms of the integral of the same function over the boundary ∂F = {∂Fi}

m(F )
i=1 and the

integral of ∇ f over F :∫
F

f (x) ds =
1

dimF + q

m(F )∑
i=1

dist(∂Fi, xF )
∫
∂Fi

f (x) dξ +

∫
F

xF · ∇ f (x) ds

 , (2.3)

where ds (respectively dξ) denotes the k-dimensional (respectively (k − 1)-dimensional) Lebesgue
measure on F (respectively ∂F ), xF is an arbitrary point contained in F (or the k-dimensional
hyperplane containing F ), and dist(∂Fi, xF ) denotes the Euclidean distance from xF to (the k-
dimensional hyperplane containing) ∂Fi. Finally, in the case where F = xF ∈ Rd (that is, dimF = 0),
the right-hand-side of (2.3) can be replaced with the point evaluation f (xF ).

In the case where f (x) = xα =
∏d

k=1 xαk
k is a monomial function in d variables, (2.3) gives the

following recursive formula for the integrals

I(F ,α) :=
∫
F

xα ds =
1

dimF + |α|

m(F )∑
i=1

dist(∂Fi, xF )I(∂Fi,α) +

d∑
j=1

α j(xF ) jI(F ,α − e j)

 , (2.4)

where ei, i = 1, 2, . . . , d, denote the standard unit basis vectors in Rd.
Equation (2.4) can be used to generate sets of integrals of monomial functions over P. To this end,

we consider the problem of evaluating the following set of integrals:

I(F ,J) =

{
I(F ,α) =

∫
F

xα dx : α ∈ J
}
.

Here, J ⊂ Nd
0 denotes a set of multi-indices satisfying the following property: For each α ∈ J and

1 ≤ i ≤ d, we either have αi = 0 or α − ei ∈ J . This motivates the definition of Algorithm 1, cf. [2].

Algorithm 1 Evaluation of the set I(F ,J) for a given k-dimensional facet F , 0 ≤ k ≤ d.
1: procedure ComputeIntegrals(F ,J)
2: I(F ,α)← 0 for all α ∈ J
3: Select xF as any point in (the (dimF )-dimensional hyperplane containing) F
4: Get boundary facets {∂Fi}

m(F )
i=1

5: for i = 1, . . . ,m(F ) do
6: if dist(∂Fi, xF ) , 0 and I(∂Fi,J) not already computed then
7: I(∂Fi,J)← ComputeIntegrals(∂Fi,J)
8: end if
9: end for

10: for α ∈ J do
11:

I(F ,α)←
1

dimF + |α|

[ m(F )∑
i=1

dist(∂Fi, xF )I(∂Fi,α) +

d∑
j=1

α j(xF ) jI(F ,α − e j)
]
.

12: end for
13: return I(F ,J)
14: end procedure

Mathematics in Engineering Volume 6, Issue 1, 192–220.



197

Remark 1 (Termination of Algorithm 1). The recursion in Algorithm 1 terminates when
ComputeIntegrals(F ,J) is called with dimF = 0; that is, F = xF is a single point. Since ∂F = xF ,
the recursive function call in line 7 will not be executed.

2.2. Analysis of quadrature-free monomial integration algorithm

The computational complexity of Algorithm 1 can be understood in terms of the size of the
requested monomial set J , as well as the complexity of the domain of integration P. With this in
mind, the main result of this article is stated below.

Theorem 1 (Time complexity of Algorithm 1). The time complexity of Algorithm 1 including the
evaluation of the set

{dist(∂Fi, xF ) : 1 ≤ i ≤ m(F ), 0 ≤ dimF ≤ d}

is O(χ1(P)|J| + χ3(P)), where

χ1(P) =

d∑
k=0

∑
F⊆P

dimF=k

(m(F ) + d),

χ3(P) = d
d∑

k=0

∑
F⊆P

dimF=k

k2m(F ),

and |J| denotes the number of requested monomial integrals.

The proof of Theorem 1 will be pursued in the following two sections: Firstly, in Section 2.2.1
we consider both the time and space complexity of Algorithm 1 in the case when the required set of
distance functions is pre-computed; the cost of the evaluation of this latter set is then determined in
Section 2.2.2.

2.2.1. Complexity of Algorithm 1 with pre-computed distances

In this section we study the computational cost of computing I(P,J) using Algorithm 1 in the case
when the desired set of distance functions is pre-computed; here, I(P,J) is defined in an analogous
manner to I(F ,J), with F replaced by P in (2.4). The main result of this section is given in Lemma 1
below; furthermore we also consider potential simplifications to Algorithm 1 which can be utilised to
further reduce the computational expense.

Lemma 1 (Time and space complexity of Algorithm 1). Assuming that the set

{dist(∂Fi, xF ) : 1 ≤ i ≤ m(F ), 0 ≤ dimF ≤ d}

is pre-computed, the time complexity of Algorithm 1, measured as the total number of floating-point
operations required to assemble I(P,J), is O(χ1(P)|J|), where |J| denotes the number of requested
monomial integrals and

χ1(P) =

d∑
k=0

∑
F⊆P

dimF=k

(m(F ) + d).
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The space complexity of Algorithm 1, measured as the total number of floating-point numbers required
to store I(P,J), is O(χ2(P)|J|), where

χ2(P) =

d∑
k=0

card{F ⊆ P : dimF = k}.

Proof. We first analyse the number of floating-point operations required to compute the right-hand side
of (2.4) for a single facet F :

• The sum

S 1 =

m(F )∑
i=1

dist(∂Fi, xF )I(∂Fi,α)

requires m(F ) products and m(F ) − 1 additions;
• The sum

S 2 =

d∑
j=1

α j(xF ) jI(F ,α − e j)

requires 2d products and d − 1 additions;
• The sum

S 3 = dimF + |α| = dimF +

d∑
j=1

α j

requires d additions;
• The final result I(F ,α) = S 1+S 2

S 3
requires one addition and one division.

We deduce that the right-hand-side of (2.4) may be computed in 2m(F ) + 4d floating-point
operations. Since this operation is called for each α ∈ J , lines 10–12 of ComputeIntegrals requires
cF = (2m(F ) + 4d)|J| floating-point operations.

It is not difficult to see that ComputeIntegrals is executed exactly once for each k-dimensional facet
F ⊆ P with 0 ≤ k ≤ d. Thus, summing cF over each F , the time complexity given in the statement of
the theorem is proven. The space complexity can be proven based on noting that I(F ,J) is a set with
|J| elements which must be stored for each facet F ⊆ P. �

Remark 2 (Simplifications for dim(F ) = d and dim(F ) = 0). When dim(F ) = d, any selection of
xF ∈ Rd can be made. By choosing xF = 0, the second sum in (2.4) is eliminated and lines 10–12 in
Algorithm 1 can be performed in (2m(F ) + d)|J| floating-point operations.

When dim(F ) = 0 (i.e., F = xF ∈ Rd), I(F ,α) can be performed in a couple of ways:

• Direct computation of I(F ,α) =
∏d

k=1(xF )αk
k , in this case, line 11 of Algorithm 1 can be

performed in O(d +
∑d

k=1 log(1 + αi)) floating-point operations via binary exponentiation [16].
• Recursive computation of I(F ,α) = αk(xF )kI(F ,α−ek) for some 1 ≤ k ≤ d, in this case, line 11

of Algorithm 1 can be performed in O(1) floating-point operations.

The scalings of the time and space complexities reported in Lemma 1 as functions of the geometric
complexity of P can be understood by visualising the recursive nature of Algorithm 1 as a directed
acyclic graph G = G(P) = (V, E). The vertex set V = V(P) is defined as the set of k-dimensional
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facets F ⊆ P for 0 ≤ k ≤ d. The edge set E = E(P) is defined as follows: For any facets F1,F2 ∈ V ,
the directed edge (F1,F2) ∈ E if and only if dimF2 = dimF1 − 1 and F2 lies on the boundary of F1.
Figure 1 gives an example of the construction of G(P).

c b

d

a

(a) A tetrahedron T3 with labelled vertices.

abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

∅

(b) The associated graph G(T3).

Figure 1. Example of a tetrahedron P = T3 (left) and the associated recursive call graph
G(P) (right). Each vertex of G(P) represents a facet of the tetrahedron (e.g., a vertex, an
edge or a face). Edges between vertices in G(P) denote the relationship between facets on
the boundaries of other facets (e.g., the edge ab lies on the boundary of the face abc).

Remark 3 (Facet lattice of P). It is convenient to add an extra vertex ∅ to V(P), which we define
as having dimension −1, and extra directed edges to E(P) from each vertex of P to ∅. The resulting
graph G(P) then resembles a Hasse diagram representing the facet lattice formed from the facets of P
ordered by inclusion [4, 14].

Remark 4 (Algorithm 1 as a depth-first search). The recursion of Algorithm 1 can be understood as a
depth-first search of the graph G(P) starting at P where I(F ,J) is assembled at each unvisited face
F . By contrast, the implementation of Algorithm 1 given in [8] can be understood as a breadth-first
search of the transpose graph G′(P) starting at ∅, where G′(P) differs from G(P) only by reversal of
the directed edges.

The time complexity of Algorithm 1 can be understood in terms of the sizes of the vertex and edge
sets V(P) and E(P). In particular, we have that

d∑
k=0

∑
F⊂P

dimF=k

(2m(F ) + 4d) = 2
d∑

k=0

∑
F⊂P

dimF=k

m(F ) + 4d
d∑

k=0

card{F ⊆ P : dimF = k} = 2|E(P)| + 4d|V(P)|

and the time and space complexities reported in Lemma 1 can be alternatively be written as
O ((|E(P)| + d|V(P)|)|J|) and O(|V(P)||J|), respectively. Table 1 gives the time and space complexities
of Algorithm 1 for a number of different classes of polytopes, as well as the sizes of the vertex and
edge sets V(P) and E(P) in the graph G(P), respectively.

In practical finite element applications, P may denote a d-dimensional mesh element, d = 2, 3, in
a polytopic mesh T of some domain of interest Ω. Historically, simplicial or tensor-product elements
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have been used to partition the domain, though general polytopic elements have been proposed more
recently, cf. [1, 3, 5, 6, 9], for example. The following theorem characterises the time and space
complexities of Algorithm 1 in these special cases.

Table 1. Time and space complexities of Algorithm 1 for different polytopes P as well as the
set sizes |V(P)| and |E(P)| under the assumption that an extra vertex ∅ is added to V(P).

Family |V(P)| |E(P)| Time complexity Space complexity
d-dimensional simplex 2d+1 2d(d + 1) O(2dd|J|) O(2d|J|)
d-dimensional hypercube 3d + 1 2 · 3d−1d + 2d O(3dd|J|) O(3d|J|)
n-sided polygon 2(n + 1) 4n O(n|J|) O(n|J|)
n-gonal prism 2(3n + 2) 15n + 2 O(n|J|) O(n|J|)
n-based pyramid 4(n + 1) 2(5n + 1) O(n|J|) O(n|J|)

Lemma 2 (Complexity of Algorithm 1 for d = 2, 3). Let P ⊂ Rd, d = 2, 3, denote a convex polygon
or polyhedron. The time and space complexities of Algorithm 1, measured in the sense described in
Lemma 1, are O(e|J|), where e denotes the number of (1-dimensional) edges of P.

Proof. It suffices to show that |V(P)| = O(e) and |E(P)| = O(e).
For the case d = 2, a polygon P with e edges also has e vertices. Therefore, we have that |V(P)| =

2(e + 1) and |E(P)| = 4e, as required.
For the case d = 3, let v (respectively f ) denote the number of vertices (respectively number of

faces) of P. Since P is convex, the Euler characteristic of the surface of P is equal to 2 [12], and hence

v − e + f = 2.

The size of the vertex set V(P) is given by

|V(P)| = v + e + f + 2 = 2(e + 2).

To compute the size of the edge set E(P), we note that each edge (or 1-dimensional facet) F in
G(P) has in-degree and out-degree 2, since each edge lies on the boundary of two faces and has two
vertices on its own boundary. We therefore have that

|E(P)| = v + 2e + 2e + f = 5e + 2.

�

Remark 5 (Extension to non-convex polyhedra). The argument presented in the proof of Lemma 2
remains valid when both P and its (d − 1)-dimensional facets {Fi}

m(P)
i=1 are simply-connected. That is,

Lemma 2 holds if neither P nor any of its facets have any holes.

One may reduce the time and space complexities of Algorithm 1 through judicious selection of the
reference points xF . When xF is chosen as a vertex of F , one may avoid a number of recursive calls to
ComputeIntegrals for some boundary facets of F . We shall refer to the resulting implementation
as pruned - this is illustrated in Figure 2. While a complete time and space complexity analysis
of Algorithm 1 with pruning is not presented here, pruning can lead to significant computational
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savings on simple geometries. For instance, the time complexity of Algorithm 1 in the case where
P is a d-dimensional simplex is O(2dd|J|); with pruning, this can be reduced to O(d2|J|). On more
complicated domains, the effects of pruning are likely to be less significant. To our knowledge, finding
an optimal pruning of G(P) for a general polytope, that is, a shortest sequence of visited facets (Fn)n≥0

and corresponding reference points (xFn)n≥0 for which Algorithm 1 can compute I(P,J) - is an open
problem.

abcd | a

abc abd acd bcd

ab ac ad bc bd cd

a b c d

∅

abcd | a

abc abd acd bcd | b

ab ac ad bc bd cd

a b c d

∅

abcd | a

abc abd acd bcd | b

ab ac ad bc bd cd | c

a b c d

∅

Figure 2. Effect of pruning on the recursive call graph for Algorithm 1 in the case P = T3

as in Figure 1. Left-to-right: first three recursive executions of ComputeIntegrals. Blue
node: facet F associated with current execution of ComputeIntegrals(F ,J) and choice
of reference point xF . Yellow nodes: facets F associated with previous executions of
ComputeIntegrals(F ,J) and choice of reference point xF . Red nodes: facets F eliminated
from recursion as a result of pruning; i.e., unvisited facets with dist(F , xF ′) = 0 for some
previously-selected reference point xF ′ .

2.2.2. Time complexity of distance pre-computation

It is convenient to omit the computation of distances of the form dist(∂Fi, xF ) in the proof of
Lemma 1 since such quantities do not need to be re-computed for each I(F ,α). In cases where
|J| is very small or P has many facets, the evaluation of these distances can become the most
computationally-expensive part of Algorithm 1. For instance, it is shown in [4] that the time complexity
of the computation of the volume of a d-dimensional hypercube via the quadrature-free integration
method is O(d43d), which is a factor of O(d3) larger than that predicted by Lemma 1. To remedy this,
the following lemma measures the complexity of operations omitted in the proof of Lemma 1.

Lemma 3 (Time complexity of distance pre-computation). The time complexity of evaluating the set

{dist(∂Fi, xF ) : 1 ≤ i ≤ m(F ), 0 ≤ dimF ≤ d}

is O(χ3(P)), where

χ3(P) = d
d∑

k=0

∑
F⊆P

dimF=k

k2m(F ).

Alternatively, the time complexity may be expressed as O(d3|E(P)|).
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Proof. Let F denote a k-dimensional facet with selected reference point xF . Let ∂F denote any of its
(k − 1)-dimensional boundary facets. Suppose that ∂F has n vertices {xi}

n−1
i=0 and note that k ≤ n. The

(k − 1)-dimensional hyperplane H containing ∂F can be uniquely defined by the points {xi}
k−1
i=0 : For

any x ∈ H , there exists t = (ti)k−1
i=1 ∈ R

k−1 such that

x = x(t) = x0 +

k−1∑
i=1

(xi − x0)ti.

The distance dist(∂F , xF ) (or, more precisely, the distance between H and xF ) is the minimum value
of ||x(t) − xF ||2 over t ∈ Rk−1; this occurs when t solves

At = f,

where the entries of A ∈ R(k−1)×(k−1) and f ∈ Rk−1 are given by (A)i j = (xi − x0) · (x j − x0) and
(f)i = (x0 − xF ) · (xi − x0), respectively. The number of floating-point operations required to assemble
and solve the linear system above is O(k2d) and O(k3), respectively; thus, the time complexity of
computing dist(∂F , xF ) for a single (k − 1)-dimensional facet ∂F is O(k2d).

For each k-dimensional facet F , 0 ≤ k ≤ d, dist(∂Fi, xF ) is computed for each 1 ≤ i ≤ m(F ).
Summing the time complexity of a single computation of dist(∂F , xF ) over these limits yields the
first result stated in the proof; the second result is obtained by bounding the complexity of a single
computation of dist(∂F , xF ) from above by O(d3). �

The proof of Theorem 1 now follows immediately by combining Lemma 1, together with Lemma 3.
Furthermore, employing the notation introduced in Section 2.2.1, the statement of Theorem 1 may be
rewritten in the following compact form.

Corollary 1 (Time complexity of Algorithm 1). The time complexity of Algorithm 1 including the
evaluation of the set

{dist(∂Fi, xF ) : 1 ≤ i ≤ m(F ), 0 ≤ dimF ≤ d}

is O
(
d3|E(P)| + (d|V(P)| + |E(P)|) |J|

)
.

3. DGFEM discretisation of the transport equation

In this section we consider the application of the numerical integration algorithm outlined in the
previous section for the computation of the volume integrals arising within the DGFEM discretisation
of the linear transport equation. To this end, given an open bounded polyhedral domain Ω ⊂ Rd,
d = 2, 3, we consider the following advection-reaction equation: Find u : Ω→ R such that

∇ · (bu) + cu = f in Ω, (3.1)
u = g on Γin,

where c, f : Ω→ R, g : Γin → R and b : Ω→ Rd are given data terms, and Γin = {x ∈ ∂Ω : b·n(x) < 0}
denotes the inflow boundary of Ω, where n(x) denotes the outward unit normal to Ω at x ∈ ∂Ω. In the
following, we assume that b is a constant velocity vector, while c is a given as a piecewise-constant
function with respect to the elements in the underlying finite element mesh T defined below. For the
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type of applications we have in mind, namely the numerical approximation of the linear Boltzmann
transport problem, cf. [13], these assumptions are not restrictive. That said, the proposed quadrature-
free implementation can easily be extended to include the case when b, c, f and g are polynomial
functions (or piecewise-polynomial with respect to the elements of T ).

3.1. Discretisation

We discretise the linear transport equation (3.1) using a DGFEM approach. To this end, let T
denote a subdivision of the spatial domain Ω into open non-overlapping polytopic elements κ such that
Ω̄ =

⋃
κ∈T κ̄. We denote by E the set of faces in T , which are defined as the (d − 1)-dimensional planar

facets of elements κ ∈ T .
To each κ ∈ T we respectively denote by hκ > 0 and pκ ≥ 0 the diameter of κ and the polynomial

degree on κ. The spatial finite element space is defined by

V = {v ∈ L2(Ω) : v|κ ∈ Ppκ(κ) for all κ ∈ T } ,

where Ppκ(κ) denotes the space of all d-variate polynomials with maximum total degree at most pκ on
κ.

Given κ ∈ T , we define the inflow and outflow parts of ∂κ by

∂−κ = {x ∈ ∂κ : b · n(x) < 0} ,
∂+κ = {x ∈ ∂κ : b · n(x) ≥ 0} ,

respectively, where n(x) denotes the outward unit normal to κ at x ∈ ∂κ. For a sufficiently-smooth
function v, we denote by v+

κ (respectively, v−κ ) the interior (respectively, exterior) trace of v on ∂κ

(respectively, ∂κ \ ∂Ω). Since it will always be clear which element κ ∈ T the quantities v±κ correspond
to, the subscript κ will be suppressed for the remainder of this article.

The DGFEM discretisation of (3.1) with upwind numerical flux reads as follows: Find uh ∈ V such
that

a(uh, vh) = `(vh) (3.2)

for all vh ∈ V, where a : V × V→ R and ` : V→ R are defined, respectively, for all wh, vh ∈ V by

a(wh, vh) =
∑
κ∈T

( ∫
κ

(−whb · ∇vh + cwhvh) dx +

∫
∂+κ

|b · n| w+
h v+

h ds −
∫
∂−κ\∂Ω

|b · n| w−h v+
h ds

)
,

`(vh) =
∑
κ∈T

(∫
κ

f vh dx +

∫
∂−κ∩∂Ω

|b · n| gv+
h ds

)
.

3.2. Basis functions on polytopic elements

For the remainder of this article we will assume that each element κ ∈ T is equipped with a basis
comprising of the polynomial space Pp(κ) for some fixed p ≥ 0. Following [2, 6], we construct a
Cartesian bounding box Bκ for each element κ ∈ T such that κ̄ ⊆ B̄κ. Furthermore, we define a reference
bounding box B̂ = (−1, 1)d and a family of affine mappings Fκ : B̂ → Bκ such that Fκ(x̂) = Jκx̂ + tκ,
where Jκ ∈ Rd×d is the (diagonal) Jacobi matrix of Fκ and tκ ∈ Rd is the translation between the origin
0 ∈ B̂ and the barycentre of Bκ.
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We define a basis of Pp(B̂) as follows: We denote by {Ln(t)}∞n=0 the family of orthogonal (or
orthonormal) univariate Legendre polynomials on L2(−1, 1). For each multi-index α of length d with
0 ≤ |α| ≤ p we define the basis function φ̂α : B̂→ R by

φ̂α(x̂) =

d∏
k=1

Lαk(x̂k). (3.3)

It is straightforward to see that {φ̂α(x̂)}0≤|α|≤p forms a basis for Pp(B̂). The basis functions
{φα,κ(x)}0≤|α|≤p for Pp(κ) are constructed upon application of the element mapping; more precisely,
φα,κ(x) = φ̂α(F−1

κ (x)). The set
{φα,κ(x) : κ ∈ T , 0 ≤ |α| ≤ p}

forms a basis on each element κ, κ ∈ T , for the finite element space V. Henceforth, we will identify a
bijection between the set of multi-indices {α}0≤|α|≤p and the set {1, . . . , dimPp(κ)} such that the ith basis
function on κ is denoted by φα(i),κ(x).

We conclude this section by expanding the products of Ln(t) and their derivatives as sums of
monomials:

Lm(t)Ln(t) =

m+n∑
k=0

Cm,n,ktk, (3.4)

L′m(t)Ln(t) =

m+n−1∑
k=0

C′m,n,kt
k. (3.5)

The sets of coefficients {Cm,n,k : 0 ≤ m, n ≤ p, 0 ≤ k ≤ m + n} and {C′m,n,k : 0 ≤ m, n ≤ p, 0 ≤ k ≤
m + n − 1} may be pre-computed before assembly.

4. Analysis of volume matrix assembly

In this section we focus on the efficient assembly of the DGFEM matrix arising on the left-hand side
of (3.2). Typically, when quadrature is employed, the evaluation of the volume integrals appearing in
the left-hand side of (3.2) are far more expensive to compute than the corresponding face integrals since
in the former case significantly more quadrature points must be employed. With that in mind, we focus
on the acceleration of the assembly of the local element matrix contributions Aκ ∈ R

dimPp(κ)×dimPp(κ),

where
(Aκ)i j =

∫
κ

(
−φα( j),κ(x)b · ∇φα(i),κ(x) + cφα(i),κ(x)φα( j),κ(x)

)
dx. (4.1)

While we will not discuss the exploitation of quadrature-free methods to compute the face integrals
appearing in (3.2), we refer to [2] for the application of the proposed numerical integration approach
for the computation of the face integrals arising from a DGFEM discretisation of a second-order elliptic
problem.

4.1. Quadrature based assembly

As a point of comparison, we will consider quadrature rules of the form∫
P

f (x) dx ≈
N∑

i=1

ωi f (xi), (4.2)
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where f : P → R, {xi}
N
i=1 ⊂ R

d denotes a set of quadrature points with non-negative quadrature weights
{ωi}

N
i=1 ⊂ R.

A number of methods may be employed to construct the N-point quadrature scheme QN =

{(xi, ωi)}Ni=1. One of the most popular and simple to implement strategies is to sub-tessellate the
integration domain P into simplicial subdomains (triangles in 2D, tetrahedra in 3D), on which standard
quadrature schemes can be used [25]. However, the resulting quadrature scheme on P may contain
an excessive number of points and weights. It has been demonstrated that numerical optimisation
algorithms can generate efficient numerical quadrature schemes on arbitrary polygonal domains, cf.,
for example, [20].

In the case when f ∈ Pp(P), the approximation (4.2) can be exact. Indeed, it can be shown that the
smallest N-point quadrature scheme which is exact for all polynomial functions of a given degree p
contains

N ≥
(
b

p
2 c + d

d

)
(4.3)

quadrature points and weights [23].

Algorithm 2 presents a pseudocode for a typical implementation of numerical quadrature to evaluate
the integrals (4.1) appearing in the DGFEM discretisation of the transport equation. Noting that lines 8
and 9 of Algorithm 2 require 2(d + 1) and 2 floating-point operations to evaluate, respectively, it
can be seen that the number of floating-point operations performed in the main body (lines 5–12) is
given by 2(d + 2)(dimPp(κ))2N. Furthermore, noting that dimPp(κ) =

(
p+d

d

)
and that the integrand

of (4.1) is a polynomial of total degree at most 2p, the number of floating-point operations required to
exactly evaluate Aκ for a single element κ using Algorithm 2 is at least 2(d + 1)

(
p+d

d

)3
. Here, we have

assumed that the lower bound on the number of quadrature points in (4.3) is attainable; that is, we set
N = Nopt =

(
p+d

d

)
.

Algorithm 2 Computation of Aκ using quadrature.
1: procedure ComputeElementMatrix(κ)
2: Compute quadrature scheme {(xq, ωq)}Nq=1 on κ
3: Pre-compute {φα,κ}0≤|α|≤p and {∇φα,κ}0≤|α|≤p at quadrature points
4: Aκ ← 0
5: for q = 1, . . . ,N do
6: for i = 1, . . . , dimPp(κ) do
7: for j = 1, . . . , dimPp(κ) do
8: I ←

(
cφα(i),κ(xq) − b · ∇φα(i),κ(xq)

)
φα( j),κ(xq)

9: (Aκ)i, j ← (Aκ)i, j + ωqI
10: end for
11: end for
12: end for
13: return Aκ

14: end procedure
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4.2. Quadrature-free based assembly

The quadrature-free integration method outlined in Section 2 is not immediately applicable to the
case of exactly evaluating the entries of Aκ in (4.1), since the integrand is typically not a homogeneous
function. We remedy this issue by decomposing the integrand as a sum of monomials which may
be integrated separately using Algorithm 1. We shall skip the details for brevity; see [2] for a more
detailed treatment of similar integrals.

Since the basis functions {φα,κ}0≤|α|≤p are only supported on κ, we may apply the inverse map F−1
κ

to obtain an expression for the matrix entry (Aκ)i, j as an integral over the mapped element

κ̂ = F−1
κ (κ) ⊆ B̂.

It can be shown that

(Aκ)i, j =

∫
κ̂

(
−φ̂α( j)(x̂)b̂κ · ∇̂φ̂α(i)(x̂) + cφ̂α(i)(x̂)φ̂α( j)(x̂)

)
|Jκ| dx̂,

where b̂κ = J−1
κ b denotes a scaled wind direction. Finally, by using the definition (3.3) of the basis

functions {φ̂α}0≤α≤p (which we remark are independent of κ) and the decompositions (3.4) and (3.5),
we arrive at the following expression for (Aκ)i, j:

(Aκ)i, j =
∑

0≤α≤α(i)+α( j)

c(i, j)
α

∫
κ̂

x̂α dx̂, (4.4)

where the coefficients {c(i, j)
α }0≤α≤α(i)+α( j) are defined for each 1 ≤ i, j ≤ dimPp(κ) by

c(i, j)
α =

c
d∏

k=1

Cα(i)
k ,α

( j)
k ,αk
−

d∑
k=1

b̂κ,kC′
α(i)

k ,α
( j)
k ,αk

d∏
`=1
`,k

Cα(i)
`
,α

( j)
`
,α`

 |Jκ|. (4.5)

We remark that the entries of Aκ are now in a form in which Algorithm 1 can be applied to generate
the set of integrated monomials I(κ̂,J). Here, we make the choice

J =
{
α ∈ Nd

0 : 0 ≤ |α| ≤ 2p
}

;

this ensures that J contains each α for which c(i, j)
α , 0. Moreover, by (4.4), the set I(κ̂,J) can be

computed once for each κ and re-used to assemble each entry of Aκ.
Algorithm 3 provides pseudocode for a typical implementation of the quadrature-free based

integration method to evaluate the integrals (4.1) appearing in the DGFEM discretisation of the
transport equation. We remark that the computational complexity associated with the execution of
Algorithm 1 on line 4 has already been discussed in Section 2.2. Noting that lines 10 and 11 of
Algorithm 3 require (d+1)2 and 2 floating-point operations, respectively, it can be seen that the number
of floating-point operations performed in the main body (lines 7–14) is given by ((d + 1)2 + 2)Qd(p),
where

Qd(p) =
∑

0≤|α(i) |≤p

∑
0≤|α( j) |≤p

card{α : 0 ≤ α ≤ α(i) + α( j)}. (4.6)
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It can be shown that Qd(p) ∼ 1
(3d)!

(
4d
2d

)
p3d as p→ ∞.

Algorithm 3 Computation of Aκ via quadrature-free integration.
1: procedure ComputeElementMatrix(κ)
2: Compute sets of coefficients {Cm,n,k} and {C′m,n,k} in (3.4) and (3.5) (if not already available)
3: Map κ 7→ κ̂

4: Compute I(κ̂,J) using Algorithm 1
5: Compute b̂κ = J−1

κ b
6: Aκ ← 0
7: for i = 1, . . . , dimPp(κ) do
8: for j = 1, . . . , dimPp(κ) do
9: for 0 ≤ α ≤ α(i) + α( j) do

10: Compute c(i, j)
α as in (4.5)

11: (Aκ)i, j ← (Aκ)i, j + c(i, j)
α I(κ̂,α)

12: end for
13: end for
14: end for
15: return Aκ

16: end procedure

Remark 6 (Pre-computation of coefficients). One may optionally pre-compute the (κ-independent)
coefficients

Cα(i),α( j),α =

d∏
k=1

Cα(i)
k ,α

( j)
k ,αk

and

C(k)
α(i),α( j),α

= C′
α(i)

k ,α
( j)
k ,αk

d∏
`=1
`,k

Cα(i)
`
,α

( j)
`
,α`

for 0 ≤ |α(i)| ≤ p, 0 ≤ |α( j)| ≤ p, 0 ≤ α ≤ α(i) + α( j) and 1 ≤ k ≤ d. This allows (4.5) to be computed
using 2(d + 1) floating-point operations, which is the same as the number of floating-point operations
needed to evaluate I in the quadrature based implementation given in Algorithm 2.

Remark 7 (p-refinement in quadrature-free based assembly). Algorithm 3 requires the following sets
in order to assemble the matrix Aκ using a basis of Pp(κ):

C(p) =
{
Ci, j,k : 0 ≤ i ≤ p, 0 ≤ j ≤ p, 0 ≤ k ≤ i + j

}
,

C′(p) =
{
C′i, j,k : 0 ≤ i ≤ p, 0 ≤ j ≤ p, 0 ≤ k ≤ i + j

}
,

Iκ(p) = {I(F ,α) : 0 ≤ dimF ≤ d, 0 ≤ |α| ≤ 2p} .

Suppose we wish to perform a p-refinement; that is, to construct Aκ using a basis of Pp+1(κ). Further,
assume that C(p), C′(p) and Iκ(p) are already known. We have that

C(p + 1) = C(p) ∪
{
Ci,p,k : 0 ≤ i ≤ p + 1, 0 ≤ k ≤ p + i

}
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∪
{
Cp,i,k : 0 ≤ i ≤ p + 1, 0 ≤ k ≤ p + i

}
,

C′(p + 1) = C′(p) ∪
{
C′i,p,k : 0 ≤ i ≤ p + 1, 0 ≤ k ≤ p + i

}
∪

{
C′p,i,k : 0 ≤ i ≤ p + 1, 0 ≤ k ≤ p + i

}
,

Iκ(p + 1) = Iκ(p) ∪ {I(F ,α) : 0 ≤ dimF ≤ d, 2p + 1 ≤ |α| ≤ 2p + 2} .

The computations of the updated coefficient sets C(p + 1) and C′(p + 1) are a one-time cost (since these
sets may be used for every κ ∈ T ) and the computation of the updated integral set Iκ(p + 1) can be
performed using a modification of Algorithm 1 that uses prior knowledge of Iκ(p) to avoid unnecessary
re-computation.

4.3. Comparison of assembly methods

It can be seen that the time complexities associated with the main loops in Algorithms 2 and 3,
measured as the total number of floating-point operations required to assemble Aκ, are O(p3d) in the
limit as p → ∞. Moreover, the time complexity associated with the execution of Algorithm 1, used
to compute I(κ̂,J) in Algorithm 3, is O(χ1(κ)pd), where χ1(P) denotes the measure of complexity of
the geometry of a polytope P given in the statement of Lemma 1. Thus, for large enough p, the main
loops in Algorithms 2 and 3 are the most expensive contributions to the total assembly time.

A study of the loops in Algorithms 2 and 3 shows that the quadrature based method reaches the
inner-most computations (dimPp(κ))2N times, while the quadrature-free based method reaches the
inner-most computations Qd(p) times, where Qd(p) is the function defined in (4.6). Here, the number
of quadrature points and weights N used in Algorithm 2 is chosen to exactly evaluate the integrals
(Aκ)i j in (4.1) whose integrands are polynomial functions of total degree at most 2p. Thus, a lower
bound for N is given by Nopt =

(
p+d

d

)
.

Figure 3 shows the expected number of floating-point operations required by Algorithm 2 (using
the theoretically-optimal number of quadrature points Nopt) and Algorithm 3 used to assemble Aκ. The
leading-order behaviour of both algorithms in the limit p → ∞ is O(p3d). It is seen that, without
taking the geometric complexity of κ into consideration, the performance of the quadrature-free based
assembly method is expected to be comparable to that of the quadrature based assembly employing the
minimal quadrature set that exactly evaluates Aκ.

However, the quadrature-free based assembly method can outperform the quadrature based
assembly method when one takes into consideration the geometric complexity of κ. To see this,
suppose that κ is decomposed into n subdomains for the purpose of numerical integration, on each of
which an Nopt-point quadrature scheme can be applied. The leading-order behaviour of Algorithm 2 is
O(np3d); that is, the time taken to assemble Aκ via the quadrature based assembly method will increase
significantly if many integration subdomains are required. In contrast, the time taken to execute the
main loop of Algorithm 3 is independent of κ; furthermore, taking into account the evaluation of the
set of integrated monomials I(κ̂,J), the leading-order behaviour of Algorithm 3 is O(χ1(κ̂)pd + p3d),
where χ1 denotes the function given in the statement of Lemma 1. We investigate this further in the
following section.
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Figure 3. Time complexities of the main loops in Algorithms 2 and 3 as a function of
the degree of approximation p. It is assumed that N = Nopt quadrature points are used in
Algorithm 2. Top row: number of times the operations within the main loops of Algorithms 2
and 3 are executed. Bottom row: total number of floating-point operations computed within
the main loops of Algorithms 2 and 3. Left column: d = 2. Right column: d = 3.

5. Numerical results

In this section we consider the practical performance of the proposed quadrature-free algorithm.

5.1. Effect of pruning in Algorithm 1

We shall first study the effect of implementing Algorithm 1 with and without pruning as described
in Section 2.2. The pruning strategy we adopt is to select the reference point xF as the first vertex of
F for each face visited by Algorithm 1. We will apply Algorithm 1 to the problem of assembling the
integral sets

⋃
κ∈T I(κ,J) in the case where T is a simplicial or agglomerated simplicial mesh in two

or three spatial dimensions and
J =

{
α ∈ Nd

0 : 0 ≤ |α| ≤ p
}

for p ∈ {0, 2, 4, 6, 8, 10, 12}.
Tables 2 and 3 show the total CPU time taken by the unpruned and pruned versions of Algorithm 1

applied to two-dimensional triangular and agglomerated triangular meshes, respectively, while Tables 4
and 5 show the total CPU time taken by the unpruned and pruned versions of Algorithm 1 applied
to three-dimensional tetrahedral and agglomerated tetrahedral meshes, respectively. An additional
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quantity, computed as the ratio of the CPU time taken by the pruned algorithm against the unpruned
algorithm, is also reported; values of this ratio less than 1 indicate that Algorithm 1 with pruning
computes the integral set I(P,J) faster than the same algorithm without pruning.

For each fixed p, it is observed that the ratio of CPU time taken by the pruned algorithm against the
unpruned algorithm remains roughly constant in all cases. For a fixed number of elements, this ratio
decreases as p increases. It is expected that this ratio continues to decrease as p → ∞ but remains
bounded from below by a constant, for a single element κ, this constant is expected to depend on the
number of nodes and edges of the graph G(κ) defined in Section 2.2 before and after pruning.

While pruning accelerates the assembly of
⋃

κ∈T I(κ,J) for both tetrahedral and agglomerated
tetrahedral elements in three dimensions, a greater improvement in assembly time is observed for
tetrahedral meshes, this is because a greater proportion of the nodes and edges of G(κ) can be eliminated
through pruning when κ is simplicial. We observe similar behaviour between the pruned and unpruned
version of Algorithm 1 applied to triangular and agglomerated triangular elements in two dimensions,
though pruning is seen to be less effective at reducing the CPU time spent assembling

⋃
κ∈T I(κ,J).

For small values of p, pruning actually slows down Algorithm 1, we speculate that this is because the
extra time spent checking whether a given facet F is to be pruned outweighs the expense that would
be incurred to assemble I(F ,J) without pruning.

Table 2. CPU times of unpruned and pruned versions of Algorithm 1 for the assembly of⋃
κ∈T I(κ,J) for triangular meshes T in two spatial dimensions.

|T | 32 128 512 2048 8192

p = 0
Unpruned 1.8926E-05 6.2850E-05 2.3568E-04 8.8175E-04 3.6211E-03
Pruned 2.4888E-05 7.3720E-05 2.7315E-04 1.0641E-03 4.5114E-03
Ratio 1.32 1.17 1.16 1.21 1.25

p = 2
Unpruned 3.3402E-05 8.2150E-05 3.3563E-04 1.3032E-03 5.1413E-03
Pruned 2.8993E-05 8.0898E-05 3.1069E-04 1.2043E-03 4.7641E-03
Ratio 0.87 0.98 0.93 0.92 0.93

p = 4
Unpruned 3.3678E-05 1.2722E-04 5.1513E-04 1.7583E-03 6.4381E-03
Pruned 3.1136E-05 9.4751E-05 3.6298E-04 1.5314E-03 5.5922E-03
Ratio 0.92 0.74 0.70 0.87 0.87

p = 6
Unpruned 4.4647E-05 1.6264E-04 6.3257E-04 2.6062E-03 9.5336E-03
Pruned 3.8436E-05 1.2308E-04 5.2076E-04 1.9159E-03 7.2723E-03
Ratio 0.86 0.76 0.82 0.74 0.76

p = 8
Unpruned 6.4398E-05 2.2496E-04 9.3172E-04 3.2624E-03 1.2828E-02
Pruned 4.5497E-05 1.7977E-04 7.8489E-04 2.5205E-03 9.4220E-03
Ratio 0.71 0.80 0.84 0.77 0.73

p = 10
Unpruned 7.9538E-05 3.2234E-04 1.1563E-03 4.5004E-03 1.7702E-02
Pruned 5.6676E-05 2.2770E-04 7.9667E-04 3.0367E-03 1.2133E-02
Ratio 0.71 0.71 0.69 0.67 0.69

p = 12
Unpruned 1.3727E-04 4.1301E-04 1.6069E-03 5.7918E-03 2.3696E-02
Pruned 6.9956E-05 2.7148E-04 9.6113E-04 3.7934E-03 1.5079E-02
Ratio 0.51 0.66 0.60 0.65 0.64
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Table 3. CPU times of unpruned and pruned versions of Algorithm 1 for the assembly of⋃
κ∈T I(κ,J) for agglomerated triangular meshes T in two spatial dimensions.

|T | 12 51 204 819 3276

p = 0
Unpruned 2.3893E-05 6.7615E-05 2.7051E-04 1.1335E-03 5.0569E-03
Pruned 3.1631E-05 8.4488E-05 3.1938E-04 1.3849E-03 6.2978E-03
Ratio 1.32 1.25 1.18 1.22 1.25

p = 2
Unpruned 2.9957E-05 1.0833E-04 3.4219E-04 1.6801E-03 6.6029E-03
Pruned 3.3662E-05 1.1878E-04 3.8369E-04 1.8276E-03 7.3026E-03
Ratio 1.12 1.10 1.12 1.09 1.11

p = 4
Unpruned 4.6595E-05 1.4459E-04 5.9718E-04 2.2960E-03 9.4577E-03
Pruned 3.9385E-05 1.2878E-04 5.9189E-04 2.2926E-03 9.2390E-03
Ratio 0.85 0.89 0.99 1.00 0.98

p = 6
Unpruned 5.6086E-05 2.1821E-04 9.3389E-04 3.2810E-03 1.2832E-02
Pruned 5.5423E-05 1.9397E-04 8.2830E-04 2.9239E-03 1.1699E-02
Ratio 0.99 0.89 0.89 0.89 0.91

p = 8
Unpruned 8.5570E-05 3.0688E-04 1.1368E-03 4.5906E-03 1.7794E-02
Pruned 8.1338E-05 2.5567E-04 9.8448E-04 3.8316E-03 1.5385E-02
Ratio 0.95 0.83 0.87 0.83 0.86

p = 10
Unpruned 1.2774E-04 4.2015E-04 1.5151E-03 6.0202E-03 2.4115E-02
Pruned 8.7737E-05 3.4614E-04 1.2627E-03 5.0212E-03 1.9915E-02
Ratio 0.69 0.82 0.83 0.83 0.83

p = 12
Unpruned 1.5864E-04 5.3115E-04 2.0558E-03 8.2953E-03 3.3196E-02
Pruned 1.4783E-04 4.3479E-04 1.7454E-03 6.7921E-03 2.5964E-02
Ratio 0.93 0.82 0.85 0.82 0.78

Table 4. CPU times of unpruned and pruned versions of Algorithm 1 for the assembly of⋃
κ∈T I(κ,J) for tetrahedral meshes T in three spatial dimensions.

|T | 6 48 384 3072 24576

p = 0
Unpruned 2.4926E-05 1.0816E-04 8.1476E-04 6.8287E-03 4.8521E-02
Pruned 1.9337E-05 7.1661E-05 5.1822E-04 4.0497E-03 3.1205E-02
Ratio 0.78 0.66 0.64 0.59 0.64

p = 2
Unpruned 3.5647E-05 2.0676E-04 1.5616E-03 1.3476E-02 9.5595E-02
Pruned 2.1014E-05 9.8906E-05 7.1403E-04 5.6071E-03 4.3727E-02
Ratio 0.59 0.48 0.46 0.42 0.46

p = 4
Unpruned 6.3102E-05 4.2202E-04 3.2991E-03 2.5008E-02 1.9898E-01
Pruned 3.1368E-05 1.5550E-04 1.2420E-03 9.1364E-03 7.2012E-02
Ratio 0.50 0.37 0.38 0.37 0.36

p = 6
Unpruned 1.1175E-04 8.2232E-04 5.9819E-03 4.7363E-02 3.7750E-01
Pruned 4.4362E-05 2.5484E-04 1.8026E-03 1.3952E-02 1.1175E-01
Ratio 0.40 0.31 0.30 0.29 0.30

p = 8
Unpruned 1.8889E-04 1.4290E-03 1.0750E-02 8.6211E-02 6.8734E-01
Pruned 6.2170E-05 2.8795E-04 3.0248E-03 2.3477E-02 1.8765E-01
Ratio 0.33 0.20 0.28 0.27 0.27
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Table 5. CPU times of unpruned and pruned versions of Algorithm 1 for the assembly of⋃
κ∈T I(κ,J) for agglomerated tetrahedral meshes T in three spatial dimensions.

|T | 4 38 307 2457 19660

p = 0
Unpruned 4.5272E-05 3.5574E-04 2.6056E-03 2.1919E-02 1.7550E-01
Pruned 3.7088E-05 2.8895E-04 2.0201E-03 1.6717E-02 1.3413E-01
Ratio 0.82 0.81 0.78 0.76 0.76

p = 2
Unpruned 8.7692E-05 7.7001E-04 5.5442E-03 4.3656E-02 3.5131E-01
Pruned 5.4265E-05 4.5130E-04 3.1994E-03 2.6491E-02 2.0647E-01
Ratio 0.62 0.59 0.58 0.61 0.59

p = 4
Unpruned 1.9519E-04 1.5893E-03 1.1656E-02 9.1985E-02 7.4515E-01
Pruned 9.1346E-05 7.6676E-04 5.5029E-03 4.4103E-02 3.5562E-01
Ratio 0.47 0.48 0.47 0.48 0.48

p = 6
Unpruned 3.4222E-04 3.0026E-03 2.3204E-02 1.8303E-01 1.4867E+00
Pruned 1.6222E-04 1.2524E-03 9.9395E-03 7.9390E-02 6.4008E-01
Ratio 0.47 0.42 0.43 0.43 0.43

p = 8
Unpruned 6.0944E-04 5.2648E-03 4.1087E-02 3.2613E-01 2.6380E+00
Pruned 2.4756E-04 1.9114E-03 1.5453E-02 1.2295E-01 1.0089E+00
Ratio 0.41 0.36 0.38 0.38 0.38

5.2. Integrating monomials over polygons

As a second example, we compare the quadrature and quadrature-free based integration algorithms
for the evaluation of the sets

In,p =

{∫
Pn

xα dx : α ∈ N2
0, 0 ≤ |α| ≤ p

}
,

where Pn ⊂ R
2 denotes the regular n-gon, 5 ≤ n ≤ 16, with vertices

{(
cos 2πk

n , sin 2πk
n

)}n−1

k=0
and p ∈

{2, 4, 8, 16, 32}.
The quadrature based method is employed as follows: A sub-tessellation of Pn consisting of (n− 2)

triangles is constructed by joining the first vertex of Pn to every other vertex. On each triangle, a
(q + 1)2-point quadrature scheme, q = d

p+1
2 e, is defined by constructing a quadrature scheme on the

unit square (−1, 1)2 exactly integrating all bivariate polynomial functions of maximal degree p + 1.
The reference quadrature scheme on (−1, 1)2 is then mapped to each triangle in the sub-tessellation
of Pn via a Duffy transformation [11]. The resulting quadrature scheme on Pn therefore contains
(n − 2)(q + 1)2 points and weights. We record the time taken for the quadrature based integration
method to be executed for each element of In,p; here, we do not include the time taken to generate the
quadrature scheme on Pn.

The quadrature-free based method is specialised to the two-dimensional setting. The integrals
I(Pn,α) and I(Fn,k,α), for each boundary facet Fn,k ⊂ ∂Pn, 1 ≤ k ≤ n, are stored in two arrays.
We employ pruning based on selecting xF as the first vertex of each visited face F .

Figures 4 and 5 show the CPU times taken by the quadrature based and quadrature-free based
integration algorithms to evaluate In,p averaged over 100 function calls. The time complexity of the
quadrature based method is O(np4), since the size of the requested set of integrals |In,p| = O(p2) and
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each integral requires O(n(q + 1)2) = O(np2) flops to compute. On the other hand, the quadrature-
free based method is seen to have time complexity O(np2). This is consistent with Lemma 2 since
|J| = O(p2). It has been verified that the integrals in the set In,p computed using Algorithm 1 agree
with the same set of integrals computed using quadrature to within machine precision.
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Figure 4. CPU times taken by the quadrature and quadrature-free based methods to evaluate
In,p for p = 2, 4, 8, 16, 32 on a regular n-gon. Left: n = 5. Right: n = 16.
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Figure 5. CPU times taken by the quadrature and quadrature-free based methods to evaluate
In,p for 5 ≤ n ≤ 16 and fixed p. Left: p = 4. Right: p = 32.

5.3. 2D transport matrix assembly

As a third example, we compare the quadrature based and quadrature-free based assembly methods
for a single element matrix arising from the DGFEM discretisation of linear first-order transport
problems posed in two spatial dimensions. We first consider a single n-sided polygonal domain
Pn ⊂ R

2 with 3 ≤ n ≤ 64 and employ a basis of degree p = 4, i.e., the finite element space is
V = P4(Pn).

As before, the quadrature based method employs a sub-tessellation for the purposes of constructing
a quadrature scheme on Pn. In this example, the sub-tessellation consists of n triangles constructed
by joining each vertex of Pn to the centroid. Here, a (p + 2)2-point quadrature scheme is employed
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on each triangle using the method outlined in the previous example; this ensures that the quadrature
scheme exactly evaluates the element integrals appearing in (3.2). As before, we do not include the
time taken to generate the quadrature scheme on Pn. The time taken to evaluate the basis functions at
the quadrature points is also excluded.

The quadrature-free based method is specialised to the two-dimensional setting. The element
integrals appearing in (3.2) are evaluated using the two-step procedure given in Algorithm 3. The
monomial integrals

∫
Pn

xα dx for 0 ≤ |α| ≤ 2p are computed once based on employing Algorithm
1 using the first-vertex based pruning strategy as before; these are then used to assemble the local
element matrix entry-wise through the decomposition (4.4) of the integrals given in (3.2). The time
taken to generate the coefficients in these decompositions is not included, since for the given finite
element basis, the individual terms present in the brackets in (4.5) can be precomputed once and for
all, using, for example, maple.

Figure 6 shows the CPU time taken by the quadrature based assembly method using Algorithm 2
and the quadrature-free based assembly method using Algorithm 3 to assemble the element matrices
arising from a DGFEM discretisation of a linear, constant-coefficient transport problem in two spatial
dimensions. The CPU times are averaged over 10000 calls to both assembly methods on the same n-gon
element Pn for 3 ≤ n ≤ 64 on which a basis of P4(Pn) is employed. The time taken by Algorithm 3 to
assemble the element matrices is further broken down into contributions from line 4 (i.e., Algorithm 1)
and lines 7–14 (i.e., the reconstruction of (Aκ)i, j via (4.4)).

As seen in the previous example, the time-complexity of Algorithm 2 scales linearly with n, the
number of sides of the element Pn. The time-complexity associated with line 4 of Algorithm 3, which
we remark is a call to Algorithm 1 also scales linearly with n, as expected.

The main body of Algorithm 3, namely the nested loops on lines 7–14, is seen to scale independently
of n. Indeed, it was seen in the analysis of the previous section that this loop exhibits no dependence
on the geometry of the element. Therefore, the actual run-time of the quadrature-free based assembly
method depends on whether the integration phase (line 4) or reconstruction phase (lines 7–14) is more
expensive. For small values of n, the reconstruction phase is more expensive and so the assembly time
remains roughly constant; for large enough n the integration phase dominates the computational time
and so a dependence of the assembly time on the geometric complexity of the element emerges.

We now consider fixing n to study the dependence on p; to this end, in Figure 7 we show the
scalings of Algorithms 2 and 3 as functions of the polynomial degree of approximation for 1 ≤ p ≤ 12
on a fixed 6-sided polygonal domain. For large enough p, it can be seen that the time complexities
of the quadrature based and quadrature-free based assembly methods are both O(p3d) = O(p6) as
predicted earlier. In the case of the quadrature-free based assembly method, the time complexities (on
a given geometry) of the monomial integration phase (line 4) and the reconstruction phase (lines 7–
14) of Algorithm 3 are O(p3d) = O(p6) and O(pd) = O(p2), respectively. This is in agreement with
our previous analysis, which predicted that the time complexity of the quadrature-free based assembly
scales like O(χ1(Pn)pd + p3d) = O(χ1(Pn)p2 + p6), where χ1(P) denotes the measure of complexity of
the geometry of a polytope P given in the statement of Lemma 1. In this example, it is observed that
the quadrature-free based assembly method is faster than the quadrature based assembly method by a
factor of around an order of magnitude for all tested polynomial degrees.
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Figure 6. CPU times taken by the quadrature and quadrature-free based methods to evaluate
the DGFEM element transport matrix for 3 ≤ n ≤ 64 and fixed p = 4. Left: total time
taken by quadrature and quadrature-free based methods. Right: contributions to CPU time
arising from Algorithm 2 (blue), line 4 of Algorithm 3 (purple) and lines 7–14 of Algorithm 3
(green).
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Figure 7. CPU times taken by the quadrature and quadrature-free based methods to evaluate
the DGFEM element transport matrix for fixed n = 6 and 1 ≤ p ≤ 12. Left: total time
taken by quadrature and quadrature-free based methods. Right: Contributions to CPU time
arising from Algorithm 2 (blue), line 4 of Algorithm 3 (purple) and lines 7–14 of Algorithm 3
(green).

5.4. 3D transport matrix assembly

As a final example, we will compare the quadrature based and quadrature-free based assembly
methods for the system matrix arising from DGFEM discretisation of the linear first-order transport
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problem posed in three spatial dimensions. We will consider sequences of tetrahedral and agglomerated
tetrahedral meshes T and employ local polynomial bases Pp(κ) for each κ ∈ T with 0 ≤ p ≤ 4.

For standard tetrahedral meshes, the quadrature based method employs quadrature schemes
consisting of (p + 2)3 points and weights on each tetrahedron; this ensures that the quadrature scheme
exactly evaluates the element integrals appearing in (3.2). The agglomerated tetrahedral meshes
are formed by partitioning a fine mesh T f ine into polyhedral coarse-mesh elements κ ∈ T using
METIS [15]. The agglomeration strategy is chosen such that each coarse-mesh element κ is formed
from an average of 10 fine-mesh elements κ f ine ∈ T f ine. The quadrature schemes on elements in
T f ine are inherited by the coarse-mesh elements, ensuring that the integrals appearing in (3.2) can be
evaluated exactly.

The quadrature-free based method is performed in two steps as before. On each element κ ∈ T ,
the monomial integrals

∫
κ

xα dx for 0 ≤ |α| ≤ 2p are computed once using an implementation of
Algorithm 1 specialised to the three-dimensional setting. As before, we employ a first-vertex based
pruning strategy to reduce the CPU time spent in Algorithm 1. The integrals in (3.2) are then evaluated
using known decompositions of the integrands in terms of the monomial basis. The time taken to
generate the coefficients in these decompositions is not included.

Figure 8 shows the CPU time taken by the quadrature based and quadrature-free based methods
(Algorithms 2 and 3, respectively) to assemble the global transport matrices arising from a DGFEM
discretisation of a linear, constant-coefficient transport problem in three spatial dimensions. Both
methods are tested on standard and agglomerated tetrahedral meshes for global polynomial degrees
0 ≤ p ≤ 4.

Both assembly methods are seen to scale linearly with the number of elements in the spatial
mesh, as expected. For all tests recorded, the CPU time taken to assemble the system matrix using
the quadrature-free method is consistently faster than the standard quadrature based approach by at
most a constant multiplicative factor. For the tests performed on standard tetrahedral meshes, this
multiplicative constant is between 2 and 3 for p ≥ 1. For agglomerated tetrahedral meshes, this
multiplicative constant improves to at least 5 for p ≥ 1, with the quadrature based assembly taking
almost 20 times longer than the quadrature-free based assembly in the case p = 4. This improvement in
assembly time due to switching to a quadrature-free approach is expected to be greater on agglomerated
meshes than tetrahedral meshes. Indeed, on a given element κ ∈ T , the time complexity of the
quadrature based method is O(nκp3d) = O(nκp9), where nκ denotes the number of fine-mesh elements
in T f ine that comprise κ. In contrast, the time complexity of the quadrature-free based method is
O(χ1(κ)pd + p3d) = O(χ1(κ)p3 + p9).

Figures 9 and 10 present the breakdown of the contribution of line 4 and lines 7–14 of Algorithm 3
to the total CPU time taken by the quadrature-free based algorithm. Both the integration and
reconstruction phases are seen to scale linearly with the number of elements in the mesh; this is to
be expected since lines 4 and lines 7–14 of Algorithm 3 are executed once for each element. The
reconstruction (4.4) performed on lines 7–14 of Algorithm 3 is seen to scale much faster as a function
of p than the integration of the monomial basis via Algorithm 1; this is evidenced by the greater
separation of the data corresponding to the CPU times for each polynomial degree p. However, the
time taken in the reconstruction phase is seen to be independent of the geometry of the mesh elements,
whereas a greater amount of CPU time is required to perform the integration phase on agglomerated
tetrahedral meshes. Analogous behaviour is also observed when fine meshes consisting of hexahedral
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elements are agglomerated; for brevity these results have been omitted.
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Figure 8. CPU times taken by Algorithm 2 (quadrature based assembly) and Algorithm 3
(quadrature-free based assembly) to evaluate the DGFEM element transport matrices on a
sequence of meshes and for 0 ≤ p ≤ 4. Left: total time taken on a sequence of tetrahedral
meshes with |T | ∈ {6, 48, 384, 3072, 24576}. Right: total time taken on a sequence of
agglomerated meshes with |T | ∈ {4, 38, 307, 2457, 19660}.
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Figure 9. Breakdown of CPU times taken by the monomial integration and reconstruction
phases of the quadrature-free based method to evaluate the DGFEM element transport
matrices on a sequence of meshes and for 0 ≤ p ≤ 4. Left: total time taken on a sequence of
tetrahedral meshes with |T | ∈ {6, 48, 384, 3072, 24576}. Right: total time taken on a sequence
of agglomerated meshes with |T | ∈ {4, 38, 307, 2457, 19660}.
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Figure 10. Breakdown of CPU times taken by the monomial integration and reconstruction
phases of the quadrature-free based method to evaluate the DGFEM element transport
matrices on sequences of meshes (Ti)5

i=1 and for 0 ≤ p ≤ 4. Left: total time taken on a
sequence of tetrahedral meshes with |Ti| ∈ {6, 48, 384, 3072, 24576}. Right: total time taken
on a sequence of agglomerated meshes with |Ti| ∈ {4, 38, 307, 2457, 19660}.

6. Conclusions

In this article we have analysed the computational complexity of computing the integral of families
of polynomial spaces over general polytopic domains. Starting from the ideas developed in [7, 17] for
the integration of homogeneous functions, we have demonstrated that the time and space complexities
required to integrate families of monomial functions are dependent on three factors: the ambient
dimension of the polytopic domain; the size of the requested set of monomial integrals; and the
size of a directed graph related to the polytopic domain. In the case of polygonal or polyhedral
geometries, the monomial integration algorithm is shown to scale linearly with the number of graph
edges. This algorithm was applied to the computation of element integrals arising in the DGFEM
discretisation of the linear transport problem. We have shown that, by decomposing the integrand into
a linear combination of monomial functions, these integrals could be evaluated at speeds comparable
to methods based on employing quadrature schemes with a minimal number of points and weights. In
comparison to quadrature based methods employing a sub-tessellation, the quadrature-free approach is
seen to both significantly accelerate the assembly of the system matrix and also scale independently of
the element geometry for sufficiently-high polynomial degrees.
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