Mathematics in Engineering, 6(1): 1-27.
DOI:10.3934/mine.2024001

g
AVA Received: 10 August 2023
M iNg ‘V‘V" Revised: 24 December 2023
Accepted: 24 December 2023

http://www.aimspress.com/journal/mine Published: 28 December 2023

Research article

A limiting case in partial regularity for quasiconvex functionals’

Mirco Piccinini*

Dipartimento di Matematica e Informatica, Universita degli Studi di Parma, Campus, Parco Area delle
Scienze, 53/a, 43124 Parma, Italy

T This contribution is part of the Special Issue: PDEs and Calculus of Variations—Dedicated to
Giuseppe Mingione, on the occasion of his 50th birthday

Guest Editors: Giampiero Palatucci; Paolo Baroni

Link: www.aimspress.com/mine/article/6240/special-articles

* Correspondence: Email: mirco.piccinini @unipr.it.

Abstract: Local minimizers of nonhomogeneous quasiconvex variational integrals with standard p-
growth of the type

WHf[F(Dw)—f-w] dx
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1. Introduction

In this paper we provide a limiting partial regularity criterion for vector-valued minimizers u : Q C
R" — RN, n > 2, N > 1, of nonhomogeneous, quasiconvex variational integrals as:

WYPQRYY 5w s F(w; Q) = f[F(Dw) — f-wldx, (1.1)
Q

with standard p-growth. More precisely, we infer the optimal [31, Section 9] e-regularity condition

sup Q’")( |f]"dx < € = Du has a.e. bounded mean oscillation,
B,eQ B,
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and the related borderline function space criterion

fe€Lnoc) = sup me [f1"dx < e.
B,eQ B,

This is the content of our main theorem.

Theorem 1.1. Under assumptions (1.6) 3, (1.7) and (1.10), let u € W'(Q,RN) be a local minimizer
of functional (1.1). Then, there exists a number €, = g.(data) > 0 such that if

|B | 1/n
1l < ( | & (12)
then there exists an open set Q,, C Q with |Q \ Q,| = 0 such that
Du € BMO,oe(2,; RM™). (1.3)
Moreover, the set Q, can be characterized as follows
Q, = {xo € Q: ey, 0x, >0 such that &(u; By(xo)) < &y, for some o < on} ,
where & (-) is the usual excess functional defined as
1
P
EW, 203 Bo(x0)) = [J( 1201”2 Dw — 20> + |Dw — 70" dx| . (1.4)
Bg(x())

We immediately refer to Section 1.2 below for a description of the structural assumptions in force
in Theorem 1.1. Let us put our result in the context of the available literature. The notion of
quasiconvexity was introduced by Morrey [38] in relation to the delicate issue of semicontinuity of
multiple integrals in Sobolev spaces: an integrand F(-) is a quasiconvex whenever

J( F(z+ Dg)dx > F(z) holds for all z€ R"", ¢ e C(B(0), RY). (1.5)
B1(0)

Under power growth conditions, (1.5) is proven to be necessary and sufficient for the sequential weak
lower semicontinuity on W'?(Q; RM); see [1,4, 35,36, 38]. It is worth stressing that quasiconvexity
is a strict generalization of convexity: the two concepts coincide in the scalar setting (N = 1), or
for 1-d problems (n = 1), but sharply differ in the multidimensional case: every convex function is
quasiconvex thanks to Jensen’s inequality, while the determinant is quasiconvex (actually polyconvex),
but not convex, cf. [24, Section 5.1]. Another distinctive trait is the nonlocal nature of quasiconvexity:
Morrey [38] conjectured that there is no condition involving only F(-) and a finite number of
its derivatives that is both necessary and sufficient for quasiconvexity, fact later on confirmed by
Kristensen [29]. A peculiarity of quasiconvex functionals is that minima and critical points (i.e.,
solutions to the associated Euler-Lagrange system) might have very different behavior under the
(partial) regularity viewpoint. In fact, a classical result of Evans [22] states that the gradient of minima
is locally Holder continuous outside a negligible, “singular” set, while a celebrated counterexample due
to Miiller and Sverdk [39] shows that the gradient of critical points may be everywhere discontinuous.
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After Evans seminal contribution [22], the partial regularity theory was extended by Acerbi and
Fusco [2] to possibly degenerate quasiconvex functionals with superquadratic growth, and by Carozza,
Fusco and Mingione [8] to subquadratic, nonsingular variational integrals. A unified approach that
allows simultaneously handling degenerate/nondegenerate, and singular/nonsingular problems, based
on the combination of A-harmonic approximation [21], and p-harmonic approximation [20], was
eventually proposed by Duzaar and Mingione [19]. Moreover, Kristensen and Mingione [30] proved
that the Hausdorff dimension of the singular set of Lipschitz continuous minimizers of quasiconvex
multiple integrals is strictly less than the ambient space dimension n, see also [5] for further
developments in this direction. We refer to [3, 15, 16,25-28,37,41,42] for an (incomplete) account
of classical, and more recent advances in the field. In all the aforementioned papers are considered
homogeneous functionals, i.e., f = 0in (1.1). The first sharp &-regularity criteria for nonhomogeneous
quasiconvex variational integrals guaranteeing almost everywhere gradient continuity under optimal
assumptions on f were obtained by De Filippis [12], and De Filippis and Stroffolini [14], by connecting
the classical partial regularity theory for quasiconvex functionals with nonlinear potential theory for
degenerate/singular elliptic equations, first applied in the context of partial regularity for strongly
elliptic systems by Kuusi and Mingione [33]. Potential theory for nonlinear PDE originates from
the classical problem of determining the best condition on f implying gradient continuity in the
Poisson equation —4u = f, that turns out to be formulated in terms of the uniform decay to zero
of the Riesz potential, in turn implied by the membership of f to the Lorentz space L(n, 1), [9, 31].
In this respect, a breakthrough result due to Kuusi and Mingione [32, 34] states that the same is true
for the nonhomogeous, degenerate p-Laplace equation—in other words, the regularity theory for the
nonhomogeneous p-Laplace PDE coincides with that of the Poisson equation up to the C'-level. This
important result also holds in the case of singular equations [18, 40], for general, uniformly elliptic
equations [6], up to the boundary [10, 11, 13], and at the level of partial regularity for p-Laplacian
type systems without Uhlenbeck structure, [7,33]. We conclude by highlighting that our Theorem 1.1
fits this line of research as, it determines for the first time in the literature optimal conditions on the
inhomogeneity f assuring partial BMO-regularity for minima of quasiconvex functionals expressed in
terms of the limiting function space L(n, o).

1.1. Outline of the paper

In Section 2 we recall some well-known results from the study of nonlinear problems also
establishing some Caccioppoli and Gehring type lemmas. In Section 3 we prove the excess decay
estimates; considering separately the nondegenerate and the degenerate case. Section 4 is devoted to
the proof of Theorem 1.1.

1.2. Structural assumptions

In (1.1), the integrand F: R¥" — R satisfies

F e C2 (RV™)

AzP < F(2) < Alzl?
10 F(2)] < AlzlP~2 (1.6)

p=2

2

22
0°F(z) - PF(@)| < (u)(
22| + |21

2l + ol
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for all z € R™", A > 1 being a positive absolute constant and u: [0,00) — [0, 1] being a concave
nondecreasing function with u(0) = 0. In the rest of the paper we will always assume p > 2. In order
to derive meaningful regularity results, we need to update (1.5) to the stronger strict quasiconvexity
condition

f[F(Z +Dyp) — F(z)] dx>2 j‘(|Z|2 + |Dg0|2)pT_2|D<,0|2 dx, (1.7)
B B

holding for all z € R¥" and ¢ € Wé’p (B,RM), with A being a positive, absolute constant. Furthermore,
we allow the integrand F(-) to be degenerate elliptic in the origin. More specifically, we assume
that F'(-) features degeneracy of p-Laplacian type at the origin, i.e.,

OF (z) — OF(0) — |z]P~2
‘ @ ©) — "z -0 as |zl — 0, (1.8)

|z|P~!

which means that we can find a function w: (0, o) — (0, 00) such that
Izl < w(s) = [0F(z) — OF(0) — |zl" 2| < slz™", (1.9)

for every z € RV and all s € (0, ). Moreover, the right-hand side term f: Q — R in (1.1) verifies
as minimal integrability condition the following

) 2n/(n+2) if n>2,
feL™Q,RY) with 2>m> (1.10)
3/2 if n=2,
which, being p > 2, in turn implies that
fewW'@RYY and m <2"<p. (1.11)

Here it is intended that, when p > n, the Sobolev conjugate exponent p* can be chosen as large as
needed - in particular it will always be larger than p. By (1.5) and (1.6), we have

|0F (z)| < clz|P™", (1.12)

with ¢ = c(n, N, A, p); see for example [35, proof of Theorem 2.1]. Finally, (1.7) yields that for
allze RV, £ e RN, e R"itis

PFENE®LE® L) 2 22122 P11, (1.13)
see [24, Chapter 5].
2. Preliminaries
In this section we display our notation and collect some basic results that will be helpful later on.
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2.1. Notation

In this paper, £ C R” is an open, bounded domain with Lipschitz boundary, and n > 2. By ¢ we
will always denote a general constant larger than one, possibly depending on the data of the problem.
Special occurrences will be denoted by c,, ¢ or likewise. Noteworthy dependencies on parameters
will be highlighted by putting them in parentheses. Moreover, to simplify the notation, we shall array
the main parameters governing functional (1.1) in the shorthand data := (n, N, A, A, p, u(-), w(+)). By
B,(xo) :={x € R" : |x—x¢| < r}, we denote the open ball with radius r, centred at x,; when not necessary
or clear from the context, we shall omit denoting the center, i.e., B,(xo) = B, - this will happen, for
instance, when dealing with concentric balls. For x, € Q, we abbreviate d,, := min {1, dist(xp, 0Q)}.
Moreover, with B C R" being a measurable set with bounded positive Lebesgue measure 0 < |B| < oo,
anda: B — R, k > 1, being a measurable map, we denote

1
(a)p Eﬁa(x) dx := ﬁ La(x) dx.

We will often employ the almost minimality property of the average, i.e.,

1/t 1/t
(J[Ia - (a)Bltdx) < Z(fla — zltdx) (2.1)
B B

for all z € R and any ¢t > 1. Finally, if + > 1 we will indicate its conjugate by ¢’ := t/(t — 1)
and its Sobolev exponents as t* := nt/(n — t) if t < n or any number larger than one for + > n and
t, := max {nt/(n + 1), 1}.
2.2. Tools for nonlinear problems

When dealing with p-Laplacian type problems, we shall often use the auxiliary vector field
Vi: RV — RN, defined by

V@) = (2 + PP 27 withpe(l,0), s>0, z€ RV,

incorporating the scaling features of the p-Laplacian. If s = 0 we simply write V(-) = V(-). A couple
of useful related inequalities are

IVi(z1) = V@)l = (s* + 21> + 1221724z — 22,

IVi(z1 + 22)| < [Vi(z)l + [Vi(z2)],

(2.2)
IV, (@) = Vi, @I, if 355 < 51 < 2,
IV(z1) = V()PP ~ [V, (z1 — 22)P, if %|22| < |zl £ 2zal,
and
Vi@P ~ s" )z +12lP with p>2, (2.3)

9% ¢

where the constants implicit in “<”, “~” depend on n, N, p. A relevant property which is relevant for
the nonlinear setting is recorded in the following lemma.
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Lemma 2.1. Lett > —1, s € [0, 1] and z;, 25 € RN be such that s + |z,| + |z2] > 0. Then

1 !
2 212 2 2 2\ %
f |+l +y@ - 2)P|* dy ~ (87 + P + 2P,
0

with constants implicit in “x” depending only on n, N, t.

The following iteration lemma will be helpful throughout the rest of the paper; for a proof we refer
the reader to [24, Lemma 6.1].

Lemma 2.2. Let h: [09,01] — R be a non-negative and bounded function, and let 6 € (0,1),
A,B,y1,Y2 = 0 be numbers. Assume that h(t) < 6h(s) + A(s — )™ + B(s — )™ holds for all
00 <t < s < 0y. Then the following inequality holds h(oy) < c(6,y1,v2)[A(01 —00)™"" + B(o1 —00) "*].

We will often consider the “quadratic” version of the excess functional defined in (1.4), i.e.,

E(w, 203 By(x0)) = ( J[ |V(Dw)—z0|2dx] . (2.4)
By (x0)

In the particular case zo = (DW)p,iy (20 = (V(DW))g,y), Tesp.) we shall simply write
EW, (DW)B,(x); Bo(x0)) = EW; By(x0)) (W, (V(DW))B,(xp); Bo(X0)) = & (w; By(xp)), resp.). A simple
computation shows that

E(W; Bo(x0))"* = & (w; By(xp)). (2.5)

Moreover, from (2.1) and from [23, Formula (2.6)] we have that
E(W: By(x0)) & E(w, V(DW)5, () Bo(X0)). (2.6)

2.3. Basic regularity results

In this section we collect some basic estimates for local minimizers of nonhomogeneous
quasiconvex functionals. We start with a variation of the classical Caccioppoli inequality accounting
for the presence of a nontrivial right-hand side term, coupled with an higher integrability result of
Gehring-type.

Lemma 2.3. Under assumptions (1.6),3, (1.7) and (1.10), let u € W'(Q,R") be a local minimizer
of functional (1.1).

e For every ball B,(xo) € Q and any u, € RN, zo € RV \ {0} it holds that

p

i 2.7)

0

2

c m
; T[gmf T dx) ,
|zl B,(x0)

where & () is defined in (1.4), €(x) := ug + {29, x — o) and ¢ = c(n, N, A, A, p).

u—f'z
+
0

) =
& (u, 205 Boja(x0))! < CJ( |zol”
By (x0)
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e There exists an higher integrability exponent p, = p>(n,N,A,A,p) > p such that Du €
L (Q, RY") and the reverse Holder inequality

loc

1

P2
(f |Dl/t - (Du)Bg(xo)|p2 dXJ
BQ/2(XO)

1 1
» =y
<c [)( |Du|? dx) +c (Qm)( Lf1™ dx) , (2.8)
By (x0) By (x0)

is verified for all balls B,(xo) € Q with ¢ = c¢(n, N, A, A, p).

Proof. For the ease of exposition, we split the proof in two steps, each of them corresponding to the
proof of (2.7) and (2.8) respectively.

Step 1: proof of (2.7).

We choose parameters o/2 < 7; < 7, < o, a cut-off functionn € C ; (B,(x0)) such that 1 Bi (o) SN <
]lBrz(xo) and |Dy| < (13 —11)7". Set ¢y := n(u— 1), ¢, := (1 —n)(u—£) and use (1.7) and the equivalence
in (2.2); to estimate

Cf V(Do dx - < f [F(zo + Dg1) — F(z0)] dx
B-r2 (x0) Brz (x0)

f [F(Du — Dg,) — F(Du)] dx

Bz, (x0)

+f [F(Du) — F(Du — Dg,)] dx
Bz, (x0)

+ f [F(ZO + DQDZ) - F(Zo)] dx =: I] + Iz + 13, (29)
BTz(x())

where we have used the simple relation Dy, + Dy, = Du — z5. Terms 1; and I;3 can be controlled as
done in [19, Proposition 2]; indeed we have

2 2
L+, < ¢ f Vi (D) dx + cf V1o, (Du — 2)> dx
BTZ(XO)\B‘q (x0) BTz(x())\BT] (x0)

2
u—1=
VZOI(TZ_TI)

(2.2),
dx, (2.10)
for ¢ = c(n, N, A, A, p). Concerning term I,, we exploit (1.10), the fact that ¢, € Wé’p (B, (x0), RV) and

2
< e f |Vieo (Du = 20)” +
B'rz (XO)\BTI (XO)
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apply Sobolev-Poincaré inequality to get

1/m —
L < [By,(x)l TE"J[ |f1™ dx Tg”’j( 1™ dX}
B, (x0) B, (x0)
l/m 2% ZL*
m m @1
< B (xo)l]| 75 J[ |f1™ dx f —| dx
Br, (x0) Br,(xo) | T2
1/m 3
< B, (x0)l TE"J[ |f Ide) [ J[ |D901|2dX)
BTZ (x0) BTZ (x0)
2
clBy(xo)l [, ma |
< Sf |VIZOI(DQ01)|2dX+% 9]( 1" dx| (2.11)
By () €|zl By(x0)

where ¢ = c(n, N,m) and we also used that 0/2 < 1, < p. Merging the content of the two above
displays, recalling that 7 = 1 on B;,(x)) and choosing € > 0 sufficiently small, we obtain

2
u—=
Vlzol(Tz_Tl)

dx

f Vil (Du = z0)l* dx < Cf Vi) (D = 29)I” +
By, (x0)

B, (x0)\Br, (x0)
2
c|B,(xo)| !
- |0 Uf"dx|
|Zol By (x0)

with ¢ = c(n, N, A, A, p). At this stage, the classical hole-filling technique, Lemma 2.2 and (2.3)
yield (2.7) and the first bound in the statement is proven.

Step 2: proof of (2.8).

To show the validity of (2.8), we follow [33, proof of Proposition 3.2] and first observe that if
u is a local minimizer of functional #(-) on B,(xp), setting fo(x) := of(xp + ox), the map u,(x) :=
o 'u(xy + ox) is a local minimizer on B;(0) of an integral with the same integrand appearing in (1.1)
satisfying (1.6); 53 and f, replacing f. This means that (2.10) still holds for all balls B, >(X) C B;,(X) C
B.,(X) € B,(x) € B;(0), with ¥ € B;(0) being any point, in particular it remains true if |zo| = 0, while
condition |zo| # 0 was needed only in the estimate of term I, in (2.11), that now requires some change.
So, in the definition of the affine map ¢ we choose zo = 0, uy = (u,)p,(x and rearrange estimates (2.10)
and (2.11) as:

P
dx,

(2.3)
L+ < ¢ |Du,|” +
Br, (9)\Br, (%)

and, recalling that ¢, € WS”’ (B,(%), RY), via Sobolev Poincaré, Holder and Young inequalities

g — (Ug)p,,(3)

2= T
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and (1.11),, we estimate

1

1
7 »
- Y @Y -p* P
BTZ(x)| ) J( |fg| dx ‘rzpf |¢,01 dx
Bq, (%) By, (%)
1

1

N w*Y P

BTZ<)~C>|[T;P*>'J( |fg|(p)dx]l [ J( |D¢1|de)
Bey(®) Bey(®)

PR
C B )~C s /7 *) (p=1)
|1 CaCll o) |fg|(p) dx +& |D901|p dx,
/(D) ] ]
B (%) Bey()

with ¢ = ¢(n, N, p). Plugging the content of the two previous displays in (2.9), reabsorbing terms and

applying Lemma 2.2, we obtain
p k
J( [Du,|” dx < CJ( dx + C(O'(p )J( |fg
BJ/Z()NC) Bo’(;f) Bo’(;f)
n(# 1) <P 2.13)

for ¢ = c(n, N, A, A, p). Notice that
PYp-1 )T p-T

with equality holding when p < n, while for p > n any value of p* > 1 will do. We then manipulate
the second term on the right-hand side of (2.12) as

P
o £/ @) (p=1)
(0'(” )J[ |f9|(”) dx]
By (%)
<*)’I<) 1
B e e oy
< g7 ((p)(pl) )[J( |fg|(17) dx) )( |f£,|(p)dx
B1(0) B (%)

(2.13) "y T (Y
< J( Ifol”” dx ]( Ifol”” dx
B1(0) By (%)
=1 I8fI"" d
: oJo X,
By (%)
2=ty

*\/ 1—%
K= BTl

Plugging the content of the previous display in (2.12) and applying Sobolev-Poincaré inequality we get

P
Px
f |Du,|” dec( J[ |Du, | de +c J[ IR, L1177 dx,
B(r/Z(i) Bo’(;f) Bo’(;f)

with ¢ = c¢(n,N,A, 4, p). Now we can apply a variant of Gehring lemma [24, Corollary 6.1] to
determine a higher integrability exponent s = s(n, N, A, A, p) such that 1 < s < m/(p*)" and

1 1 1

sp ; 5

(][ |Du9|5”de gc(f |Duglpdx) +cS%;p)/”(J( AR dx]
By (%) By (%) By (%)
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for c = c(n, N, A, A, p). Next, notice that

'Y/ Y I oy TR
e J( 7l dx < J( P d ,
BI(O) Bl(o)

so plugging this last inequality in (2.14) and recalling that s(p*)" < m, we obtain

¥ 7 7D
J( [Duy[Pdx| <c (]( |Du,|? dx) +c (J( | fol™ dx] )
By 2(X) By (%) By (%)

Setting p, := sp > p above and recalling that ¥ € B;(0) is arbitrary, we can fix ¥ = 0, scale back to
B,(x0) and apply (2.1) to get (2.8) and the proof is complete. O

3. Excess decay estimate

In this section we prove some excess decay estimates considering separately two cases: when a
smallness condition on the excess functional of our local minimizer u is satisfied and when such an
estimate does not hold true.

3.1. The nondegenerate scenario

We start working assuming that a suitable smallness condition on the excess functional & (u; B,(x))
is fulfilled. In particular, we prove the following proposition.

Proposition 3.1. Under assumptions (1.6)1,3, (1.7) and (1.10), let u € W'P(Q,RN) be a local
minimizer of functional (1.1). Then, for Ty € (0,27'9), there exists &y = so(data, o) € (0,1) and
€1 = g1(data, 7y) € (0, 1) such that the following implications hold true.

e [fthe conditions
& (u; Bo(x0)) < &0l(Dut) g (x| (3.1)

and

(3.2)

-

" p-2 P
(me Vi dx] < &1l(Du)p,xp)| T €' (u; By(xp))?
By (x0)
are verified on B,(xo), then it holds that
& (145 Bryp(X0)) < €oTo & (u; By(%0)), (3.3)

for all By € (0,2/p), with ¢y = co(data) > 0.
e [f condition (3.1) holds true and

1

(me /1" dx) > 81|(DM)BQ()C0)|L;2£) (u; By(x0))?, (3.4)
Bg(x())

is satisfied on B,(xo), then

1

& (U3 Bryo(x0)) < o (9’"]( Vi dX) ; (3.5)
By (x0)
for ¢y = cp(data) > 0.
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Proof of Proposition 3.1. For the sake of readability, since all balls considered here are concentric to

B,(x0), we will omit denoting the center. Moreover, we will adopt the following notation (Du)p_(x,) =

(Du), and, for all ¢ € C(B,; RY), we will denote ||Dgo|| Lo = ||Dg0||oo. We spilt the proof in two
o

steps.
Step 1: proof of (3.3).

With no loss of generality we can assume that &(u; B,) > 0, which clearly implies, thanks to (3.1),

that |(Du),| > 0.
We begin proving that condition (3.1) implies that

J[ |Dul” dx < c|[(Du),|”,
B,
for a constant ¢ = c(p, &) > 0. Indeed,

J( [Dulf dx < CJ( |[Du — (Du),|” dx + c|(Du),|”
B, B

©

(1.4)
< ¢ &E(u; By)' + cl(Du),l|?

an )
< clgy + DI(Du),l",

and (3.6) follows.
Consider now

[(Du)gl = (ux) = (1), = (Du)y, x = x0))
& (u; By ’

B, 3 x — up(x) :=

and ,
éa(u;Bg))z
di=|———| .

( |(Du),|

Let us note that we have

J( |Duol* dx + d”‘zf |Duol” dx
B_D BQ

(Du),|~? )
<220 LDy — (D, d
= Fa By, O TPV
£ B\ 1(Du) "5
: 2
+[ > 9) e zleu—(Du)ledx
|(Du),| Eu; By)'T B,

- p—2 _ 2
< £ By BQI(Du)Ql |Du — (Du),|” dx

1
— 4 |Du— (Du),|P <1.
+<§’(u;BQ)PJ£Q| u — (Du),|’ dx <

(3.6)

(3.7)
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Since |(Du),| > 0 we have that the hypothesis of [12, Lemma 3.2] are satisfied with
o = &*F((Du),)|(Du),|*". (3.8)
Then,

Dol 1(Dw),| m
&E(u; By): B,

J[ 7 (Dugy, D) dx

By

=2
2

& (u; Bg)]i

(@@ (u; Bg))
+
|(Du),|

relloel e

(3.1,(3.2) ; P22
< c<91||D<,0||00 + c||Dgo||wy(80)17[1 +&,’ ]

Fix € > 0 and let 6 = d6(data,&) > 0 be the one given by [33, Lemma 2.4] and choose & and &

sufficiently small such that
p=2
2

cer + c,u(so)%[l +¢g, ] <. 3.9

With this choice of g and &, it follows that u is almost .<7-harmonic on B,, in the sense that

< 5||D(p|

OO,

J[ o/ (Dugy, D) dx
BQ

with &7 as in (3.8). Hence, by [33, Lemma 2.4] we obtain that there exists /i, € WI’Z(BQ; R") which is
27 -harmonic, i.e.,

f o/ (Dhy, Dp) dx =0 forall ¢ € CZ(B,; R"),
Bg

such that

and
2

+d'?

p

dx < e. 3.11)

)[ |Dhyl|* dx + d"‘zf |Dhy|P dx < 87, (3.10)
B3g/4 B3g/4
Uy — h() Uy — ]’lo

£39/4 Q Q

We choose now 7, € (0,27'%), which will be fixed later on, and estimate

2
J[ uo(x) — ho(xo) — (Dho(x0), x — xo) dx
Barge ToQ
2 2

< CJ[ ho(x) — ho(x0) — (Dho(xo), x — Xo) dx 4 CJ( uog — ho d

B B2‘r0g TOQ B2TOQ TOQ

G.11) ce

< c(190)* sup|D*ho|* + —
Bop To

cE
< CT(Z)f |Dl’l0|2 dx + 2
Bsoja To

310  ,  ce

< cTpt (3.12)

n+2’
0
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where ¢ = c¢(data) > 0 and where we have used the following property of .27 -harmonic functions

0" sup|D*hg|” < ¢ J( |Dho|” dx, (3.13)
Bsg/4

By/a

with y > 1 and ¢ depending on n, N, and on the ellipticity constants of .7
Now, choosing
. n+2p
g: =1, ",
we have that this together with (3.9) gives that gy = gyp(data, 79) and €, = g;(data, 7p). Recalling the
definition of u, in (3.7) and (3.12) we eventually arrive at

(7 oQ)2
< c|(Du),|* * & (u; B,)' 15, (3.14)

J[ lu — (u)g — ((Du)g, x — xo) — I(Du)gl%pg(u; B,)""? (ho(x0) — (Dho(xo), x = xo))|* dx
Bargo

for ¢ = c(data) > 0. By a similar computation, always using (3.13), (3.10) and (3.11), we obtain that

- ]l - 41)}1 ’ - g
dp—zf to — ho(xo) — (Dho(xXo), X — Xo) dx < cd?™*(10)" sup|D?*hol” + Cnfp <cTg.
Bzrog ToQ Fer2 TO

In this way, as for (3.14), by the definition of u, in (3.7), we eventually arrive at

J( lu — (u)o — ((Du),, x — x0) — |(Du)g|2_7p@@(bl§ B,)P"? (ho(x0) — (Dho(x0), X — xo))I” di
B (t00)?

2700

pQ2-p)

P2
<cd”P|(Du),| 7T Eu; By T Th
< ¢ &(u; By g, (3.15)

with ¢ = c¢(data).
Denote now with ¢,,, the unique affine function such that

¢ affine

C3r —> Min J[ lu — £ dx.
BZTOQ

Hence, by (3.14) and (3.15), we conclude that

f (Du),|P~
B

2700

p

dx < cT°E(u; By). (3.16)

2
u- ZZTOQ

2790

u— 527—09

2790

Notice that we have also used the property that

J(Iu—fgldeSCJ( |u — €|P dx,
lg@ I?Q

for p > 2, ¢ = ¢(n, N, p) > 0 and for any affine function ¢; see [33, Lemma 2.3].
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Recalling the definition of the excess functional &(-), in (1.4), we can estimate the following

quantity as follows

|D€2‘rog - (Du)gl

IA

|D€2709 - (Du)ZTogl + |(Du)2‘rog - (Du)gl

c(f |Du—(Du)2mQ|2dx) +[f
B B2TOQ

2700

IA

2
|Du — (Du),* dx)

1

@ ¢ 2
< — J( |Du — (Du),|* dx
7" Us,

2—

- SO (f kounr0u- i
B,

n/2
To

IA

c(n) ((f(u, B,)

Du),),
|<Du)g|) (D)

n/2
L

where we have used the following property of the affine function £y,

|D€2TQQ - (Du)2T0g|p < CJ[ |D1/t - (Du)Z‘roglp dX,

BZTOQ

for a constant ¢ = c(n, p) > 0; see for example [33, Lemma 2.2].
Now, starting from (3.1) and (3.9), we further reduce the size of g, such that

&, B,)\? Gl n/2
( (ll, Q) ) ( é:) g 7—0
[(Du),| B

(3.17)

(3.18)

where ¢ = c¢(n) is the same constant appearing in (3.17). Thus, combining (3.17) and (3.18), we get

D
Dz, — (Du),| < %

The information provided by (3.18) combined with (3.16) allow us to conclude that

f |D€2709|p_2
B

2700

p

u— =4,
2001 dx < cT?E(u; B,)".

2
u-— 521'09

2790 27100

By triangular inequality and (3.19) we also get

3.19 7|(D
J |(Du),|

|D€2‘rog| = |(Du)g| - |D€2‘rog - (Du)gl ]

(3.19)

(3.20)
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which, therefore, implies that

ZERN>n B

f |DCyrol” 2D — Dlsryo|* dx + inf )( |Du — z|P dx
B THO

0@ 09

Q@7 u
' )
< c |Dorol”
B

2700

2 P
— Carge u = oryp

2790

27100

C m
+———| 27100)" Lf1" dx
|D€2T09|p_2 [ e Bargo f

(3.20) g( By 2 2n/m ][ i
< cT1:8(u, + — "dx|
0 ¢ |(D u)olP—2

where ¢ = c¢(data) > 0. By triangular inequality, we can further estimate

f |(Du)rog|p_2|Du - (Du)roglz dx

Bryo

< Cf | T00 (Du)‘z'og'p 2|DL£ - (Du)'rog| dX
B

700

+c J[ |DCaryo = Dlrol” *|Du — (D), dx
B

700

+c J[ IDCol” 21D — (D) |* dx
B

700

:Il+12+13,

dx

(3.21)

where ¢ = c¢(p) > 0. We now separately estimate the previous integrals. We begin considering I;. By

Young and triangular inequalities we get

I} <c|Dlryp = (Dut)zol” + CJ( [Du — (Du)y0|” dx
B

700

SCJ( |Du — (Du)yol” dx
B

700

Qn
< c inf |Du — z|” dx
B‘roo

zERY,

2 2n/m

321
< CTocg’(u B,)" + (D e 2[ flfl dx) ,

Mathematics in Engineering
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with ¢ = c(data) > 0. In a similar fashion, we can treat the integral I,

I2 <c |D€2Tog - Df‘roglp + CJ( |Du - (Du)Toglp dx
B

T00
(2.1)
< c
B

2700

2
(320).(3.21) ., cr2-2nim o
< cTgé(u,B,) + W Blfl dx| ,
e o

u— oy 00 !
2790

ZERN*n

dx+c inf]( |Du — z|” dx
B

700

where we have used the following property of the affine function €y,

P
U = laryo

dx,

Dy, — Dt |F <
| 2700 Oé’l CJ(I; ZTOQ

2700

for a given constant ¢ = c(n, p) > 0; see [33, Lemma 2.2]. Finally, the last integral I; can be treated
recalling (3.21) and (2.1), i.e.,

CT(Z)—Zn/m -
L <ct?éw,B,)’ + ——— Qm)( |f1"dx| .
0 ¢ |(Du)o|P—2 B,

All in all, combining the previous estimate

2/]7 2n/(mp) mp
EWBrg) < cTPEw B+~ ( J[ |f|’"dx]
|(Du),| »

(3.2)

IA

2/ 2/p=2n/(mp) 2/ .
cT"E(u, By) + ety P e E (u; Bryo)

< co‘ro/ P&(u; Bryp),

up to choosing &; such that

n/m

€127,

Step 2: proof of (3.5).
The proof follows by [12, Lemma 2.4] which yields

) 23 »
& (u; Brp(x0))? < mg(lxt, By(xp))?
T
0
1
(34 230 . =, . n
< Spé (Dwsel 2 |0 LfI" dx
To By(x0)
1
(3.1) 26(p D 1)72 -1 " m
= n(p D/p 80 & @@(u B‘rog) 2 J[ (x0)|f| dx .
Multiplying both sides by & (u; BTOQ)% we get the desired estimate. O
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3.2. The degenerate scenario

It remains to considering the case when condition (3.1) does not hold true. We start with two
technical lemmas. The first one is an analogous of the Caccioppoli inequality (2.7), where we take in
consideration the eventuality zo = 0.

Lemma 3.1. Under assumptions (1.6),3, (1.7) and (1.10), let u € W'(Q,R") be a local minimizer
of functional (1.1). For every ball B,(xo) € £ and any u, € RY, zo € RV it holds that

p

_¢
+ |4 dx (3.22)

(o

E(u, 205 Boja(x0))! < CJ( |27~

By (x0)

=)
+c me Lf1" dx ,
BQ(-XO)

where & () is defined in (1.4), €(x) := ugy + {20, x — Xo) and ¢ = c¢(n, N, A, A, p).

u—€'2

Proof. The proof is analogous to estimate (2.7), up to treating in a different way the term I, in (2.9),
taking in consideration the eventuality zo = 0. Exploiting (1.10) and fact that ¢, € Wé’p (B, (x0), RY),
an application of the Sobolev-Poincaré inequality yields

1/m i,

L, < B, (x0)l T’;f [FI" dx rg’"f lo ™ dx
Br, (x0) Br, (x0)

1/m P pi*
m m QO]
< B, (xo)l TzJ( |f1" dx J[ — | dx
By, (x0) Bry(xo) | T2
1/m 1—17
< |Bg,(x0)l T’;f Ifl’"dx] ( ][ IDsoll"dx]
B, (x0) By (x0)
P
clBo(xo)l [, R
< 8f |V|zo|(D901)|2dX+ﬁ Q]( |f1" dx , (3.23)
Br, (x0) € By(x0)

where ¢ = c(n, N,m) and we also used that p/2 < 7, < p. Hence, proceeding as in the proof of (2.7),
we obtain that

f Vi (Du — )P dx
Br, (x0)

2
u—+=
< Cf |Vigo1 (Dt — Z0)|2 + Vlzol( ) dx
Be, (x0)\Br, (x0) Ty =Ty
_r
clBy(xo)l [, ma |
] ]
o
with ¢ = ¢(n, N, A, A, p). Concluding as in the proof of (2.7), we eventually arrive at (3.22). O
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We will also need the following result.

Lemma 3.2. Under assumptions (1.6),3, (1.7) and (1.10), let u € W'(Q,R") be a local minimizer
of functional (1.1). For any By(x) € Q2 and any s € (0, o) it holds that

p—1

»
= S”D"O”L“(BQ(XO)) [Jg (xo)lDulp dx)

+cw(s)_1||Dgo||Lw(Bg(xo))‘£ (xo)|Du|[J dx

1/m
el [ef ra) a2
B, (x0)

for any ¢ € C3(By(xo), RY), with ¢ = ¢(n, N, A, 4, p).

)[ (|DulP~2Du, Dy) dx
By(x0)

Proof. Given the regularity properties of the integrand F, we have that a local minimizer u of (1.1)
solves weakly the following integral identity (see [42, Lemma 7.3])

f [(GF(Du),Dgo) -f- (p] dx=0 forall ¢ € C(2,RY).
Q

Now, fix ¢ € C5’(B,(x9), R") and split

(3.25)

J[ {Du|’>Du, Dg) dx
B)(X())

©

(3.25)
<

—+

J( (OF (Du) — 0F(0) — |DulP>Du, Dp) dx
By (x0)

=1 +0L.

fredx

By, (x0)

We begin estimating the first integral I;. For s € (0, c0) we get

1D e,
T ) f IOF (Du) — AF(0) — |Dul’~2Du| dx
|Bo(x0)l B, (xo)N{IDul<e(s))

. ”D‘)D“LM(BQ(XO)) f
|B,(x0)] B

o (X0)N{|Dul>w(s)}

1 <

|0F (Du) — OF(0) — |DulP~>Du| dx

p-1

:
< A0l | £, 008 0] 526

+C“)(S)_1||D9"||Lw(30(xo))]g (XO)IDuIP dx.
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On the other hand, the integral I, can be estimated as follows

1/m ' mi,
1 m ‘p
L < Qf £ dx f 21 4
By (x0) By (x0) Y
. . 1/m o »* pi*
< |o Lf1" dx | dx
By(x0) By(xo) | ©
1/m %
< me Ifl’”dx) ( J[ |D¢|de)
By(x0) B,(x0)
1/m
S T o ST
BQ(XO)
Combining the inequalities above we obtain (3.24). O

In this setting the analogous result of Proposition 3.1 is the following one.

Proposition 3.2. Under assumptions (1.6)123, (1.7) and (1.10), let u € W'P(Q,R") be a local
minimizer of functional (1.1). Then, for any y € (0,1] and any 7, € (0,27'9), there exists
& = &(data, y, 1) € (0, 1) such that if the smallness conditions

XD, o)l < E(u; Bo(xo)), and  &(u; Bo(xo)) < &, (3.27)

are satisfied on a ball By(xy) C R", then

Ty
EW; Bro(x0)) < 17} E(u; By(x0)) + ¢ (Qm]( A" dx) : (3.28)
By(x0)

for any B, € (0,2a/p), with @ = a(n, N, p) € (0, 1) is the exponent in (3.34), and ¢, = ci(data, y).

Proof. We adopt the same notations used in the proof of Proposition 3.1. Let us begin noticing that
condition (3.27), implies the following estimate

)[ IDul’ dx < ¢,&u;B,)?  withc, := 2°(1 + 7). (3.29)
B.Q

Indeed, by (1.4) and (3.27), we have

A

J(IDulp dx < 2P+ |Du—(Du)g,|” dx + 27|(Du)g,|”
B@ BQ

IA

2P
2PE(u; B,)’ + )?éa(u; B,)".

Consider now 1

m(p=T)
K= ng(u; Bg) + [(f) fl; |f|m dX] and Vo = %,

3
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for g5 € (0, 1], which will be fixed later on. Applying (3.24) to the function v, yields

J( (ADvol2Dvo, Dgy dx| % e[ De| (5 + wis)es + 3).
B,

0/2(X0)

For any £ > 0 and ¢ € (0, 1) and let ¢ be the one given by [17, Lemma 1.1]. Then, up to choosing s, &,
and &; sufficiently small, we arrive at

c(s+w(s)"es+&5) < oDl

Then, Lemma 1.1 in [17] implies

1
|V(Dvy) — V(Dh)* d ! - Pul d (3.29)23.27)2 )
0 x| <ce |Dul|” dx < cee,,
By

B2

up to taking € as small as needed. Now, denoting with b, := &k, we have that

( f |V(Du) = V(Dbo) P dx]l < el
By

Now, we choose ©# := (s)’/2, with s being the exponent given by (2.8). Note that by the proof of (2.8)
it actually follows that ¥} < 1. Thus, choosing 88§K‘D < Tf"”“ (where a € (0, 1) is given by (3.34)) we
arrive at

1
©
[ ]( |V(Du) — V(Dbo)| de <ctit,
By

By Holder’s Inequality, we have that

f |V(Du) — V(Dbo)I* dx
B,

0/2

©

s( f |V(Du) — V(Dbho)|®” dx)s ( )( |V(Du) — V(Dby)|* dx)s. (3.30)
By2 Bo2

Hence, since by (2.3) V(z) = |z|”, an application of estimates (2.8) and (3.29) now yields

1 L2

5 P2
(J[ |V(Du)|? dx) < C(J[ [Du — (Du),|” dx] + c[(Du),|”
Boa By
< CJ( |Dul” dx + ¢ (Q’"J( Lf1™ dx) + c|(Du),|”
BQ B@
< c¢&u;B,) + c(ng( L™ dx] , (3.31)
B,

with ¢ = c(data, y).
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On the other hand, by classical properties of p-harmonic functions, we have that

1

(J[ |V(DYo)|® dx]- < CJ[ |Dh|? dx < CJ( |Dul” dx < ¢ &(u; B,)". (3.32)
B2 B, B,
Hence, combining (3.30)—(3.32), we get that
)
f |V(Du) — V(Dbo)I* dx < ¢ 7™ E (u; B,)’ + c ) (me Vig dx] . (3.33)
By)2 B,

Let us recall that, for any 7; € (0, 210y, given the p-harmonic function b, we have
g(bo; BTIQ)2 < CT%QKP, a =a(n,N,p)e0,1). (3.34)

Moreover, using Jensen’s Inequality we can estimate the following difference as follows

1

P
|(Du),o — (Du),| < )( |Du — (Du),|” dX)

BT'\(_)

1

_n P

< T’ [J( |Du — (Du),|" dx)
B,
(14,327, -z

< T, "&.

Thus, up to taking &, sufficiently small, by the triangular inequality, we obtain that
1
El(Du)ﬁgl < |(Du)g| < 2|(Du)‘rlg|

Hence, (2.2) yield
Viouye, d OF = Vi, F

and
V((Dtt)e,p) = VD) % [Viepuy, ((Du)y = (Du)e,o ).
Then,
2.5) ~ 2
& (u; Byr,o)’ < c&(u; Brp)
(2.6)

< c)[ IV(Du) — V((Du)y,o)* dx
B

710

IA

ct" J[ |V(Du) — V(Dby)[* dx
B,

0/2

+c ][ [V(Dbo) = V((Dho)-,o)I” dx
B

710

2.6 —_
et J[ IV(Du) = V(Do) dx + ¢ & (B, Bryo)
B,

0/2

(3.33),(3.34)
<

p
T
< crf“éd(u; B,)’ + C[Qm][ Lf1" dx) ,
BQ
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and the desired estimate (3.28) follows. |

4. Proof of the main result

This section is devoted to the proof of Theorem 1.1. First, we prove the following proposition.

Proposition 4.1. Under assumptions (1.6)1,3, (1.7) and (1.10), let u € W'P(Q,R") be a local
minimizer of functional (1.1). Then, there exists €, = e.(data) > 0 such that if the following condition

1

m(p-1)

&(Du; B,) + sup (Q"’J[ Vi dx) <&, 4.1)
O<r B,

is satisfied on B, C Q, for some € € (0, &,], then

sup &(Du; B,y) < c3 &, 4.2)

O<r
for ¢z = c3(data) > 0.

Proof. For the sake of readability, since all balls considered in the proof are concentric to B,(x), we
will omit denoting the center.
Let us start fixing an exponent 8 = 5(«a, p) such that

0 < B < min{By, L1} =: B> 4.3)

where S, and 3 are the exponents appearing in Propositions 3.1 and 3.2. Moreover, given the constant
co and ¢y from Propositions 3.1 and 3.2, choose 7 = 7(data, ) such that

(co + )PP < (4.4)

I

With the choice of 7 as in (4.4) above, we can determine the constant &, and &; of Proposition 3.1.
Now, we proceed applying Proposition 3.2 taking y = gy and 7, as in (4.4) there. This determines the
constant &, and c¢,. We consider a ball B, C 2 such that

&(Du; B,) < &, 4.5)

and

sup ¢ (gm]( T dx] <& (4.6)
B, 4

O<r

where the constant ¢, := ¢ + ¢y, with ¢y appearing in (3.5) and c¢; in (3.28). In particular, see that
by (4.5) and (4.6) we are in the case when (4.1) does hold true.

Now, we recall Proposition 3.2. Seeing that (3.27), is satisfied (being (4.5)) we only check
whether (3.27), is verified too. If &|(Du)p| < &(Du;B,) is satisfied then we obtain from (3.28),
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with 71 = 7in (4.4) that

o=y
EWw; B,y) < Tzﬂé"(u; B,) + ¢, (r’"f Vs dX)
Br
5 Ty
< —&w;B,)+supc; (Q’"]( L™ dx)
4 o<r B,
< Tzﬁ@@(u; B)+Z < @)

where the last inequality follows from (4.5) and (4.6). If on the other hand it holds &y|(Du)g,| >
&(Du; B,), by Proposition 3.1, then by (3.3) or (3.5) we eventually arrive at the same estimate (4.7).
Iterating now the seam argument we arrive at

&(Du; B,i,) < & forany j >0,
and the estimate

5(u; B.,) < ?é‘)(u’ BTjr) + ¢y [(Tjr)mf
B

w/r

m(p-1)
A" dx ,

holds true. By the inequality above we have that for any k£ > 0

(k+1)
S Bar) < © éa(uB>+cZZ<rﬁ>f’<[<Tfr>'"f
B/

Jj=0

m(p-1)
Vi dXJ

T/r

)
< PPV w; B,) + ¢, sup (Q’”J[ Vi dx) .
B.r

O<r

Applying a standard interpolation argument we conclude that, for any ¢ < r, it holds

=T
&(Du, B,) < c3( ) £(Du, B,) + ¢3 sup( '"J( 1" dx) , 4.8)
osr B,r
where ¢; = c3(data). The desired estimate (4.2) now follows. |

Proof of Theorem 1.1. We proceed following the same argument used in [33, Theorem 1.5]. We star
proving that, for any 1 < m < n and any & C Q, with positive measure, we have that

n 1/m im
lrior < (=2 ) 101 e, (4.9)

Indeed, fix A which will be chosen later on. Then, we have that

1 da 00
WA ey = mf A"{xe 0 :|f] > /l}|7 +mf A"{xe 0 :|fl > A |— (4.10)
0 bt
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The first integral on the righthand side of (4.10) can be estimated in the following way

/lmlﬁl

Yl
Vlixe o «
fo re o> % <

On the other hand, the second integral can be estimated recalling the definition of the L™*(&’)-norm.

Indeed,
A"fxe O :|f] > A)|— < oo < —.
L tve 0 11> A% < lans L T S

Hence, putting all the estimates above in (4.10), choosing A := ||f]| /10 ['/" we obtain (4.9).

Now, recalling condition (1.2) we have that

) ) 1/m n 1m i
0 f fmde]| < ( ) B | fll i)
B@ n—m

wioy (4uim\H" (1.2)
< B 1 fllreo@) < &y
1

where &, is the one obtained in the proof of Proposition 4.1. From this it follows that, we can choose a
radius p; such that

1/m(p-1) e
sup ¢ [g'")[ Tik dx) < - 4.11)
0=01 Bo(x) €3

We want to show that the set £, appearing in (1.3) can be characterized by
Q,:={x0 € Q: IB,(x)) € Qwith o < g1 : E(Du, By(x0)) < £./(4c3).

thus fixing o,, := 0; and &,, := &./(4c3). We first star noting that the the set £, defined in (1.4) is such
that |2 \ Q,| = 0. Indeed, let us consider the set

L, = {xo € Q: liminf &(u; By(x0))* = o}, (4.12)
QA)
which is such that |Q \ .Z,| = 0 by standard Lebesgue’s Theory. Moreover, by (2.5) it follows that
L, = {xo €Q: limiglf & (u; By(xp)) = O} ,
Q—)

so that, .Z, C Q, and we eventually obtained that [Q \ Q,| = 0. Now we show that Q, is open. Let us
fix xp € €, and find a radius p,, < 0; such that

&(Du, B, (x0)) < —=. (4.13)
0 4C3

By absolute continuity of the functional &'(-) we have that there exists an open neighbourhood &'(x)
such that, for any x € (xy) it holds

&(Du, By, (x)) < — and B, (x) € Q. (4.14)

X0 43
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This prove that Q, is open. Now let us start noting that (4.11) and (4.14) yield that condition (4.1) is
satisfied with B, = B,, (x). Hence, an application of Proposition 4.1 yields

sup &(Du, B,(x)) < €.,

104,

for any x € O(xp). Thus concluding the proof. O
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