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Abstract: In the present paper we propose a model describing the nonlocal behavior of an elastic
body using a peridynamical approach. Indeed, peridynamics is a suitable framework for problems
where discontinuities appear naturally, such as fractures, dislocations, or, in general, multiscale
materials. In particular, the regional fractional Laplacian is used as the nonlocal operator. Moreover, a
combination of the fractional and classical Laplacian operators is used to obtain a better description of
the phenomenological response in elasticity. We consider models with linear and nonlinear
perturbations. In the linear case, we prove the existence and uniqueness of the solution, while in the
nonlinear case the existence of at least two nontrivial solutions of opposite sign is proved. The linear
and nonlinear problems are also solved by a numerical approach which estimates the regional
fractional Laplacian by means of its singular integral representation. In both cases, a numerical
estimation of the solutions is obtained, using in the nonlinear case an approach involving a random
variation of an initial guess of the solution. Moreover, in the linear case a parametric analysis is made
in order to study the effects of the parameters involved in the model, such as the order of the fractional
Laplacian and the mixture law between local and nonlocal behavior.
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Dedicated to the 50th birthday of Professor Giuseppe Mingione, with high feelings of admiration
for his notable contributions in Mathematics and great affection.

1. Introduction

The last decades have seen an evolution in scientific understanding and human capabilities
concerning new isolated nanoparticles set up into hybrid composite materials, not ordinarily found in
nature, whose properties are specifically planned and controlled not only by the constituent phases,
but also by their morphology, spatial anisotropy and relative proximity with respect to one other and
the host matrix. The worldwide scientific focus on hybrid systems, based on synthetic or natural
polymers combined with metal, ceramic or carbon nanosctructures, represents a truly revolutionary
change in the society way of thinking and allows us to create high–performance materials,
underpinning the development of previously unrealizable applications. Further details can be found
in [1] and its references. Indeed, in [1] nonlocal problems have been investigated, with the aim of
describing the elastic behavior of complex structures composed by two or more different phases
having extremely efficient mechanical features, to employ in a wide range of fields as civil
engineering and architecture. The insurgence of nonlocality in composites made of several layer of
alternating stiff and soft phases as been shown in [17].

The analysis of a nonlocal elastic medium has been recently tackled with the tools of fractional
calculus, which essentially are based on a fractional gradient elasticity model. By means of fractional
operators, it is possible to associate a mechanical model to the equation involving fractional terms,
consisting of points connected not only to adjacent ones but also to all the others by springs: the
springs themselves have stiffness which decrease with the distance according to a power–law.

The mixed problem discussed in this paper involves in its nonlocal part the so called peridynamics,
which is a nonlocal continuum model in solid mechanics introduced by Silling [18]; we refer to [4–6]
for a detailed discussion. The main difference with the usual Cauchy–Green elasticity relies on the
nonlocality, which is reflected in the fact that points separated by a positive distance exert a force upon
each other. Mathematically, deformations are not assumed to be weakly differentiable, in contrast
with classical continuum mechanics, and in particular hyperelasticity, where they are required to be
Sobolev. This makes peridynamics a suitable framework for problems where discontinuities appear
naturally, such as fractures, dislocations, or, in general, multiscale materials.

In particular, the balance equation for a one-dimensional solid (a rod) in classical (local) mechanics
is given by

σ′(x) + f (x) = 0

where σ is the stress, f are distributed forces possibly depending on x and ′ denotes first derivative.
The constitutive elastic law for the rod affirms that

σ(x) = Eε(x)

where E is the modulus of elasticity and ε is the deformation, related to the displacements u by the
compatibility law

ε(x) = u′(x)

Therefore, in classical local mechanics we have

E∆u(x) + f (x) = 0
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where ∆ is the Laplacian. In [9] Eringen considered the stress depending on the strain not only locally
but also on the strain in all the point along the rod length L , introducing the following constitutive law

σ(x) =

∫
L

Eα(|x − y|)ε(y)dy

where α is a weight (kernel) function that assess the influence of the strain in distance points to the
stress. Anyway, this approach still requires the differentiation in the equation of motion, as
highlighted by Silling [18], which could be a problem in the case of presence of discontinuities.
Therefore, following the approach of Silling with which he introduced the peridynamics, where the
equilibrium equation is written including a nonlocal operator Lu as in the following

Lu(x, t) + f (x) = 0 with Lu(x, t) =

∫
L

f (u(y, t) − u(x, t), y − x)dy,

we assume that the peridynamic equation of motion in statics can be written as

−k(−∆)s
L u(x) + f (x) = 0

where (−∆)s
L is the regional fractional Laplacian which is a nonlocal operator (see later) and k is a

suitable parameter. Anyway, since it has been found (see [20]) that in the case of composites with
nonlocal behaviour it is better to consider two phases, a local one and a nonlocal one, the problem can
be written as

−c∆u + k(−∆)s
L u + V(x)u = f

where c is a suitable parameter (equivalent to E in the purely local case) and V account for the possible
presence of external linear spring forces. It is worth noting that the previous problem is similar to
that which appears in preceding papers of some of the authors [2, 3, 10] but with a different operator,
the fractional Laplacian defined in an unbounded domain, and with a different approach based on
the original work of Eringen using fractional derivatives. The problem of the rod in a peridynamic
context has been considered in literature (see for example [13, 19]) but with a different approach. For
the regularity properties of the solutions of mixed local and nonlocal problems we refer to the recent
paper [8] by De Filippis and Mingione, as well as its wide bibliography.

More specifically, the first problem we consider in details is linear and given by{
−c∆u + k(−∆)s

Ωu + V(x)u = f (x) in Ω0,

u = 0 in Ω1,
(PL)

where c, k > 0 are physical coefficients and usually, but not in this paper, are supposed to satisfy the
convex restriction c + k = 1, the additional term V(x)u represents external springs whose stiffness is
related to the position of the point along Ω0, and the nonnegative potential V is in L∞(Ω0), while f is a
perturbation of class L2(Ω0). The operator

(−∆)s
Ωϕ(x) =

∫
Ω

ϕ(x) − ϕ(y)
|x − y|N+2s dy for all ϕ ∈ C∞c (Ω),

is the so called regional fractional Laplacian. Throughout the paper we denote by B(x0, r) the open
ball in RN of center x0 and radius r > 0. When x0 = 0 we simply denote B(0, r) by Br.
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Here and in what follows Ω ⊂ RN is a bounded domain, with smooth boundary ∂Ω. Moreover, Ω

is divided into two parts, that is Ω = Ω0 ∪ Ω1, where Ω0 is an open set, with smooth boundary ∂Ω0

and Ω0 ∩ Ω1 = ∅. Furthermore, the open enlargement Ωδ = Ω0 + Bδ, for a suitable small radius δ > 0,
is assumed to be a subset of Ω. In this way, the remaining set Ω1 ⊃ ∂Ω0 and Ω1 can be seen as the
nonlocal boundary of Ω, see Figure 1.

0 x1

x2

Ω

Ω0

Ωδ

Figure 1. Description of Ω, Ω0 and Ωδ.

In the present paper we first interpret the problem (PL) which models the behavior of an elastic
body, with a linear peridynamical approach, and enrich it with additional terms in order to widen its
mechanical meaning and give the conditions under which one unique solution exists. Then we prove
multiplicity results for the nonlinear version of (PL), namely for problem{

−c∆u + k(−∆)s
Ωu + V(x)u = f (x, u) in Ω0,

u = 0 in Ω1.
(PN)

Finally, we treat (PL) and (PN) also numerically, estimating the regional fractional Laplacian by means
of its singular integral representation. For both problems, a numerical estimation of the solutions is
obtained, using in the nonlinear case an approach involving a random variation of an initial guess of the
solution. Moreover, in the linear case a parametric analysis is made in order to study the effects of the
parameters involved in the model, with a particular emphasis on the order of the fractional Laplacian
and on the mixture law between local and nonlocal behavior.

2. Preliminaries

Let Ω, Ω0, Ω1 and Ωδ be as stated in the Introduction. The natural solution functional space
associated to (PL) is

Hs
0,Ω =

{
u ∈ H1

0(Ω0) ∩ H s
0(Ω) : u = 0 a.e. in Ω1

}
,

where H1
0(Ω0) is the completion of C∞c (Ω0) with respect to the norm ‖∇ · ‖L2(Ω0) and H s

0(Ω) is the
completion of C∞c (Ω), with respect to the Gagliardo seminorm

[u]2,Ω =

("
Ω×Ω

|u(x) − u(y)|2

|x − y|N+2s dxdy
)1/2

.

The canonical Hilbertian norm on Hs
0,Ω is

‖|u|‖Hs
0,Ω

=

(∫
Ω0

|∇u|2dx +

"
Ω×Ω

|u(x) − u(y)|2

|x − y|N+2s dxdy
)1/2

=
(
‖∇u‖2L2(Ω0) + [u]2

2,Ω

)1/2
,
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which, since V ∈ L∞(Ω0), is equivalent to the Hilbertian norm

‖u‖Hs
0,Ω

=

(∫
Ω0

V(x)|u|2dx + ‖∇u‖2L2(Ω0) + [u]2
2,Ω

)1/2

=
(
‖u‖2L2(Ω0,V) + ‖∇u‖2L2(Ω0) + [u]2

2,Ω

)1/2
,

being
‖|u|‖2Hs

0,Ω
≤ ‖u‖2Hs

0,Ω
≤ max{CP‖V‖∞, 1}‖|u|‖2Hs

0,Ω
,

where CP is the Poincaré constant. It is convenient for later purposes to endowHs
0,Ω, with the Hilbertian

norm
‖u‖ =

(
‖u‖2L2(Ω0,V) + c‖∇u‖2L2(Ω0) + k[u]2

2,Ω

)1/2
,

which is equivalent to ‖ · ‖Hs
0,Ω

, since c, k > 0, being κ‖u‖Hs
0,Ω
≤ ‖u‖ ≤ K‖u‖Hs

0,Ω
for all u ∈ Hs

0,Ω, where
κ = min{c, k, 1} and K = max{c, k, 1}.

3. Existence results

3.1. The linear problem

The first problem that we consider is{
−c∆u + k(−∆)s

Ωu + V(x)u = f (x) in Ω0,

u = 0 in Ω1,
(PL)

where c, k > 0 and f ∈ L2(Ω0).

Definition 3.1. We say that u ∈ Hs
0,Ω is a (weak) solution of problem (PL) if

c
∫

Ω0

∇u · ∇v dx + k
"

Ω×Ω

(u(x) − u(y))(v(x) − v(y)
|x − y|N+2s dxdy +

∫
Ω0

V(x)uv dx −
∫

Ω0

f (x)v dx = 0

for every function v ∈ Hs
0,Ω.

In light of the variational structure of problem (PL), the critical points of the underlying C1

functional J : Hs
0,Ω → R, defined as

J(u) :=
1
2
‖u‖2 −

∫
Ω0

f (x)u dx,

are exactly the (weak) solutions of (PL). Thanks to the linearity of (PL), existence and uniqueness are
obtained by standard arguments.

Proposition 3.1. Let f ∈ L2(Ω0) and s ∈ (0, 1). Then there exists a unique solution u ∈ Hs
0,Ω of

problem (PL). If f is nontrivial, then also the solution is nontrivial.

Proof. First, it is easy to show that the functional J is coercive, since

J(u) ≥
1
2
‖u‖2 − ‖ f ‖2,Ω0‖u‖ −→

‖u‖→∞
∞.

Moreover, J is C1, strictly convex and coercive in the Hilbert space Hs
0,Ω, so that the Weierstrass

Theorem, see Corollary 3.23 of [7], the functional J has a global minimum in Hs
0,Ω, which is also a

critical point of J, and hence a solution of (PL).
Uniqueness of solutions of (PL), that is uniqueness of critical points of J follows from the strict

convexity of J. This completes the proof. �
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3.2. The nonlinear model

This subsection deals with the nonlinear problem{
−c∆u + k(−∆)s

Ωu + V(x)u = f (x, u) in Ω0,

u = 0 in Ω1,
(PN)

where f : Ω0 ×R→ R is a Carathéodory function such that f (·, 0) = 0 a.e. in Ω0. Let us introduce the
notation 2∗ for the Sobolev exponent, that is

2∗ =


2N

N − 2
if N > 2,

∞ if N ∈ {1, 2},
and its Hölder conjugate is (2∗)′ =


2N

N + 2
if N > 2,

1 if N ∈ {1, 2}.

In addition, we assume the following conditions coming from [16], as improvements of those in [15]
and [12]:

( f1) there exist a ∈ Lq(Ω0), b ∈ L∞(Ω0), with a ≥ 0, b > 0 and q ∈ ((2∗)′, 2), and r ∈ (2, 2∗) such that

| f (x, t)| ≤ a(x) + b(x)|t|r−1 for a.e. x ∈ Ω0 and for all t ∈ R;

( f2) lim
t→±∞

F(x, t)
|t|2

= ∞ uniformly for a.e. x ∈ Ω0, where F(x, t) =
∫ t

0 f (x, τ)dτ;

( f3) there exist θ ≥ 1 and β ∈ L1(Ω0), β ≥ 0, such that

σ(x, t1) ≤ θσ(x, t2) + β(x) for a.e. x ∈ Ω0 and all 0 ≤ t1 ≤ t2 or t2 ≤ t1 ≤ 0,

where σ(x, t) = f (x, t)t − 2F(x, t) in Ω0 × R;

( f4) lim
t→0

f (x, t)
|t|

= 0 uniformly for a.e. x ∈ Ω0.

Remark 3.1. An example of a function satisfying conditions ( f1) − ( f4) is given by

f (x, t) = b(x)t log(1 + |t|),

with b ∈ L∞(Ω0) and b(x) > 0 a.e. in Ω0. Clearly, f (x, 0) = 0 a.e. in Ω0, and ( f1) is satisfied for N < 6
as

| f (x, t)| ≤ b(x)|u|2

for a.e. x ∈ Ω0, recalling that log(1 + |t|) ≤ |t| for every t ∈ R. To show the validity of ( f2), we first
compute

F(x, t) =
1
2

b(x)
(

t2 log(1 + |t|) −
t2

2
+ |t| − log(1 + |t|)

)
,

then a simple computation of the limit is enough. Since

σ(x, t) = b(x)
(

t2

2
− |t| + log(1 + |t|)

)
,

it is easy to see that ( f3) is satisfied for θ = 1 and β = 0. Finally, the computation of the limit shows
that ( f4) is satisfied.
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Definition 3.2. With the same assumption on f as above, we say that u ∈ Hs
0,Ω is a (weak) solution of

problem (PN) if

c
∫

Ω0

∇u∇v dx + k
"

Ω×Ω

(u(x) − u(y))(v(x) − v(y)
|x − y|N+2s dxdy +

∫
Ω0

V(x)uv dx −
∫

Ω0

f (x, u)v dx = 0

for every function v ∈ Hs
0,Ω.

From this definition and from the variational nature of (PN), the critical points of the corresponding
functional I : Hs

0,Ω → R, defined as

I(u) =
1
2
‖u‖2 −

∫
Ω0

F(x, u) dx,

are exactly the (weak) solutions of (PN).
Before proving the main existence theorem for (PN), let us give some preliminaries. It is useful to

introduce the functionals
I±(u) =

1
2
‖u‖2 −

∫
Ω

F(x, u±) dx,

where u+ and u− are the classical positive part and negative part of u.
Our aim is to prove that both I± satisfy the Cerami condition, (C) for short, which states that any

sequence (un)n in Hs
0,Ω such that (I±(un))n is bounded and (1 + ‖un‖)I′±(un) → 0 as n → ∞ admits a

convergent subsequence.

Proposition 3.2. Under assumptions ( f1)–( f3), the functionals I± satisfy the (C) condition.

Proof. We give the proof for I+, the proof for I− being analogous.
Let (un)n in Hs

0,Ω be such that
|I+(un)| ≤ M1 (3.1)

for some M1 > 0 and all n, and

(1 + ‖un‖)I′+(un)→ 0 in (Hs
0,Ω)′ as n→ ∞. (3.2)

From (3.2) we have

|I′+(un)h| ≤
εnh

1 + ‖un‖

for every h ∈ Hs
0,Ω, where εn → 0 as n→ ∞. That is,∣∣∣∣c ∫

Ω0

∇un∇h dx + k
"

Ω×Ω

(un(x) − un(y))(h(x) − h(y))
|x − y|N+2s dxdy

+

∫
Ω0

V(x)unh dx −
∫

Ω0

f (x, u+
n )h dx

∣∣∣∣ ≤ εnh
1 + ‖un‖

.

(3.3)

Taking h = u−n in (3.3), we get for all n∣∣∣∣c∫
Ω0

|∇u−n |
2dx + k

"
Ω×Ω

(un(x) − un(y))(u−n (x) − u−n (y))
|x − y|N+2s dxdy +

∫
Ω0

V(x)|u−n |
2dx
∣∣∣∣ ≤ εn (3.4)
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Since
|u−n (x) − u−n (y)|2 ≤ (un(x) − un(y))(u−n (x) − u−n (y)),

we get
‖u−n ‖ ≤ εn,

and so
u−n → 0 in (Hs

0,Ω)′ as n→ ∞. (3.5)

Now, taking h = u+
n in (3.3), we obtain

−c
∫

Ω0

|∇u+
n |

2dx − k
"

Ω×Ω

(un(x) − un(y))(u+
n (x) − u+

n (y))
|x − y|N+2s dxdy

−

∫
Ω0

V(x)|u+
n |

2dx +

∫
Ω0

f (x, u+
n )u+

n dx ≤ εn.

(3.6)

From (3.1) we have

c
∫

Ω0

|∇un|
2dx + k

"
Ω×Ω

|un(x) − un(y)|2

|x − y|N+2s dxdy +

∫
Ω0

V(x)|un(x)|2dx − 2
∫

Ω0

F(x, u+
n ) dx ≤ 2M1

for M1 > 0 and all n. Hence, together with (3.4), this leads to

c
∫

Ω0

|∇u+
n |

2dx + k
"

Ω×Ω

(un(x) − un(y))(u+
n (x) − u+

n (y))
|x − y|N+2s dxdy

+

∫
Ω0

V(x)|u+
n |

2dx − 2
∫

Ω0

F(x, u+
n ) dx ≤ M2

(3.7)

for some M2 > 0 and all n. Adding (3.6) to (3.7), we obtain∫
Ω0

f (x, u+
n )u+

n dx − 2
∫

Ω0

F(x, u+
n ) dx ≤ M3

for some M3 > 0 and all n, that is ∫
Ω0

σ(x, u+
n ) dx ≤ M3. (3.8)

To prove that (u+
n )n is bounded in Hs

0,Ω, we argue by contradiction. Passing to a subsequence if
necessary, we assume that ‖u+

n ‖ → ∞ as n→ ∞ and that for some v ≥ 0

vn ⇀ v in Hs
0,Ω and vn → v in Lq(Ω0), vn = u+

n /‖u
+
n ‖, (3.9)

for every q ∈ (2, 2∗s).
First, we deal with the case v , 0. We define the set

Z(v) = {x ∈ Ω0 : v(x) = 0},

so that |Ω0 \ Z(v)| > 0 and u+
n → ∞ for a.e. x ∈ Ω0 \ Z(v) as n→ ∞. By hypothesis ( f2) we have

lim
n→∞

F(x, u+
n (x))

‖u+
n ‖

2 = lim
n→∞

F(x, u+
n (x))

u+
n (x)2 vn(x)2 = ∞
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for almost every x ∈ Ω0 \ Z(v). On the other hand, by Fatou’s Lemma∫
Ω0

lim inf
n→∞

F(x, u+
n (x))

‖u+
n ‖

2 dx ≤ lim inf
n→∞

∫
Ω0

F(x, u+
n (x))

‖u+
n ‖

2 dx,

which leads to
lim
n→∞

∫
Ω0

F(x, u+
n (x))

‖u+
n ‖

2 dx = ∞. (3.10)

From (3.1) we have

−
1
2
‖un‖

2 +

∫
Ω0

F(x, u+
n (x)) dx ≤ M4

for some M4 > 0 and all n. Recalling that ‖un‖
2 ≤ 2(‖u+

n ‖
2 + ‖u−n ‖

2), from (3.5) we obtain

−‖u+
n ‖

2 +

∫
Ω0

F(x, u+
n (x)) dx ≤ M5

for some M5 > 0. Dividing by ‖u+
n ‖

2,

−1 +

∫
Ω0

F(x, u+
n (x))

‖u+
n ‖

2 dx ≤
M5

‖u+
n ‖

2 .

Passing to the limit, we get

lim sup
n→∞

∫
Ω0

F(x, u+
n (x))

‖u+
n ‖

2 dx ≤ M6

for some M6 > 0. This contradicts (3.10), and concludes the case v , 0.
Now we deal with the case v ≡ 0. We consider the continuous functions γn : [0, 1]→ R, defined as

γn(t) = I+(tu+
n ), with all t ∈ [0, 1] and all n. Thus, we can define tn such that

γn(tn) = max
t∈[0,1]

γn(t). (3.11)

Now we define wn = (2λ)
1
2 vn ∈ H

s
0,Ω for λ > 0. From (3.9), wn → 0 in Lq(Ω0) for all q ∈ (2, 2∗s).

Performing some integration from ( f1) we have∫
Ω0

F(x,wn(x)) dx ≤
∫

Ω0

a(x)|wn(x)| dx + C
∫

Ω0

|wn(x)|rdx,

which implies

lim
n→∞

∫
Ω0

F(x,wn(x)) dx = 0. (3.12)

Since ‖u+
n ‖ → ∞, there exists n0 such that (2λ)

1
2 /‖u+

n ‖ ∈ (0, 1) for all n ≥ n0. Then, from (3.11),

γn(tn) ≥ γn

(
(2λ)

1
2

‖u+
n ‖

)
for all n ≥ n0. Thus,

I+(tnu+
n ) ≥ I+((2λ)

1
2 vn) = λ‖vn‖

2 −

∫
Ω0

F(x,wn(x)) dx.
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Then (3.12) implies that
I+(tnu+

n ) ≥ λ‖vn‖
2 + o(1),

and since λ is arbitrary we have
lim
n→∞

I+(tnu+
n ) = ∞. (3.13)

Clearly, 0 ≤ tnu+
n ≤ u+

n for all n, so that from ( f3) we know that∫
Ω0

σ(x, tnu+
n ) dx ≤ θ

∫
Ω0

σ(x, u+
n ) dx + ‖β‖1 (3.14)

for all n. Clearly, I+(0) = 0. In addition, (3.1) and (3.4) imply that I+(u+
n ) ≤ M7 for some M7 > 0.

Together with (3.13) this implies that tn ∈ (0, 1) for all n ≥ n1 ≥ n0. Since tn is a maximum point, we
get

0 = tnγ
′
n(tn) = k

"
Ω×Ω

(tnun(x) − tnun(y))(tnu+
n (x) − tnu+

n (y))
|x − y|N+2s dxdy

+ c
∫

Ω0

|∇tnu+
n |

2dx +

∫
Ω0

V(x)|tnu+
n |

2dx −
∫

Ω0

f (x, tnu+
n )tnu+

n dx,

and recalling that

|tnu+
n (x) − tnu+

n (y))|2 ≤ (tnun(x) − tnun(y))(tnu+
n (x) − tnu+

n (y)),

we have
‖tnu+

n ‖
2 −

∫
Ω0

f (x, tnu+
n )tnu+

n dx ≤ 0. (3.15)

Adding (3.15) to (3.14), we obtain

‖tnu+
n ‖

2 − 2
∫

Ω0

F(x, tnu+
n ) dx ≤ θ

∫
Ω0

σ(x, u+
n ) dx + ‖β‖1,

that is
2I+(tnu+

n ) ≤ θ
∫

Ω0

σ(x, u+
n ) dx + ‖β‖1.

Hence, (3.13) implies that

lim
n→∞

∫
Ω0

σ(x, u+
n ) dx = ∞. (3.16)

Combining (3.8) and (3.16) we obtain the contradiction, which concludes the case v ≡ 0.
In conclusion, (u+

n )n is bounded in Hs
0,Ω, and (3.5) gives that (un)n is bounded in Hs

0,Ω. Hence, upto a
subsequence, if necessary, there exists u ∈ Hs

0,Ω such that

un ⇀ u in Hs
0,Ω and un → u in Lq(Ω0), q ∈ (2, 2s). (3.17)

Taking h = un − u in (3.3), we have

‖un‖
2 − c

∫
Ω0

∇un∇u dx − k
"

Ω×Ω

(un(x) − un(y))(u(x) − u(y))
|x − y|N+2s dxdy

−

∫
Ω0

V(x)unu dx −
∫

Ω0

f (x, u+
n )(un − u) dx ≤ εn

(3.18)
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From ( f1) and (3.17) we know that

lim
n→∞

∫
Ω0

| f (x, u+
n )(un − u)| dx = 0.

Passing to the limit in (3.18) we obtain

lim
n→∞

(
‖un‖

2 − k
"

Ω×Ω

(un(x) − un(y))(u(x) − u(y))
|x − y|N+2s dxdy − c

∫
Ω0

∇un∇u dx −
∫

Ω0

V(x)unu dx
)

= 0.

This implies that ‖un‖ → ‖u‖, so that un → u in Hs
0,Ω. Then I+ satisfies the (C) condition, which

concludes the proof. �

We are now able to give the proof of the main existence theorem for (PN).

Theorem 3.3. If ( f1)–( f4) hold, then problem (PN) admits at least two nontrivial constant sign
solutions.

Proof. Let us apply the Mountain Pass Theorem to I+. From Proposition 3.2 we know that I+ satisfies
the (C) condition, so that we only have to verify the geometric conditions.

From ( f1) and ( f4), for every ε > 0 there exists Cε such that

F(x, t) ≤
ε

2
|t|2 + Cε|t|r

for a.e. x ∈ Ω0 and all t ∈ R. Then

I+(u) =
1
2
‖u‖2 −

∫
Ω0

F(x, u+) dx ≥
1
2
‖u‖2 −

ε

2
‖u‖22 −Cε‖u‖rr ≥

1 − εC1

2
‖u‖2 −C2‖u‖rr.

From this we kwon that, if ‖u‖ = ρ is small enough,

inf
‖u‖=ρ

I+(u) > 0.

Now, let u ∈ Hs
0,Ω be positive in Ω0 and let t > 0. Then

I+(u) =
t2

2
‖u‖2 −

∫
Ω0

F(x, tu) dx =
t2

2
‖u‖2 − t2

∫
Ω0

F(x, tu)
|tu|2

u2 dx.

By Fatou’s Lemma ∫
Ω0

lim inf
t→∞

F(x, tu)
|tu|2

u2dx ≤ lim inf
t→∞

∫
Ω0

F(x, tu)
|tu|2

u2dx,

so that ( f2) implies that

lim
t→∞

∫
Ω0

F(x, tu)
|tu|2

u2dx = ∞.

Consequently,
lim
t→∞

I+(tu) = −∞.

Therefore, there exists e ∈ Hs
0,Ω such that ‖e‖ > ρ and I+(e) < 0.
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Now, thanks to Proposition 3.2 and the Mountain Pass Theorem, the functional I+ possesses a
nontrivial critical point u at the minimax level

c = inf
γ∈Γ

sup
t∈[0,1]

I+(γ(t)) ≥ ρ > 0, Γ = {γ ∈ C([0, 1],Hs
0,Ω) : γ(0) = 0, γ(1) = e}.

In particular, u is a nontrivial solution of (PN) and, taking v = u− ∈ Hs
0,Ω as test function

0 = c
∫

Ω0

|∇u−|2dx + k
"

Ω×Ω

(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+2s dxdy +

∫
Ω0

V(x)|u−|2dx −
∫

Ω0

f (x, u+)u−dx

= c
∫

Ω0

|∇u−|2dx + k
"

Ω×Ω

(u(x) − u(y))(u−(x) − u−(y))
|x − y|N+2s dxdy +

∫
Ω0

V(x)|u−|2dx.

Recalling that
|u−(x) − u−(y)|2 ≤ (u(x) − u(y))(u−(x) − u−(y))

we obtain
0 ≥ ‖u−‖2,

and so u− ≡ 0. Hence, I+(u) = I(u). This gives at once that u ≥ 0 is a nontrivial solution of (PN).
Arguing in the same way for I−, we find a second nontrivial nonpositive solution of (PN). �

4. Numerical approximation of the problems

For an arbitrary function f it could be not simple to find a closed-form solution for the problems
(PL) and (PN), therefore we resort to find a numerical approximation of the solution itself.

In particular, if the domain Ω0 ∪ Ω1 is the interval (−L, L) and Ω0 is (−L0, L0), we discretize it in a
finite number, n, of points denoted as xi with i = 0, 2, . . . , n − 1, as shown in Figure 2. we have that

xi = −L + ih, i = 0, 1, . . . , n − 1,

with
h =

2L
n − 1

Figure 2. Discretized interval.

The corresponding value of u in the points xi will be denoted ui = u(xi).
The Laplacian ∆u is approximated by means of the central difference formula

(∆u)i =
ui+1 − 2ui + ui−1

h2 .
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in all the points except when i = 0 and i = n − 1 forward difference and backward difference formulas,
respectively, are used.

In order to approximate (−∆)s
Ωu, the approach proposed in [11] is used. We recall that, in the present

case

(−∆)s
Ωu(x) = C1,2s

∫ L

−L

u(x) − u(y)
|x − y|1+2s dy,

with

C1,2s =
2s22s−1Γ(2s+1

2 )
π1/2Γ(2−2s

2 )
.

The idea of the approach is to split the integral over Ω in two contributions, the first is the sum of the
integrals in the intervals (−L, xi − h) and (xi + h, L) and the second is the (improper) integral in the
interval (xi − h, xi + h) which contains the singularity.

(−∆)s
Ωu(xi) = C1,2s

[∫ xi−h

−L

u(xi) − u(y)
(xi − y)1+2s dy +

∫ L

xi+h

u(xi) − u(y)
(y − xi)1+2s dy

]
+ C1,2s

∫ xi+h

xi−h

u(xi) − u(y)
|xi − y|1+2s dy

= C1,2s

[∫ xi−(−L)

h

u(xi) − u(xi − t)
t1+2s dt +

∫ L−xi

h

u(xi) − u(xi + t)
t1+2s dt

]
+ C1,2s

∫ h

−h

u(xi) − u(xi − t)
|t|1+2s dt

For the second contribution, we use the result in Section 2.2 of [11] and therefore

C1,2s

∫ h

−h

u(xi) − u(xi − t)
|t|1+2s dt = −C1,2s

u(xi + h) − 2u(xi) + u(xi + h)
(2 − 2s)h2s

For the first contribution, as suggested in [11] an exact integration is made using the following
interpolant of the terms u(xi) − u(xi − y):

u(xi) − u(xi ± t) =
∑
j∈N

[
u(xi) − u(xi± j)

]
Th(t − x j)

with

Th(t) =

{
1 −
|t|
h
|t| ≤ h,

0 otherwise

Combining the two contributions, the regional Fractional Laplacian can be evaluated numerically as

(−∆)s
Ωui =

i∑
j=1

(
ui − ui− j

)
w j +

n−1−i∑
j=1

(
ui − ui+ j

)
w j,

with

w j = h−2s

{ C1,2s

2 − 2s
− F′(1) + F(2) − F(1, ) j = 1,

F( j + 1) − 2F( j) + F( j − 1), j = 2, 3, . . .
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where

F(t) =


C1,2s

(2s − 1)2s
|t|1−2s, 2s , 1,

−C1,2s log |t|, 2s = 1.

The function F is such that

F′′(t) = C1,2s
1
|t|1+2s

The discretized form of (PL) is therefore{
−c(∆u)i + k((−∆)s

Ωu)i + ui = fi for i = j, j + 1, . . . , k
ui = 0 for i = 0, 1, . . . , j, k, k + 1, . . . , n − 1,

where the points in Ω0 are xi, with i = j, j + 1, . . . , k.
Now the problem is to find the values of ui for each i in order to find the zeros of the following

function g expressed in discretized form

g(xi) =

{
−c(∆u)i + k((−∆)s

Ωu)i + ui − fi for i = j, j + 1, . . . , k
ui for i = 0, 1, . . . , j, k, k + 1, . . . , n − 1

This problem can be solved numerically. In particular, we use the Python programming language and
its procedure “fsolve”, based on the Powell hybrid method, as implemented in MINPACK, see [14].

4.1. Results for linear case

The following values have been taken:

c = 15000 N/mm2, κ = 15000 N/mm4−2s, s = 0.75,
L = 100 mm, L0 = 80 mm.

The value of κ is chosen so that for s = 1 the contribution due to the ordinary Laplacian and the regional
Fractional Lapalacian are equal, with c equal to the half of modulus of elasticity of the material.

The first case studied consist in a rod loaded by two forces in opposite direction symmetrically with
respect to the midspan, as shown in Figure 3.

Figure 3. Rod loaded by two forces in opposite direction symmetrically with respect to the
midspan.

The response of the rod when d = ±2 mm and magnitude F0 = 1000 N is shown in Figure 4.
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Figure 4. Response of the rod under two opposite forces: left, displacements in all the rod;
right, displacement near x = −d.

The effect of the variation of the step h is shown, and it can be appreciated that even for quite large
values of h the solution is sufficiently accurate.

It is interesting to note that for s→ 1 the purely local response is obtained, as shown in Figure 5.

Figure 5. Response of the rod under two opposite forces in the purely local case.

In this case, the displacements are linear in each interval (−L0,−d), (−d, d) and (d, L0) and the
maximum displacement for x = −d is given by

u(−d) =
F0d
c + κ

−
F0d2

(c + κ) L0
.

With the value recalled before, this gives u(−d) = 0.065 mm, as obtained numerically.
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Subsequently, we study the response of the rod under the effect of a distributed load f given by the
following expression

f (x) = f0e

− x2

2
( L0

16

)2



as shown in Figure 6.

Figure 6. Rod under the effect of a distributed load f (x).

The results are shown in Figure 7.

Figure 7. Response of the rod under a distributed load: left, displacements in all the rod;
right, displacement near the midspan.

Again, the effect of various values of h is shown and the same considerations as before are valid.

4.1.1. Parametric analysis

A parametric analysis is performed to show the effect of the variation of mechanical parameters on
the response.

At first the values of c and κ are varied according to the following rules:

c = β1 · 30000
N/mm2κ = −2 · β2 · k · cos(s · π) with k = 0.5 · 30000 N/mm4−2s,
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with β1 +β2 = 1. The values of β1 and β2 can be though of as the weight of the contribution of the local
and nonlocal behavior respectively. For β1 = β2 = 0.5 the preceding case is recovered.

The results are shown in Figure 8.

Figure 8. Effect of variation of the relative local and nonlocal contribution to the response.

As can be appreciated, as the value of β1 increases, the behavior approximates that of a purely local
material, as expected. Moreover, the variation of the maximum displacement with β1 is no monotonic,
having and initial decrement followed by a successive pronounced increment.

The values of s vary in the interval (0.5, 1) and produce the results shown in Figure 9.

Figure 9. Effect of the order s of the regional fractional Laplacian on the response.
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Also in this case a non-monotonic variation of the displacement with respect to s can be appreciated.
Subsequently, the effect of the contribution of V(x)u is analyzed. The results are shown in Figure 10.

Figure 10. Effect of the presence of external spring forces (V is expressed in N/mm4).

4.2. Results for nonlinear case

The same mechanical parameters of the linear case have been assumed. In this case, we choose a
non symmetric function

f (x, u) = (|x + 1| + 1)u · log(1 + |u|).

Anyway, in the nonlinear case, we note that the trivial function u ≡ 0 is always a solution of the
problem.

In order to find a different non-trivial solution, the numerical procedure starts with an initial guess
u0 which, in the applications, we assume as

u0(x) = δ1 sin
(

2π
L0

x
)

+ δ2W(x),

where W is a function which gives Gaussian white noise.

The effect of the initial guess in retrieving the non-trivial solution is shown in Figure 11, where the
blue curve (the trivial solution) was obtained with δ1 = 1 mm and δ2 = 0.1 mm, while the orange curve
(the nontrivial solution) was obtained with δ1 = 0 mm and δ2 = 0.1 mm.
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Figure 11. Trivial (blue solid line) and nontrivial (orange solid line) solutions for the
nonlinear case; the initial guesses are shown in dashed lines.

It is worth noting that W is different in the two curves since they are from two different random
generation.

The effect of different values of s is highlighted in Figure 12.

Figure 12. Effect of s on the solution of the nonlinear problem.

Moreover, since we know that at least two different solutions exist, we give an estimation of these
solutions in Figure 13. The solutions were obtained using a suitable choice of u0, in particular the
blue curve was obtained with δ1 = 1 mm and δ2 = 0.1 mm, while the orange curve was obtained with
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δ1 = −1 mm and δ2 = 0.1 mm.

Figure 13. Two different (nontrivial) solutions for the nonlinear problem; the initial guesses
are shown in dashed lines.
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