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Abstract: In this paper we study the existence of solutions of the Dirichlet problem associated to the
following nonlinear PDE

− div
(
a(x)∇u|∇u|p−2) − div

(
|u|(r−1)λ+1∇u|∇u|λ−2) = f

where 1 < λ ≤ p, r > 1 and f ∈ L1(Ω).

Keywords: nonlinear elliptic equations; weak solutions; double phase problems; singular data;
regularity

1. Introduction

The topic of this paper is inspired by one of the recent scientific interests of Rosario Mingione, the
so–called “double phase” elliptic problem.

The main example of a double phase integral functional is

J(v) =

∫
Ω

[1
p
|∇v|p +

ρ(x)
q
|∇v|q

]
, with 1 < p < q,
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where Ω is an open, bounded subset of RN (N ≥ 2),

1 < p < q,with
q
p

close to 1 in dependence on N. (1.1)

and
ρ(x) ≥ 0. (1.2)

Since it is not assumed that the weight ρ(x) is bounded away from zero (that is, it is not assumed that
∃ ρ0 ∈ R

+ such that ρ(x) ≥ ρ0 > 0), it is not possible to say, even under the assumption p < q, that the
term ρ(x)|∇v|q is dominant, so that the set {x : ρ(x) = 0} plays an important role.

Few years ago, R. Mingione found a name for such a problem: double phase problems. Since then,
these problems and this terminology have become very popular.

Note that, the functional J exhibits unbalanced growth: the (p, q)-growth in the Marcellini
terminology (see [16]).

Nowadays, there is a huge literature concerning double phase elliptic problems. Here we only recall
the fundamental papers [2, 3, 12, 13], and recently [14, 17].

The main example of a double phase elliptic nonlinear differential operator is the derivative of J,
that is

A(v) = − div
(
∇v|∇v|p−2) − div

(
ρ(x)∇v|∇v|q−2),

In this paper we study the existence of distributional solutions, belonging to some standard Sobolev
spaces, of Dirichlet problems with very singular data, and associated to differential operators of double
phase type like

− div
(
a(x)∇v|∇v|p−2) − div

(
g(v)∇v|∇v|λ−2),

with g(0) = 0.
Namely, we deal with the existence of solutions of the following boundary value problem{

− div
(
a(x)∇u|∇u|p−2) − div

(
g(u)∇u|∇u|λ−2) = f , in Ω;

u = 0, on ∂Ω;
(1.3)

where Ω is an open, bounded subset of RN (N ≥ 2),

1 < λ ≤ p < N, (1.4)

a(x) is a measurable function such that

α ≤ a(x) ≤ β, with α, β > 0, (1.5)

g(t) = |t|(r−1)λ+1, with r > 1, (1.6)

f ∈ L1(Ω). (1.7)

We point out that

• in (1.4) the parameters λ, p play the role of p, q in (1.1)
• the operator presented in (1.3) also depends on a power of u ;
• the coefficient a(x) does not need to be smooth.
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Our existence results hinge on the presence of the additional term

− div
(
g(u)∇u|∇u|λ−2),

which strongly helps, even if it has a growth (with respect to the gradient) λ ≤ p and despite of the
degeneracy due to the factor |u|(r−1)λ+1.

As a matter of fact, this term provides a strong regularizing property: roughly speaking, we prove
that the solution u of (1.3), under a suitable relationship between the parameters p and λ, is more
regular (and it even exists) than the solution y of{

− div
(
a(x)∇y|∇y|p−2) = f , in Ω;

y = 0, on ∂Ω,
(1.8)

studied in [4, 7, 8].
The regularizing effect of some lower orders terms, in the framework of boundary value problems

with L1-data, is already known since the paper [10] by H. Brezis and W. A. Strauss. We also refer to
the paper [1, 6, 9, 11], where some Dirichlet problems with lower order terms of order zero or of order
one, with natural growth with respect to ∇u are studied.

2. The case of bounded data

This section deals with the case
f ∈ L∞(Ω).

In the sequel, given k > 0, we denote by Gk(s) and Tk(s) the classical truncated functions defined by

Gk(s) = (|s| − k)+sgn s, Tk(s) = s −Gk(s), s ∈ R.

Let us introduce the following sequence of boundary value problems
− div

(
a(x)∇un|∇un|

p−2) − div
(
g(Tn(un))

∇un|∇un|
λ−2

1 + 1
n |∇un|

λ−1

)
= f (x), in Ω;

un = 0, on ∂Ω.

As a consequence of the classical result due to J. Leray, J. L. Lions (see [15]) there exists un ∈ W1,p
0 (Ω)

which is a weak solution of the above problem in the sense that the following integral identity holds∫
Ω

a(x)∇un|∇un|
p−2∇v +

∫
Ω

g(Tn(un))
∇un|∇un|

λ−2

1 + 1
n |∇un|

λ−1
∇v (2.1)

=

∫
Ω

f v , for any v ∈ W1,p
0 (Ω).

Moreover, due to the boundedness of f and adapting the well known method used in [18], each un is a
bounded function and there exists a positive contant C f , independent on n, such that

‖un‖L∞(Ω)
≤ C f , ∀ n ∈ N.
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Thus, for any n > C f it holds Tn(un) = un and un is a weak solution of the following Dirichlet problem
un ∈ W1,p

0 (Ω) :

− div
(
a(x)∇un|∇un|

p−2) − div
(
g(un)

∇un|∇un|
λ−2

1 + 1
n |∇un|

λ−1

)
= f (x), (2.2)

that is ∫
Ω

a(x)∇un|∇un|
p−2∇v +

∫
Ω

g(un)
∇un|∇un|

λ−2

1 + 1
n |∇un|

λ−1
∇v (2.3)

=

∫
Ω

f v , for any v ∈ W1,p
0 (Ω).

Taking un as test function in (2.3) and using the assumption (1.5) we have

α

∫
Ω

|∇un|
p +

∫
Ω

g(un)
|∇un|

λ

1 + 1
n |∇un|

λ−1
≤

∫
Ω

f un .

Dropping the second (positive) term in the left–hand side and using the boundedness of f we obtain

‖un‖W1,p
0 (Ω) ≤ C1, ∀ n ∈ N. (2.4)

Here, and in the sequel, we denote by Ci positive constants only depending on the data (but not on n).
Thus, there exist a subsequence, not relabelled, and a function u ∈ W1,p

0 (Ω) ∩ L∞(Ω) such that

un ⇀ u weakly in W1,p
0 (Ω), (2.5)

un → u strongly in Lp(Ω), and a.e. in Ω. (2.6)

Moreover, using estimate (2.4) we obtain, since 1 < λ ≤ p,∫
Ω

1
n
|∇un|

λ−1 ≤
C2

n
, ∀ n ∈ N.

Thus,
1
n
|∇un|

λ−1 → 0 strongly in L1(Ω), and a.e. in Ω. (2.7)

In order to have
un → u strongly in W1,p

0 (Ω), (2.8)

it is enough to prove that ∫
Ω

a(x) [∇un|∇un|
p−2 − ∇u|∇u|p−2]∇(un − u) → 0. (2.9)

Let us take v = un − u as test function in (2.3)∫
Ω

a(x) [∇un|∇un|
p−2 − ∇u|∇u|p−2]∇(un − u)
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+

∫
Ω

g(un)
∇un|∇un|

λ−2 − ∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1
∇(un − u)

=

∫
Ω

f (un − u) −
∫

Ω

a(x)∇u|∇u|p−2∇(un − u)

−

∫
Ω

g(un)
∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1
∇(un − u)

Due to the positivity of the second term we get∫
Ω

a(x) [∇un|∇un|
p−2 − ∇u|∇u|p−2]∇(un − u) (2.10)

≤

∫
Ω

f (un − u) −
∫

Ω

a(x)∇u|∇u|p−2∇(un − u)

−

∫
Ω

g(un)
∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1
∇(un − u) .

We note that the first and the second integral in the right–hand side converge to 0. Moreover,

g(un)
∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1
→ g(u)∇u|∇u|λ−2 a.e. in Ω

and (since |∇u|λ−1 ∈ Lp′) ∣∣∣∣∣g(un)
∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1

∣∣∣∣∣ ≤ g(C f )|∇u|λ−1, ∀ n ∈ N.

Thus, by the Lebesgue Theorem we get

g(un)
∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1
→ g(u))∇u|∇u|λ−2 strongly in Lp′(Ω), (2.11)

which in turn implies ∫
Ω

g(un)
∇u|∇u|λ−2

1 + 1
n |∇un|

λ−1
∇(un − u) → 0.

Then, (2.9) easily follows taking the limit as n → +∞ in (2.10) and the strong convergence (2.8)
is proved. Finally, we take the limit as n → +∞ in (2.3) (using (2.9) and (3.6)) and we obtain the
following existence theorem.

Theorem 2.1. Let 1 < λ ≤ p < N. Assume that (1.5), (1.6) hold and let

f ∈ L∞(Ω).

Then there exists a weak solution u ∈ W1,p
0 (Ω)∩ L∞(Ω) which solves the problem (1.3) in the following

weak sense ∫
Ω

a(x)∇u|∇u|p−2∇v +

∫
Ω

g(u)∇u|∇u|λ−2∇v =

∫
Ω

f v (2.12)

for any v ∈ W1,p
0 (Ω).
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3. Non regular data

In this section we assume that
f ∈ L1 log L1(Ω) (3.1)

and we will prove the existence of a distributional solution of problem (1.3)

3.1. Approximating problems

Let { fn} be a sequence of bounded functions such that

fn → f strongly in L1(Ω),

and
‖ fn‖L1(Ω) ≤ ‖ f ‖L1(Ω), ∀ n ∈ N.

Classical examples are fn = Tn[ f ] and fn =
f

1+ 1
n | f |

.
Let us introduce the following approximate boundary value problems

− div
(
a(x)∇un|∇un|

p−2) − div
(
g(un)∇un|∇un|

λ−2) = fn(x), in Ω;

un = 0, on ∂Ω.

(3.2)

By Theorem 2.1, there exists un ∈ W1,p
0 (Ω) ∩ L∞(Ω) such that, for any v ∈ W1,p

0 (Ω),∫
Ω

a(x)∇un|∇un|
p−2∇v +

∫
Ω

g(un)∇un|∇un|
λ−2∇v =

∫
Ω

fnv. (3.3)

Let k > 0; by taking Tk(un) as test function in the weak formulation (3.3) of problem (3.2) and
dropping the positive second term, we can proceed as in [4] and the following lemma holds.

Lemma 3.1. Let 1 < λ ≤ p < N. Assume that the hypotheses (1.5), (1.6), (3.1) are satisfied. Then, for
any k > 0 it holds ∫

Ω

|∇Tk(un)|p ≤ k
∫

Ω

| f |, ∀ n ∈ N. (3.4)

Moreover, there exists C0 > 0 such that∫
Ω

|∇un|
s ≤ C0, s <

(p − 1)N
N − 1

, (3.5)

and
{a(x)∇un|∇un|

p−2} is bounded in Lt(Ω), 1 < t <
N

N − 1
. (3.6)

Next, we will prove the following lemma.

Lemma 3.2. Let 1 < λ ≤ p < N. Assume that the hypotheses (1.5), (1.6), (3.1) are satisfied. Then
there exists a positive constant R, independent on n, such that∫

Ω

|∇un|
λ ≤ R, ∀ n ∈ N. (3.7)
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Proof. We set η = (r − 1)λ + 1 (note that η > 1 since r > 1) and we take

v =

[
1 −

1
(1 + |un)η−1

] un

|un|

as test function in (3.3). Dropping the positive term resulting by the principal part, we obtain

(η − 1)
∫

Ω

|un|
η

(1 + |un|)η
|∇un|

λ ≤

∫
Ω

| fn(x)|
[
1 − (1 + |un|)1−η] ≤ ∫

Ω

| f (x)|.

We fix k > 0. By the above estimate we have

(η − 1)
kη

(1 + k)η

∫
{|un |>k}

|∇un|
λ ≤ ‖ f ‖L1(Ω). (3.8)

Thus, putting together estimates (3.4) and (3.8), it follows (3.7).
Further improvements on the boundedness of un and ∇un, depending on the relationship between

the parameters p, λ and r, can be derived from the following lemma

Lemma 3.3. Let 1 < λ ≤ p < N. Assume that the hypotheses (1.5), (1.6), (3.1) are satisfied. Then
there exist two positive constants R1,R2 independent of n such that∫

Ω

|un|
rλ∗ ≤ R1, ∀ n ∈ N (3.9)

and ∫
Ω

|∇un|
σ ≤ R2, ∀ n ∈ N (3.10)

with
σ =

r p λ∗

1 + r λ∗
.

Proof. By taking v = log(1 + |un|) un
|un |

as test function in the weak formulation (3.3) of problem (3.2)
(see [8]), it is easy to see that

α

∫
Ω

|∇un|
p

1 + |un|
+

∫
Ω

|un|
(r−1)λ+1

1 + |un|
|∇un|

λ ≤

∫
Ω

| f | log(1 + |un|).

Using in the right–hand side the inequality

st ≤ s log(1 + s) + et, ∀ s, t > 0

and the boundedness of {un} in L1(Ω) and, taking into account the positivity of each of the two integrals
in the left-hand side and (3.7), the following two estimates hold∫

Ω

|un|
(r−1)λ+1

1 + |un|
|∇un|

λ ≤ C3, ∀ n ∈ N (3.11)

and ∫
Ω

|∇un|
p

1 + |un|
≤ C4, ∀ n ∈ N (3.12)
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From estimate (3.11) we also deduce

1
2

∫
|un |>1
|un|

(r−1)λ|∇un|
λ ≤ C5, ∀ n ∈ N

which, together with inequality (3.4), implies∫
Ω

|un|
(r−1)λ|∇un|

λ ≤ C6, ∀ n ∈ N. (3.13)

Now, we can use Sobolev inequality

1
(rS )λ

( ∫
Ω

|un|
rλ∗

) λ
λ∗

≤
1
rλ

∫
Ω

|∇|un|
r|λ =

∫
Ω

|un|
(r−1)λ|∇un|

λ ≤ C7, ∀ n ∈ N

and the estimate (3.9) follows.
Next, let us prove (3.10). We follow the outline of [8]. Note that since σ < p, by Hölder inequality

with exponents p
σ
, p

p−σ and inequality (3.12), we have∫
Ω

|∇un|
σ =

∫
Ω

|∇un|
σ

(1 + |un|)
σ
p

(1 + |un|)
σ
p ≤ C8

[ ∫
Ω

(1 + |un|)
σ

p−σ

] p−σ
p

and the proof is concluded, since, by the choice of σ, it follows σ
p−σ = r λ∗. �

Remark 3.4. Note that in Lemmas 3.1 and 3.7 we only use the assumption f ∈ L1(Ω), while
Lemma 3.3 requires the additional hypothesis f ∈ L1 log L1(Ω). However, if f is merely summable,
the proof of Lemma 3.3 can be repeated in order to obtain the boundedness of {∇un} in W1,σ

0 (Ω), for
any 1 ≤ σ < r p λ∗

1+r λ∗ .

Remark 3.5. We point out that

max {λ, σ} =

{
λ if λ ≥ N pr−1

Nr−1
σ if λ < N pr−1

Nr−1 .

Moreover
N

pr − 1
Nr − 1

> 1 ⇐⇒ p > 1 +
N − 1

r
.

Thus, Lemma 3.3 improves Lemma 3.7 if 1 ≤ λ < N pr−1
Nr−1 and p > 1+ N−1

r . (Note that 1+ N−1
r ∈

]
1, 2− 1

N

[
since r > 1).

Remark 3.6. Let 2 − 1
N < p < N. Taking into account only the contribution of the principal part and

applying the results of [7] we deduce that the sequence {un} is bounded in W1, N(p−1)
N−1

0 (Ω).
Thus the term

− div
(
g(un)∇un|∇un|

λ−2)
has a regularizing effect in the following two cases

Mathematics in Engineering Volume 5, Issue 3, 1–15.
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i) 2 − 1
N < p < N and (p−1)N

N−1 < λ ≤ p,

ii) 1 < p ≤ 2 − 1
N and 1 < λ ≤ p.

As a consequence of previous lemmas we prove the following two existence results.

Theorem 3.7. Let 1 < λ ≤ p < N. Assume that hypotheses (1.5), (1.6) and (3.1) hold.
Then there exists u ∈ W1,λ

0 (Ω), such that g(u)|∇u|λ−1 ∈ L1(Ω), which solves the problem (1.3) in the
following distributional sense∫

Ω

a(x)∇u|∇u|p−2∇v +

∫
Ω

g(u)∇u|∇u|λ−2∇v =

∫
Ω

f v, (3.14)

for any v ∈ C∞0 (Ω).

Theorem 3.8. Let 1 < λ ≤ p < N. Assume that hypotheses (1.5), (1.6) and (3.1) hold.
Then there exists u ∈ W1,σ

0 (Ω), such that g(u)|∇u|λ−1 ∈ L1(Ω), which solves the problem (1.3) in the
distributional sense (3.14).

Remark 3.9. We explicitly remark that, in the case λ = p, Theorem 3.7 gives the existence of at least
one solution with finite energy without any additional assumption on the summability of f . A similar
regularizing effect occurs for the solution of the Dirichlet problem associated to the equation

− div
(
a(x)∇u|∇u|p−2) + u|u|s−1 = f ,

where f ∈ Lm(Ω) with 1 < m < (p∗)′, when a suitable balance between m and s holds, (see [11]) or to
the equation

− div
(
a(x)∇u|∇u|p−2) + u|u|s|∇u|p = f

with f ∈ L1(Ω) ( see [9]).

The following Figure 1 summarizes the different regularity results in dependence of p and λ.

Figure 1. Regularity results in dependence of p and λ.

Mathematics in Engineering Volume 5, Issue 3, 1–15.
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If (p, λ) belongs to the region A, the better regularity is the one obtained in [7], i.e., u ∈ W1, N(p−1)
N−1

0 (Ω);
otherwise the better regularity is the one proved here.

If (p, λ) belongs to the region B, Theorem 3.8 gives the existence of a distributional solution u ∈
W1,σ

0 (Ω); while in the region C the better regularity is the one stated in Theorem 3.7, i.e., u ∈ W1,λ
0 (Ω).

At last, if (p, λ) belongs to the colored region the result stated in Theorem 3.7 is new.

3.2. Proof of Theorems 3.7 and 3.8

We begin with the proof of Theorem 3.7.
As a consequence of Lemma 3.1 and Lemma 3.7 there exist a subsequence, not relabelled, and a

function u ∈ W1,λ
0 (Ω) such that

un ⇀ u weakly in W1,λ
0 (Ω),

un → u strongly in Lλ(Ω) and a.e. in Ω,

Tk(un) ⇀ Tk(u) weakly in W1,p
0 (Ω).

(3.15)

In order to take the limit as n→ +∞ in (3.2) we have to prove that

∇un → ∇u a.e. in Ω.

We follow some techniques of [5]. For any ξ ∈ RN , we set

A(x, ξ) = a(x)ξ|ξ|p−2, Bn(ξ) =
ξ|ξ|λ−2

1 + 1
n |ξ|

λ−1
.

Let j, k > 0; using v = T j[un − Tk(u)] as test function in (3.3) we have∫
Ω

[A(x,∇un) − A(x,∇Tk(u))]∇T j[un − Tk(u)]

+

∫
Ω

A(x,∇Tk(u))∇T j[un − Tk(u)]

+

∫
Ω

g(un)[Bn(∇un) − Bn(∇Tk(u))]∇T j[un − Tk(u)]

+

∫
Ω

g(un)Bn(∇Tk(u))∇T j[un − Tk(u)] =

∫
Ω

f T j[un − Tk(u)]. (3.16)

We note that ∫
Ω

g(un)[Bn(∇un) − Bn(∇Tk(u))]∇T j[un − Tk(u)] ≥ 0.

Moreover (since A(x,∇Tk(u))∇T j[u − Tk(u)] = 0)

lim
n→∞

∫
Ω

A(x,∇Tk(u))∇T j[un − Tk(u)] = 0

and
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lim
n→∞

∫
Ω

g(un)Bn(∇Tk(u))∇T j[un − Tk(u)]

= lim
n→∞

∫
{|un−Tk(u)|< j}

g(un) Bn(∇Tk(u))∇[un − Tk(u)] = 0

since Bn(0) = 0. Thus, from (3.16) we deduce

0 ≤
∫

Ω

[A(x,∇un) − A(x,∇Tk(u))]∇T j[un − Tk(u)]

≤ ε1
n (k) + ε2

n (k) + ωn(k), (3.17)

where we have denoted by ε1
n (k) and ε2

n (k) two functions which go to 0 as n→ +∞, for any k > 0 and

ωn(k) =

∫
Ω

f T j[un − Tk(u)].

Now, we use the above inequality in order to prove the L1 compactness of the sequence {∇un}.

Let 0 < θ <
λ

p
(0 < θ < 1) and k > 0. Let us define

In,Ω =

∫
Ω

{[A(x,∇un) − A(x,∇u)]∇(un − u)}θ.

and let us prove that the previous integral converges to zero.
Indeed, it holds

In,Ω = In,Ck + In, Ak

where
In,Ck =

∫
Ck

{[A(x,∇un) − A(x,∇u)]∇(un − u)}θ

and
In, Ak =

∫
Ak

{[A(x,∇un) − A(x,∇u)]∇(un − u)}θ

with
Ck = {x : |u(x)| ≤ k}, Ak = {x : |u(x)| > k}.

We observe that

In,Ck ≤

∫
Ω

{[A(x,∇un) − A(x,∇Tk(u))]∇(un − Tk(u))}θ = Jn,Ω.

Using the Hölder inequality, with exponents λ
pθ and λ

λ−pθ , and the a priori estimate (3.10), we have

In,Ω ≤ Jn,Ω + In, Ak

≤ Jn,Ω + C11

[∫
Ak

(|∇un| + |∇u|)λ
] pθ
λ

|Ak|
1− pθ

λ

≤ Jn,Ω + C12 |Ak|
1− pθ

λ = Jn,Ω + ω1(k). (3.18)
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Here and in the sequel, for any measurable set E ⊂ RN , |E| denotes its N− dimensional measure.
Moreover, by ωi(k) we denote some quantities such that limk→∞ ω

i(k) = 0. Now, we have to study the
behavior of Jn,Ω; it can be splitted as ( j ∈ N)

Jn,Ω =

∫
Ω

{[A(x,∇un) − A(x,∇Tk(u))]∇T j[un − Tk(u)]}θ

+

∫
{|un−Tk(u)|> j}

{[A(x,∇un) − A(x,∇Tk(u))]∇[un − Tk(u)]}θ = J1
n,Ω + J2

n,Ω.

We estimate J1
n,Ω and J2

n,Ω by means of Hölder inequality with exponents 1
θ
, 1

1−θ and λ
pθ ,

λ
λ−pθ ,

respectively and we use inequalities (3.17) and (3.7), getting

Jn,Ω =

[ ∫
Ω

[A(x,∇un) − A(x,∇Tk(u))]∇T j[un − Tk(u)]
]θ
|Ω|1−θ

+CR |{x : |un − Tk(u)| > j}|1−
pθ
λ .

≤ C13 [ε1
n (k) + ε2

n (k) + ωn(k)]θ + CR |{x : |un − Tk(u)| > j}|1−
pθ
λ .

Since

ωn(k)→
∫

Ω

f T j[u − Tk(u)] = ω2(k)

and
lim sup

n→∞
|{|un − Tk(u)| > j}|1−

pθ
λ ≤ |{|u − Tk(u)| ≥ j}|1−

pθ
λ = ω3(k),

we obtain
lim sup

n→∞
Jn,Ω ≤ C14 [ω2(k)]θ + C15 ω

3(k).

Summing up the above inequality and (3.18) we have

lim sup
n→∞

[In,Ck + In,Ak] ≤ ω
1(k) + C16 [ω2(k)]θ + C17 ω

3(k).

Therefore, ∫
Ω

{[A(x,∇un) − A(x,∇u)]∇(un − u)}θ → 0,

which gives (for a suitable subsequence, still denoted by un)

{[A(x,∇un) − A(x,∇u)]∇(un − u)}θ → 0 a.e.,

and also (since θ is positive)

{[A(x,∇un) − A(x,∇u)]∇(un − u)} → 0 a.e..

In [15], it is proved that, under our assumptions on the function A(x, ξ), the previous limit implies that

∇un(x)→ ∇u(x) a.e.. (3.19)
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Thus
a(x)∇un(x)|∇un(x)|p−2 → a(x)∇u(x)|∇u(x)|p−2, a.e. (3.20)

and, thanks to (3.6) we have

a(x)∇un(x)|∇un(x)|p−2 → a(x)∇u(x)|∇u(x)|p−2, in Lτ(Ω) , 1 < τ < t <
N

N − 1
. (3.21)

Next, we will prove that

g(un)∇un|∇un|
λ−2 → g(u)∇u|∇u|λ−2 in L1(Ω). (3.22)

Thanks to (3.19) we also deduce

g(un)∇un|∇un|
λ−2 → g(u)∇u|∇u|λ−2 a.e. in Ω.

Moreover, for any measurable set E ⊂ Ω we have∫
E

g(un)|∇un|
λ−1 =

∫
E
|un|

r (
|un|

r−1|∇un|
)λ−1

≤ C20

[ ∫
E
|un|

λr
] 1
λ
[ ∫

E
|un|

(r−1)λ|∇un|
λ
]1− 1

λ

≤ C21

[ ∫
Ω

|un|
λ∗r

] 1
λ∗

|E|
1
λ−

1
λ∗

[ ∫
Ω

|un|
(r−1)λ|∇un|

λ
]1− 1

λ

(3.23)

and the right–hand side goes to 0 as |E| → 0 uniformly w.r.t. n, since estimates (3.9) and (3.13) hold.
Thus

lim
|E|→0

∫
E

g(un)|∇un|
λ−1 = 0, uniformly w.r.t. n.

Thanks to Vitali Theorem the convergence (3.22) is proved and∫
Ω

g(un)∇un|∇un|
λ−2∇v→

∫
Ω

g(u)∇u|∇u|λ−2∇v, ∀ v ∈ C∞0 (Ω).

The above limit and the limit (3.21), allow us to take the limit as n → +∞ in (3.3) and the proof of
Theorem 3.7 follows. �

In order to prove Theorem 3.8 we note that as a consequence of Lemma 3.1 and Lemma 3.3. there
exist a subsequence, not relabelled, and a function u ∈ W1,σ

0 (Ω) such that
un ⇀ u weakly in W1,σ

0 (Ω)
un → u strongly in Lσ(Ω) and a.e. in Ω,

Tk(un) ⇀ Tk(u) weakly in W1,p
0 (Ω).

(3.24)

and the proof can be performed as above. Precisely, in order to obtain the a.e. convergence of {∇un}

we just have to replace λ with σ.
�
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