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1. Introduction

Let 0 < s < 2. The goal of this note is to prove Hardy type inequalities for the fractional relativistic
operator, which is defined as

H := (−∆ + m2)s/2 − ms, m ≥ 0

where ∆ is the Euclidean Laplacian. More precisely, if we denote

L := −∆ + m2,

so that we can write Hs := Ls/2 − ms, we will study such inequalities for Ls/2. The operator Hs has
interest from physical, probabilistic and mathematical analysis point of view. It is involved in the
description of the kinetic energy of the relativistic particle with mass m, see e.g., [17, 21] and in the
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dynamics of relativistic boson stars [13, 14]. It plays an important role in the theory of interpolation
spaces of Bessel potentials and applications in harmonic analysis [18, 27], and it has been studied in
the context of potential theory of s-stable relativistic processes [15, 26].

On the other hand, Hardy inequalities for fractional powers of the Laplacian ∆ on Rn (i.e., the case
m = 0) have been investigated by many authors and there is a vast literature on the topic, see for
instance [4, 5, 11, 12, 29]. We remark that in [17], a Hardy inequality for the operator H1 was already
implicitly shown. Hardy inequality for the fractional Laplacian reads as

((−∆)s/2 f , f ) ≥ 2s Γ
( n+s

4

)2

Γ
( n−s

4

)2

∫
Rn

| f (x)|2

|x|s
dx, (1.1)

for 0 < s < 2 and suitable functions. The constant is known to be sharp, but never achieved in the
space of functions for which both sides of the inequality are finite.

In operator terms, the sharp Hardy inequality in (1.1) can be interpreted, formally, as

0 ≤ (−∆)s/2 − 2s Γ
(n+s

4

)2

Γ
(n−s

4

)2

1
|x|s

,

and therefore (−∆)s/2− ν
|x|s is not bounded from below, for all ν > 2s Γ( n+s

4 )2

Γ( n−s
4 )2 . One important consequence

of this is the determination of existence and nonexistence of positive solutions to fractional elliptic
and parabolic problems involving singular weights, see for instance [1, 2, 6]. In the local case, i.e.,
s = 2, we refer to the work by Baras–Goldstein [3] (a first reference might be back to the seminal
paper by J. Leray [20]). Another interesting example is presented in [22], where the authors study a
solid combustion model in which the Hardy inequality arises naturally.

Apart from the potential applications to partial differential equations, Hardy inequality is an
interesting object of investigation and its study goes beyond the Euclidean setting or the Laplacian
operator. This inequality plays an important role in many areas such as the spectral theory, geometric
estimates and analyticity of functions. We refer to the famous book by Hardy–Littlewood–Pólya [16]
as a primitive reference, but it is impossible to make just a fair glimpse of the huge literature on the
topic.

Returning to the case of the fractional Laplacian in the Euclidean case, we can also consider
another version of Hardy inequality, where the homogeneous weight function |x|−s is replaced by a
non-homogeneous one:

((−∆)s/2 f , f ) ≥ 2s Γ
(n+s

2

)
Γ
(n−s

2

)δs
∫
Rn

| f (x)|2

(δ2 + |x|2)s dx, δ > 0. (1.2)

Here again the constant is sharp and equality is achieved for the functions (δ2 + |x|2)−(n−s)/2 and their
translates (see [7]). Observe that these functions can be regarded as a generalised Poisson kernel
solving a generalised harmonic extension (and therefore related to the solutions of the so called
extension problem [8]).

In this note we will prove Hardy inequalities for the operator Ls/2 associated to the fractional
relativistic operator. We will assume that m > 0 (since the case m = 0 reduces to the usual Laplacian).
Such inequalities will be obtained in two different ways: first, through a trace Hardy inequality, and
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second, through a ground state representation. In the first case, the framework will be rather general
and we will apply the results to two particular cases which will lead to Hardy inequalities that may be
understood like the natural analogues to (1.1) and (1.2).

Our results may be seen as a revisit and generalisation of the Hardy inequality shown
in [12, Subsection 2.2], and an attempt to write together several facts that seem to be around in the
literature. Moreover, the two particular examples that we provide will produce sharp Hardy
inequalities (see the statement of Corollary 2.7 and Remark 3.3). As explained above, sharp Hardy
inequalities for the fractional relativistic operator may imply consequences on existence and
nonexistence of solutions to problems involving Hs and different potentials. These will not be
discussed here.

We split the note into two parts: in the first one, we will obtain trace Hardy and Hardy type
inequalities via the corresponding extension problem. We will obtain general results, see Theorem 2.1
and Corollary 2.2, and from there we will deduce Hardy inequalities for two particular instances of
the functions involved. These are contained in Corollary 2.7 and Corollary 2.9. In the second part, we
will show a Hardy inequality from ground state representations, following the ideas by Frank, Lieb,
and Seiringer in the Euclidean setting in [11], see Corollary 3.2. The latter will coincide with the
Hardy inequality in Corollary 2.7 in the first part. Actually, the Hardy inequality obtained in the
second part is an improvement in the sense that the error in the inequality is explicitly computed,
allowing the discussion on the sharpness.

2. Part I: Hardy inequalities via an extension problem

The contents of this part can be stated in the setting of fractional powers of general operators given
by sums of squares of vector fields, see [7]. Therefore, most of the results shown here can be formulated
in a more general form, but we will just stick ourselves to the case of the relativistic operator (which
can be seen as the fractional power of an operator given as sum of squares of vector fields perturbed
by a mass). Actually, the proofs are easy modifications of the proofs in [7].

In order to prove a trace Hardy inequality for L we need to find solutions of the extension problem

(
− L + ∂2

ρ +
1 − s
ρ

∂ρ
)
v(x, ρ) = 0, x ∈ Rn, ρ > 0; v(x, 0) = f (x), x ∈ Rn. (2.1)

The extension problem (2.1) falls into the general theory developed in [28], we also highlight the works
in [9, 10]. Let us introduce the gradient

∇ =
(
∂1, · · · , ∂n,

∂

∂ρ

)
on Rn × [0,∞). We define |∇u(x, ρ)|2 = |∂1u(x, ρ)|2 + . . . + |∂nu(x, ρ)|2 + | ∂

∂ρ
u(x, ρ)|2. For 0 < s < 2, let

W s
0(Rn × [0,∞)) be the completion of C∞0 (Rn × [0,∞)) with respect to the norm (see [9, 10])

‖u‖2(s) =

∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dxdρ.

The following theorem is our first main result: a trace Hardy inequality related to the relativistic
operator.
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Theorem 2.1 (General trace Hardy inequality). Let 0 < s < 2 and let ϕ be a real valued function in
the domain of Ls/2. Assume also that ϕ−1Ls/2ϕ is locally integrable. Then for any real valued function
u ∈ W s

0(Rn × [0,∞)), we have the inequality∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dxdρ ≥ 21−s Γ(1 − s/2)

Γ(s/2)

∫
Rn

u2(x, 0)
Ls/2ϕ(x)
ϕ(x)

dx.

It is enough to prove the inequality in Theorem 2.1 for functions that belong to C∞0 (Rn × [0,∞)).
Then standard density arguments guarantee the validity for u ∈ W s

0(Rn × [0,∞)). Equality is attained
when u is a solution of the extension problem, see Proposition 2.5 below. From Theorem 2.1, we can
prove the following Hardy type inequality for Ls/2.

Corollary 2.2 (General Hardy inequality). Let 0 < s < 2. Let f ∈ L2(Rn) be such that Ls/2 f ∈ L2(Rn).
Then

(Ls/2 f , f ) ≥
∫
Rn

f 2(x)
Ls/2ϕ(x)
ϕ(x)

dx,

for any real valued function ϕ in the domain of Ls/2 such that the right hand side is finite.

Theorem 2.1 and Corollary 2.2 are general results. In Subsection 2.2 we will provide two
significative examples of functions ϕ for which we can deduce Hardy inequalities with specific
weights (one will be with a non-homogeneous weight and another with a homogeneous weight).

2.1. An extension problem, trace Hardy and Hardy inequalities for Ls/2

In this subsection we prove the results related to general trace Hardy and Hardy inequalities in
Theorem 2.1 and Corollary 2.2.

2.1.1. A basic lemma

The proof of the trace Hardy inequality in Theorem 2.1 depends on Lemma 2.3, which is a sort of
Picone identity [23]. We include it here for the convenience of the readers. It is initially stated for C∞0
functions, but it remains valid for functions u coming from the Sobolev space W s

0.

Lemma 2.3. Let 0 < s < 2. Let u(x, ρ) be a real valued function in C∞0 (Rn × [0,∞)) and let v(x, ρ) be
another real valued function for which limρ→0 ρ

1−s∂ρv(x, ρ) exists and limρ→0 ρ
1−s∂ρv(x, ρ)(v(x, 0))−1 ∈

L1
loc(R

n). We have∫ ∞

0

∫
Rn

∣∣∣∣∇u(x, ρ) −
u(x, ρ)
v(x, ρ)

∇v(x, ρ)
∣∣∣∣2ρ1−s dx dρ − m2

∫ ∞

0

∫
Rn

u2(x, ρ)ρ1−s dx dρ

=

∫ ∞

0

∫
Rn

∣∣∣∇u(x, ρ)
∣∣∣2ρ1−s dx dρ +

∫ ∞

0

∫
Rn

u(x, ρ)2

v(x, ρ)
(Lsv(x, ρ))ρ1−s dx dρ

+

∫
Rn

u(x, 0)2

v(x, 0)
lim
ρ→0

ρ1−s∂ρv(x, ρ) dx,

where Ls is the operator

Ls := −L + ∂2
ρ +

1 − s
ρ

∂ρ.
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Proof. Consider the following integral:∫
Rn

(
∂ ju −

u
v
∂ jv

)2 dx =

∫
Rn

(
(∂ ju)2 − 2

u
v
∂ ju∂ jv +

(u
v
∂ jv

)2
)

dx.

Integrating by parts, we get∫
Rn

u
v
∂ ju∂ jv dx = −

∫
Rn

u∂ j
(u
v
∂ jv

)
dx = −

∫
Rn

u
v
∂ ju∂ jv dx −

∫
Rn

u2∂ j
(1
v
∂ jv

)
dx.

Since
∫
Rn u2∂ j

(1
v∂ jv

)
dx = −

∫
Rn

u2

v2

(
∂ jv

)2 dx +
∫
Rn

u2

v ∂
2
jv dx, the above gives∫

Rn

(u2

v2 (∂ jv)2 − 2
u
v
∂ ju∂ jv

)
dx =

∫
Rn

u2

v
∂2

jv dx.

On the other hand, a similar calculation with the ρ-derivative gives∫ ∞

0

(u2

v2 (∂ρv)2 − 2
u
v
∂ρu∂ρv

)
ρ1−s dρ =

∫ ∞

0

u2

v
∂ρ

(
ρ1−s∂ρv

)
dρ +

u(x, 0)2

v(x, 0)
lim
ρ→0

(
ρ1−s∂ρv

)
(x, ρ).

Adding and then taking all integrations into account we get our result. �

In Lemma 2.3, if v satifies the extension problem (2.1), i.e., the equation Lsv = 0 on Rn × [0,∞)
(with a given initial condition v(x, 0) = ϕ(x)), then we get the inequality∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dx dρ ≥ −

∫
Rn

u2(x, 0)
v(x, 0)

lim
ρ→0

ρ1−s∂ρv(x, ρ) dx.

In view of the above, in order to prove Theorem 2.1 we need to solve the extension problem for L with
a given initial conditon ϕ. We also need to compute limρ→0 ρ

1−s∂ρv(x, ρ) in terms of L and ϕ.

2.1.2. Proofs of Theorem 2.1 and Corollary 2.2

Before proceeding with the proofs, we first introduce some well known facts about modified Bessel
functions and Macdonald’s functions that will be needed in a moment. Let Iν(z) be the modified Bessel
function of first kind given by the formula (see [19, Chapter 5, Section 5.7])

Iν(z) =

∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| < ∞, | arg z| < π (2.2)

and let Kν be the Macdonald’s function of order ν defined by (see also [19, Chapter 5, Section 5.7])

Kν(z) =
π

2
I−ν(z) − Iν(z)

sin νπ
, | arg z| < π, ν , 0,±1,±2, . . . (2.3)

and Kn(z) = limν→n Kν(z), n = 0,±1,±2, . . .. Even more, from (2.2), (2.3) and [19, Chapter 5, Section
5.11] the following asymptotics for the modified Bessel functions Kν, for ν > 0, hold

Kν(r) ∼
Γ(ν)

2

( r
2

)−ν
as r → 0 and Kν(r) ∼

√
π

2
r−1/2e−r as r → ∞. (2.4)
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We recall the following integral representation for the Macdonald’s functions, see for instance [19,
Chapter 5, (5.10.25)]

Kν(z) = 2−ν−1zν
∫ ∞

0
e−(t+ 1

4t z2)t−ν−1 dt, | arg z| < π/4. (2.5)

It is clear from (2.5) that Kν(z) is positive for real z > 0.
As explained above, we will make use of the solutions to the extension problem (2.1) to prove the

results. Our operator falls into the scope of the general framework developed in [28] and from there
one can write a formula for the solution to such an extension problem. Let

qt(x) = e−tm2
(4πt)−n/2e−

1
4t |x|

2

be the heat kernel associated to the operator L. Observe that qt(x) = e−tm2
q̃t(x), with

∫
Rn q̃t(x) dx = 1.

For −2 < s < 2, s , 0, we define

us,ρ(x) =
ρs

2s|Γ(s/2)|

∫ ∞

0
e−

ρ2
4t qt(x)t−s/2−1dt. (2.6)

The identity is a Poisson type formula and it was introduced in a general setting in [28]. The integral
in (2.6) defines an L1 function and∫

Rn
us,ρ(x) dx =

ρs

2s|Γ(s/2)|

∫ ∞

0
e−

ρ2
4t t−s/2−1e−tm2( ∫

Rn
(4πt)−n/2e−

1
4t |x|

2
dx

)
dt

=
ρs

2s|Γ(s/2)|

∫ ∞

0
e−( ρ

2
4t +tm2)t−s/2−1 dt

=
ρs

2s|Γ(s/2)|
ms

∫ ∞

0
e−(u+ 1

4u (ρm)2)u−s/2−1 du

=
ρs

2s|Γ(s/2)|
ms2s/2+1(ρm)−s/22−s/2−1(ρm)s/2

∫ ∞

0
e−(u+ 1

4u (ρm)2)u−s/2−1 du

=
(ρm)s/2

2s/2−1|Γ(s/2)|
Ks/2(ρm),

where we used the identity (2.5) in the last equality. Even more, since ‖qt‖2 ≤ Ce−tm2
t−γ, γ > 1, the

integral defining us,ρ defines an L2 function. Indeed,

‖us,ρ‖2 ≤ Cs ρ
s
∫ ∞

0
e−

ρ2
4t ‖qt‖2t−s/2−1dt ≤ Cs ρ

−2γ. (2.7)

Actually, a better decay in ρ could be provided, in view of (2.5) and (2.4), but this is enough for our
purposes.

As mentioned before, the function us,ρ may be regarded as a generalised Poisson kernel and we
can give a result relating this function and the solution of the extension problem, the latter seen as a
generalised harmonic extension. Indeed, Theorem 2.4 below was proved in a more abstract setting, but
we state it here in the particular case of the relativistic operator and the solution of the corresponding
extension problem.
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Theorem 2.4 ( [28] Theorem 1.1). For f ∈ Lp(Rn), 1 ≤ p ≤ ∞, the function u(x, ρ) = f ∗ us,ρ(x) solves
the extension problem (2.1). Moreover, for 0 < s < 2,

lim
ρ→0

ρ1−s∂ρ( f ∗ us,ρ) = −21−s Γ(1 − s/2)
Γ(s/2)

Ls/2 f (2.8)

where the convergence is understood in the Lp sense, under the extra assumption that Ls/2 f ∈ Lp(Rn),
1 ≤ p < ∞.

Lemma 2.3 and Theorem 2.4 are the main ingredients to prove the first main result.

Proof of Theorem 2.1. As already remarked, it is enough to prove the result when u ∈ C∞0 (Rn× [0,∞)).
We take v = ϕ ∗ us,ρ and observe that, by Theorem 2.4, v solves the equation

(
L + ∂2

ρ + 1−s
ρ
∂ρ

)
v = 0,

with v(x, 0) = ϕ(x). Then, by taking this v in Lemma 2.3 and taking into account (2.8) in Theorem 2.4,
we obtain the inequality∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dxdρ ≥ 21−s Γ(1 − s/2)

Γ(s/2)

∫
Rn

u2(x, 0)
Ls/2ϕ(x)
ϕ(x)

dx,

as desired. �

Moreover, we claim the equality in Theorem 2.1 when u is the solution of the extension problem
with initial condition ϕ.

Proposition 2.5. Let 0 < s < 2 and let ϕ be a real valued function such that Ls/2ϕ ∈ L2(Rn). If u is the
solution of the extension problem (2.1) with initial condition ϕ, then∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dxdρ = 21−s Γ(1 − s/2)

Γ(s/2)

∫
Rn
ϕ(x)Ls/2ϕ(x) dx.

Proof. Note that if f and g belong both to L2(Rn), then their convolution is uniformly continuous
and vanishes at infinity. This can be proved by approximating f and g by a sequence of compactly
supported smooth functions. Since ϕ and us,ρ belong to L2(Rn), due to (2.7), it follows that the solution
u of the extension problem vanishes at infinity as a function of x for any fixed ρ. Moreover, ∂ jus,ρ ∈

L2(Rn), and the same is true for ∂ρ[ρ−sus,ρ]. Integrating by parts and using the fact that u vanishes at
infinity, we have ∫

Rn
|∂ ju(x, ρ)|2 dx = −

∫
Rn

u(x, ρ)∂2
ju(x, ρ) dx.

Furthermore, by (2.7), |u(x, ρ)| ≤ C‖ϕ‖2‖us,ρ‖2 ≤ Csρ
−2γ‖ϕ‖2 which goes to 0 as ρ tends to infinity. The

same is true for ∂ρu(x, ρ). A similar computation with the ρ-derivative yields∫ ∞

0

(
∂ρu(x, ρ)

)2
ρ1−s dρ = −

∫ ∞

0
u(x, ρ)∂ρ

(
ρ1−s∂ρu(x, ρ)

)
dρ − u(x, 0) lim

ρ→0
(ρ1−s∂u)(x, ρ).

Now, we sum up and use the fact that u solves the extension problem with initial condition ϕ. The
result follows. �
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For s > 0, let H s(Rn) be the Sobolev space defined in the following way: f ∈ H s(Rn) if and only
if f ∈ L2(Rn) and Ls/2 f ∈ L2(Rn). We observe that Proposition 2.5 says that the “energy norm” of the
solution u is a constant multiple of the H s(Rn) norm of the initial condition.

We now give the proof of Corollary 2.2.

Proof of Corollary 2.2. Let u(x, ρ) = f ∗ us,ρ(x, ρ). By Theorem 2.4, u solves the equation
(
L + ∂2

ρ +
1−s
ρ
∂ρ

)
u = 0, with u(x, 0) = f (x). By Lemma 2.3 with v(x, ρ) = u(x, ρ), and taking into account that

u = f ∗ us,ρ solves the differential equation, we have that∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dxdρ = −

∫
Rn

u(x, 0) lim
ρ→0

(ρ1−s∂u)(x, ρ) dx.

Then, by Theorem 2.4, the right hand side of the above identity reduces to

21−s Γ(1 − s/2)
Γ(s/2)

∫
Rn

f (x)Ls/2 f (x) dx.

On the other hand, by Theorem 2.1, we have that∫ ∞

0

∫
Rn

(∣∣∣∇u(x, ρ)
∣∣∣2 + m2u2(x, ρ)

)
ρ1−s dxdρ ≥ 21−s Γ(1 − s/2)

Γ(s/2)

∫
Rn

u2(x, 0)
Ls/2ϕ(x)
ϕ(x)

dx.

Combining all these facts, we conclude the result. �

2.2. Particular relevant examples

In this subsection we provide some examples of functions ϕ which lead to Hardy inequalities with
concrete weights. Observe that, in view of Corollary 2.2, the task boils down to finding functions
for which the action of Ls/2 can be performed and the quotient Ls/2ϕ

ϕ
is simplified. In general, one can

obtain inequalities with a weight function w if there exists a function ϕ such that Ls/2ϕ ≥ wϕ. Moreover,
optimality of the constants is susceptible to be studied if we indeed have Ls/2ϕ = wϕ. Unfortunately,
only few examples are known in which these computations can be accomplished.

We will give two examples that will produce two different Hardy inequalities, one with a “non-
homogeneous” weight and another with a “homogeneous” weight. They will be the weights analogous
to the corresponding Poisson-type kernel and singular potential in the Euclidean case, and the Hardy
inequalities will be the counterpart of (1.2) and (1.1), respectively.

The common starting point will be the following result relating the functions us,ρ and u−s,ρ defined
in (2.6), via Ls/2.

Lemma 2.6. For −2 < s < 2, s , 0, we have

ρsLs/2u−s,ρ =
2s|Γ(s/2)|
|Γ(−s/2)|

us,ρ.

Proof. For a function f in the Schwartz class, we define the Fourier transform as

f̂ (ξ) =
1

(2π)n/2

∫
Rn

f (x)e−ix·ξ dx, ξ ∈ Rn.
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The operator Ls/2 is then defined as the pseudo-differential operator

L̂s/2 f (ξ) = (|ξ|2 + m2)s/2 f̂ (ξ),

so we have to prove that ρs(|ξ|2 + m2)s/2û−s,ρ(ξ) = Csûs,ρ(ξ), where Cs is the constant in the statement
of the lemma.

From the definition of us,ρ in (2.6) and since

q̂t(ξ) = (2π)−n/2e−t(|ξ|2+m2), (2.9)

it follows that

ûs,ρ(ξ) =
ρs

(2π)n/22s|Γ(s/2)|

∫ ∞

0
e−

ρ2
4t e−t(|ξ|2+m2)t−s/2−1 dt.

The change of variables t(|ξ|2 + m2|)→ ρ2

4u turns the above integral into

1
(2π)n/2|Γ(s/2)|

(|ξ|2 + m2|)s/2
∫ ∞

0
e−

ρ2
4u e−u(|ξ|2+m2)us/2−1 du = ρs(|ξ|2 + m2|)s/2 2−s|Γ(−s/2)|

|Γ(s/2)|
û−s,ρ(ξ).

The proof is complete.
�

Lemma 2.6 was proved in [28] for more general operators L, by considering the inner product(
Ls/2 f ∗ u−s,ρ, g

)
and using the spectral definition of Ls/2. In fact, the proof of Lemma 2.6 depends

essentially on the numerical identity

ρs

2s

∫ ∞

0
e−

ρ2
4t e−tλt−s/2−1dt = λs/2

∫ ∞

0
e−

ρ2
4t e−tλts/2−1dt

valid for λ > 0 (which is true by the change of variables in the proof of Lemma 2.6).

2.2.1. A non-homogeneous Hardy inequality

The first example of Hardy inequality will be an application of Lemma 2.6 with the choice ϕ = u−s,ρ,
where us,ρ is the function given in (2.6). Thus, it is easy to obtain a “non-homogeneous Hardy type
inequality” from the general Hardy inequality in Corollary 2.2.

Corollary 2.7. Let 0 < s < 2. Let f be a real valued function on Rn such that f and Ls/2 f are in
L2(Rn). Then we have

(Ls/2 f , f ) ≥ msρs
∫
Rn

f 2(x)

(
√
ρ2 + |x|2)s

K n+s
2

(m
√
ρ2 + |x|2)

K n−s
2

(m
√
ρ2 + |x|2)

dx, ρ > 0, (2.10)

where equality is achieved for the function u−s,ρ.

Proof. In the case of the operator L, recall that the heat kernel is explicitly given by

qt(x) = (4πt)−n/2e−
1
4t |x|

2
e−tm2
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and hence the expression in (2.6) can be explicitly computed. Indeed,

us,ρ(x) =
ρs

2s|Γ(s/2)|

∫ ∞

0
e−

ρ2
4t (4πt)−n/2e−

1
4t |x|

2
e−tm2

t−s/2−1dt

=
ρs

2s|Γ(s/2)|
(4π)−n/2

∫ ∞

0
e−

ρ2+|x|2
4t e−tm2

t−(s+n)/2−1dt.

From (2.5) we can deduce that

us,ρ(x) =
2

2
n+s

2 πn/2|Γ(s/2)|
m

n+s
2 ρsK n+s

2
(m

√
ρ2 + |x|2)(

√
ρ2 + |x|2)−(n+s)/2 (2.11)

for −2 < s < 2. Then observe that inequality (2.10) follows from Corollary 2.2 (indeed, if f ∈
L2 and Ls/2 f ∈ L2, the solution of the extension problem given by u(x, ρ) = f ∗ us,ρ(x) belongs to
W s

0(Rn × [0,∞)), see [25, Proposition 3.13]), after choosing ϕ = u−s,ρ as above, and taking into account
Lemma 2.6.

It is verified that equality holds when we take f (x) = ρsu−s,ρ by Lemma 2.6 and perform a direct
computation. �

Remark 2.8. From the computation in the proof of Corollary 2.7 we see that the solution of the
extension problem u(x, ρ) = f ∗ us,ρ(x) has an expression as an integral with the explicit Poisson-type
kernel (2.11).

2.2.2. A homogeneous Hardy inequality

The second example will lead us to a “homogeneous” Hardy inequality. Observe that in the Hardy
inequality in Corollary 2.7 we cannot just take limit as ρ goes to zero to get something non-trivial. For
any δ > 0 and α > 0, let Rα,δ to be the function defined by

Rα,δ(x) =
1

Γ(α/2)

∫ ∞

0
e−tδ2

qt(x)tα/2−1 dt. (2.12)

In view of (2.9) and by using the definition of the Gamma function Γ(λ) =
∫ ∞

0
e−vvλ−1 dv, we have that

R̂α,δ(ξ) =
(2π)−n/2

Γ(α/2)

∫ ∞

0
e−t(δ2+|ξ|2+m2)tα/2−1 dt = (2π)−n/2(δ2 + |ξ|2 + m2)−α/2.

For 0 < α < n, we can consider also the functions Rα := Rα,0

Rα(x) =
1

Γ(α/2)

∫ ∞

0
qt(x)tα/2−1 dt

and analogously,
R̂α(ξ) = (2π)−n/2(|ξ|2 + m2)−α/2. (2.13)

The functions Rα satisfy Rα ∗ Rβ = Rα+β. This semigroup property can be easily deduced from (2.13),
see also [27, page 135]. We will denote the functions Rα as “Riesz potentials for the operator L”, but
actually they are essentially nothing but the kernels of the classical Bessel potentials for the Euclidean
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Laplacian (cf. [27, Chapter V, Section 3]). Moreover, they can be explicitly calculated by using the
expression for the heat kernel and the integral representation for Kν. Indeed,

Rα(x) =
1

Γ(α/2)

∫ ∞

0
qt(x)tα/2−1dt =

1
Γ(α/2)

∫ ∞

0
(4πt)−n/2e−

1
4t |x|

2
e−tm2

tα/2−1dt

=
2

2
α+n

2 Γ(α/2)πn/2
m

n−α
2 K n−α

2
(m|x|)|x|−

n−α
2 . (2.14)

The second example of Hardy inequality will be with the choice ϕ = Rα,δ ∗ u−s,ρ, where Rα,δ is the
one in (2.12) and us,ρ is the function given in (2.6). We will need the properties of the kernels Rα of
the Riesz potentials L−α/2, and the resulting Hardy inequality will be with an “homogeneous” weight
(homogeneity to be understood near the origin, see Remark 2.10).

Corollary 2.9. Let 0 < s < 2. Let f ∈ L2(Rn) be such that Ls/2 f ∈ L2(Rn). Then,

(Ls/2 f , f ) ≥ 2s/2ms/2 Γ((n + s)/4)
Γ((n − s)/4)

∫
Rn

f 2(x)
|x|s/2

K n+s
4

(m|x|)

K n−s
4

(m|x|)
dx.

Proof. We consider the inequality in Corollary 2.2 with ϕ(x) = Rα,δ ∗ u−s,ρ. In view of the relation in
Lemma 2.6 we obtain that

(Ls/2 f , f ) ≥ ρ−s 2sΓ(s/2)
|Γ(−s/2)|

∫
Rn

f 2(x)
Rα,δ ∗ us,ρ(x)
Rα,δ ∗ u−s,ρ(x)

dx.

Recalling the definition of u−s,ρ in (2.6) we see that ρsu−s,ρ(x) converges pointwise to 2s |Γ(s/2)|
|Γ(−s/2)|Rs(x) as

ρ tends to zero. We also have ρsRα,δ ∗ u−s,ρ(x) ≤ 2s |Γ(s/2)|
|Γ(−s/2)|Rα,δ ∗ Rs(x) and consequently

(Ls/2 f , f ) ≥
∫
Rn

f 2(x)
Rα,δ ∗ us,ρ(x)
Rα,δ ∗ Rs(x)

dx.

As us,ρ is an approximate identity, see for instance [7, Proof of Theorem 2.4], by passing first to the
limit as ρ goes to zero, then letting δ → 0, and finally noting that Rα has the semigroup property, we
obtain

(Ls/2 f , f ) ≥
∫
Rn

f 2(x)
Rα(x)
Rα+s(x)

dx.

Recalling the explicit expression for Rα in (2.14) and simplifying we get

(Ls/2 f , f ) ≥ 2s/2ms/2 Γ((α + s)/2)
Γ(α/2)

∫
Rn

f 2(x)|x|−s/2
K n−α

2
(m|x|)

K n−α−s
2

(m|x|)
dx.

The choice α = n−s
2 leads to the desired inequality

(Ls/2 f , f ) ≥ 2s/2ms/2 Γ((n + s)/4)
Γ((n − s)/4)

∫
Rn

f 2(x)
|x|s/2

K n+s
4

(m|x|)

K n−s
4

(m|x|)
dx.

This completes the proof. �
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Remark 2.10. We could get a lower bound with a more specific weight in the right hand side of the
inequality in Corollary 2.9, by using estimates for the ratio of Macdonald’s functions. Observe that, in
particular, the ratio of Macdonald’s functions behaves, near the origin, like

K n+s
4

(m|x|)

K n−s
4

(m|x|)
∼ (m|x|)−s/2,

and the weight in the right hand side in Corollary 2.9 resembles its counterpart in the Hardy inequality
for the Euclidean Laplacian.

3. Part II: Hardy inequalities via a ground state representation

Recall that the fractional relativistic operator is the operator Ls/2 − ms. We have an integral
representation, namely

Ls/2 f (x) − ms f (x) = cn,sm
n+s

2 p. v.
∫
Rn

f (x) − f (y)
|x − y|

n+s
2

K n+s
2

(m|x − y|) dy, x ∈ Rn,

where the positive constant is given by

cn,s = −2
s−n
2 +1π−n/2 1

Γ(−s/2)
,

see [10, 24]. Recall also that the Riesz kernel Rα(x) is given by

Rα(x) =
2

2
α+n

2 Γ(α/2)πn/2
m

n−α
2 K n−α

2
(m|x|)|x|−

n−α
2

and we also have
R̂α(ξ) = (|ξ|2 + m2)−α/2.

Finally, let the corresponding ground state representation for the operator Ls/2 be given by

Hs[ f ] = (Ls/2 f , f ) − En,sms/2
∫
Rn

f (x)2

|x|s/2
K n+s

4
(m|x|)

K n−s
4

(m|x|)
dx

where

En,s = 2s/2 Γ((n + s)/4)
Γ((n − s)/4)

.

The following theorem contains a formula for the ground representation showing that Hs[ f ] is positive.
It is the same as in [11, Proposition 4.1] with the obvious modification, and we sketch the proof.

Theorem 3.1. Let 0 < s < min{1, n}. If u ∈ C∞0 (Rn \ {0}) and v(x) = u(x)(R n+s
2

(x))−1, then

Hs[u] = cn,sm
n+s

2

∫
Rn

∫
Rn
|v(x) − v(y)|2R n+s

2
(x)R n+s

2
(y)

K n+s
2

(m|x − y|)

|x − y|
n+s

2
dx dy. (3.1)
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Proof. The integral representation for Ls/2 f (x) − ms f (x) gives

(
(Ls/2 − ms) f , g

)
= cn,sm

n+s
2

∫
Rn

∫
Rn

( f (x) − f (y))g(x)
|x − y|

n+s
2

K n+s
2

(m|x − y|) dx dy.

In view of the symmetry of the kernel, we can also write

(
(Ls/2 − ms) f , g

)
= −cn,sm

n+s
2

∫
Rn

∫
Rn

( f (x) − f (y))g(y)
|x − y|

n+s
2

K n+s
2

(m|x − y|) dx dy.

Adding both identities, we obtain that

(
(Ls/2 − ms) f , g

)
= cn,sm

n+s
2

1
2

∫
Rn

∫
Rn

( f (x) − f (y))(g(x) − g(y))
|x − y|

n+s
2

K n+s
2

(m|x − y|) dx dy. (3.2)

For α > s to be chosen later, take g(x) = Rα(x) and f (x) =
|u(x)|2

Rα(x) . By Plancherel identity, the left hand
side of (3.2) reads as∫

Rn

(
(|ξ|2 + m2)s/2 − ms) f̂ (ξ)̂g(ξ) dξ

=

∫
Rn

(|ξ|2 + m2)s/2−α/2 f̂ (ξ) dξ − ms
∫
Rn

(|ξ|2 + m2)−α/2 f̂ (ξ) dξ

=

∫
Rn
|u(x)|2

Rα−s(x)
Rα(x)

dx − ms
∫
Rn
|u(x)|2 dx

= 2s/2 Γ(α/2)
Γ((α − s)/2)

ms/2
∫
Rn

|u(x)|2

|x|s/2
K n−α+s

2
(m|x|)

K n−α
2

(m|x|)
dx − ms

∫
Rn
|u(x)|2 dx,

where we used the explicit expression for Rα. With the choice α = n+s
2 , we arrive at

2s/2 Γ(α/2)
Γ((α − s)/2)

ms/2
∫
Rn

|u(x)|2

|x|s/2
K n−α+s

2
(m|x|)

K n−α
2

(m|x|)
dx = En,sms/2

∫
Rn

f (x)2

|x|s/2
K n+s

4
(m|x|)

K n−s
4

(m|x|)
dx.

The right hand side of (3.2), after simplification, reduces to

cn,s
1
2

∫
Rn

∫
Rn

(
|u(x) − u(y)|2 −

∣∣∣∣∣ u(x)
Rα(x)

−
u(y)
Rα(y)

∣∣∣∣∣2Rα(x)Rα(y)
)K n+s

2
(m|x − y|)

|x − y|
n+s

2
dx dy.

By taking (3.2) into account with f = g, the proof is completed. �

As an immediate corollary of Theorem 3.1, we recover the same fractional Hardy inequality as in
Corollary 2.9.

Corollary 3.2. Let 0 < s < 2. Let f ∈ L2(Rn) be such that Ls/2 f ∈ L2(Rn). Then

(Ls/2 f , f ) ≥ 2s/2ms/2 Γ((n + s)/4)
Γ((n − s)/4)

∫
Rn

f (x)2

|x|s/2
K n+s

4
(m|x|)

K n−s
4

(m|x|)
dx.

A final remark concerning sharpness is in order.
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Remark 3.3. The constant in Corollary 3.2 is not achieved in the class of functions for which both sides
of the inequality are finite. This can be deduced from the ground state representation in Theorem 3.1,
which represents the error obtained in the Hardy inequality. It can be also seen that the constant
Cn,s,m = 2s/2ms/2 Γ((n+s)/4)

Γ((n−s)/4) is sharp, just by the same reasoning as in [11, Remark 4.2]. Indeed, consider
a sequence of functions u j, supported in the unit ball, approximating R n+s

2
(x) close to the origin. The

right hand side in (3.1) remains finite as j→ ∞, but
∫
Rn

u j(x)2

|x|s/2
K n+s

4
(m|x|)

K n−s
4

(m|x|) dx diverges.
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