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Abstract: The purpose of this note is to present a “new” approach to the decay rate of the solutions
to the no-sign obstacle problem from the free boundary, based on Weiss-monotonicity formula. In
presenting the approach we have chosen to treat a problem which is not touched earlier in the existing
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a shorter proof, and may have wider applications.
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1. Introduction

1.1. Problem statement

We consider a singular no-sign obstacle problem of the typediv(xa
1∇u) = xa

1 f (x)χ{u,0} in B+
1 ,

u = 0 on B1 ∩ {x1 = 0},
(1.1)

where a > 1, χD is the characteristic function of D, B1 ⊂ R
n is the unit ball and B+

1 = B1 ∩ {x1 > 0}.
The equation is considered in the weak form,∫

B+
1

xa
1∇u∇ϕdx =

∫
B+

1

xa
1 f (x)ϕχ{u,0}dx,
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for all ϕ ∈ W1,2
0 (B+

1 ). This problem, when the non-negativity assumption u ≥ 0 is imposed, is already
studied in [9]. The above no-sign problem, as a general semilinear PDE with non-monotone r.h.s.,
introduces certain difficulties and to some extent some challenges. To explain this we shall give a very
short review of the existing results and methods for similar type of problems (see also the book [6] and
Caffarelli’s review of the classical obstacle problem [2]). The general methodology of approaching
such problems lies in using the so-called ACF-monotonicity formula (see [8]) or alternatively using
John Andersson’s dichotomy (see [1] or [3]). Although there are still some chances that both these
methods will work for our problem above, we shall introduce a third method here which relies on a
softer version of a monotonicity formula (which has a wider applicability) in combination with some
elaborated analysis. We refer to this as a Weiss-type monotonicity formula, see (2.1) below.

1.2. Notation

For clarity of exposition we shall introduce some notations and definitions here that are used
frequently in the paper. Throughout this paper, Rn will be equipped with the Euclidean inner product
x · y and the induced norm |x|, Br(x0) will denote the open n-dimensional ball of center x0, radius r
with the boundary ∂Br(x0). In addition, Br = Br(0) and ∂Br = ∂Br(0). Rn

+ stands for half space
{x ∈ Rn : x1 > 0} as well as B+

r = Br ∩ R
n
+. Moreover, in the text we use the n-dimensional Hausdorff

measure Hn. For a multi-index µ = (µ1, · · · , µn) ∈ Zn
+, we denote the partial derivative with

∂µu = ∂
µ1
x1 · · · ∂

µn
xn u and |µ|1 = µ1 + · · · + µn.

For a domain Ω ⊂ Rn
+ and 1 ≤ p < ∞, we use the notation Lp(Ω) and Wm,p(Ω) as the standard

spaces. However, we need some new notation for the weighted spaces

Lp(Ω; xθ1) :=
{

u :
∫

Ω

xθ1|u(x)|p dx < ∞
}
,

where θ ∈ R. For m ∈ N, we define the weighted Sobolev space Wm,p(Ω; xθ1) as the closure of C∞(Ω)
with the following norm,

‖u‖Wm,p(Ω;xθ1) := ‖u‖Lp(Ω;xθ1) + ‖x1Du‖Lp(Ω;xθ1) + · · · + ‖xm
1 Dmu‖Lp(Ω;xθ1).

It is noteworthy that for θ = 0, we have Lp(Ω; 1) = Lp(Ω) but Wm,p(Ω; 1) ) Wm,p(Ω). Generally, the
trace operator has no sense for θ > −1, while functions in W1,p(Ω; xθ1) have zero traces on {x1 = 0} for
θ ≤ −1. (Theorem 6 in [7]).

1.3. Main results

We consider u ∈ W1,p(B+
1 , x

θ
1) for some θ < −n and n < p to be a weak solution of (1.1). This

condition provides the continuity of x(θ+n)/p
1 u up to the boundary according to Sobolev embedding

Theorem 3.1 in [5]. First, we prove the following a priori regularity result.

Proposition 1.1. (Appendix A) Let u ∈ W1,p(B+
1 , x

θ
1) be a solution of (1.1) for some θ < −n, n < p and

f ∈ L∞(B+
1 ). Then for each max{0, 1 + θ+n

p } < β < 1 there exists C = C(β, n, a) such that for r ≤ 1/2,

sup
B+

r (x0)
|xβ−1

1 u| ≤ Cr2β,

for all x0 ∈ {x1 = 0}.
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In Appendix A we will prove this proposition. Our main result in this paper concerns the optimal
growth rate of solution u of (1.1) at touching free boundary points, which is stated in the following
theorem.

Theorem 1.2. Suppose u ∈ W1,p(B+
1 , x

θ
1) is a solution of (1.1) for some θ < −n, n < p and x0 ∈ ∂{u =

0} ∩ {x1 = 0} ∩ B+
1/4. Moreover, if f ∈ Cα(B+

1 ) for some α ∈ (0, 1), then

|u(x)| ≤ Cx2
1

(( |x − x0| + x1

x1

)(n+a+4)/2
+ 1

)
,

for a universal constant C = C(a, n, [ f ]0,α).

2. Monotonicity formula

Our main tool in proving optimal decay for solutions from the free boundary points is
Weiss-monotonicity formula, combined with some elaborated techniques. We define the balanced
energy functional

Φx0(r, u) = r−n−2−a
∫

B+
r (x0)

(xa
1|∇u|2 + 2xa

1 f (x0)u)dx − 2r−n−3−a
∫
∂Br(x0)∩Rn

+

xa
1u2 dHn−1. (2.1)

Considering the scaling ur,x0 = ur(x) =
u(rx+x0)

r2 , Φx0(r, u) = Φ0(1, ur). In what follows we prove almost-
monotonicity of the energy.

Lemma 2.1 (Almost-Monotonicity Formula). Let u solve (1.1) and be as in Proposition 1.1 and assume
that ∇u(x0) = 0 for some x0 ∈ {x1 = 0} and f ∈ Cα(B+

1 ) for some α ∈ (0, 1). Then u satisfies, for r ≤ r0

such that B+
r0

(x0) ⊆ B+
1 ,

d
dr

Φx0(r, u) ≥ 2r
∫
∂B1∩R

n
+

xa
1 (∂rur)2 dHn−1 −Crα+β−2,

where C depends only on ‖ f ‖Cα(B+
1 ) and the constant C(β, n, a) in Proposition 1.1.

Proof. Let ur(x) := u(rx+x0)
r2 , then

1
2

d
dr

Φx0(r, u)

=
1
2

d
dr

∫
B+

1

(xa
1|∇ur|

2 + 2xa
1 f (x0)ur) dx − 2

∫
∂B1∩R

n
+

xa
1u2

r dHn−1


=

1
2

∫
B+

1

(2xa
1∇ur · ∇∂rur + 2xa

1 f (x0)∂rur) dx − 4
∫
∂B1∩R

n
+

xa
1ur∂rur dHn−1


=

∫
B+

1

div(xa
1∂rur∇ur) − ∂rur div(xa

1∇ur) + xa
1 f (x0)∂rur dx − 2

∫
∂B1∩R

n
+

xa
1ur∂rur dHn−1

=

∫
B+

1

( f (x0) − f (rx + x0)χ{ur,0})xa
1∂rur dx +

∫
∂B+

1

xa
1∂rur∇ur · ν dHn−1 − 2

∫
∂B1∩R

n
+

xa
1ur∂rur dHn−1
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=

∫
B+

1

( f (x0) − f (rx + x0)χ{ur,0})xa
1∂rur dx + r

∫
∂B1∩R

n
+

xa
1 (∂rur)2 dHn−1

=

∫
B+

1

( f (x0) − f (rx + x0))χ{ur,0}xa
1∂rur dx + f (x0)

∫
B+

1∩{ur=0}
xa

1∂rur dx + r
∫
∂B1∩R

n
+

xa
1 (∂rur)2 dHn−1.

Note that the second integral ∫
B+

1∩{ur=0}
xa

1∂rur dx = 0

as |{ur = 0 ∧ ∇ur , 0}| = 0 and ∂rur = 0 on {ur = 0 ∧ ∇ur = 0}. Since |∂rur| ≤ Crβ−2 we infer that∫
B+

1

( f (x0) − f (rx + x0))χ{ur,0}xa
1∂rur dx ≥ −Crα+β−2

and conclude that
1
2

d
dr

Φx0(r, u) ≥ r
∫
∂B1∩R

n
+

xa
1 (∂rur)2 dHn−1 −Crα+β−2.

�

Definition 2.2. Let HP2 stand for the class of all two-homogeneous functions P ∈ W1,2(B+
1 ; xa−2

1 )
satisfying div(xa

1∇P) = 0 in Rn
+ with boundary condition P = 0 on x1 = 0. We also define the operator

Π(v, r, x0) to be the projection of vr,x0 onto HP2 with respect to the inner product

〈v,w〉 =

∫
∂B1∩R

n
+

xa
1vw dHn−1.

We will use the following extension of [10, Lemma 4.1].

Lemma 2.3. Assume that div(xa
1∇w) = 0 in B+

1 with boundary condition w = 0 on x1 = 0, and
w(0) = |∇w(0)| = 0. Then ∫

B+
1

xa
1|∇w|2 dx − 2

∫
∂B1∩R

n
+

xa
1w2 dHn−1 ≥ 0,

and equality implies that w ∈ HP2, i.e., it is homogeneous of degree two.

Proof. We define an extension of the Almgren frequency,

r 7→ N(w, r) :=
r
∫

B+
r

xa
1|∇w|2 dx∫

∂B+
r

xa
1w2 dHn−1

,

1
2

N′(w, r)
N(w, r)

=

∫
∂B+

r
xa

1(∂νw)2 dHn−1∫
∂B+

r
xa

1w∂νw dHn−1
−

∫
∂B+

r
xa

1w∂νw dHn−1∫
∂B+

r
xa

1w2 dHn−1
≥ 0.

Moreover, if N(w, r) = κ for ρ < r < σ, it implies that w is homogeneous of degree κ in Bσ \ Bρ.
Now supposing towards a contradiction that N(w, s) < 2 for some s ∈ (0, 1], and defining wr(x) :=

w(rx)
‖w(rx)‖

L2(∂B+
1 ,x

b
1)

, we infer from N(w, s) < 2 that ∇wr is bounded in L2(B+
1 ; xa

1) and so ∇wrm ⇀ ∇w0 weakly
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in L2(B+
1 ; xa

1) and wrm → w0 strongly in L2(∂B+
1 ; xa

1) as a sequence rm → 0. Consequently, w0 satisfies
div(xa

1∇w0) = 0 in B+
1 , w0(0) = |∇w0(0)| = 0 and w0 = 0 on x1 = 0 as well as ‖w0‖L2(∂B+

1 ;xa
1) = 1.

Furthermore, for all r ∈ (0, 1) we have

N(w0, r) = lim
rm→0

N(wrm , r) = lim
rm→0

N(w, rrm) = N(w, 0+),

and so w0 must be a homogeneous function of degree κ := N(w, 0+) < 2. Note that for every multi-
index µ ∈ {0} × Zn−1

+ , the higher order partial derivative ζ = ∂µw0 satisfies the equation div(xa
1∇ζ) = 0

in Rn
+. From the integrability and homogeneity we infer that ∂µw0 ≡ 0 for κ − |µ|1 < −n

2 , otherwise∫
B+

1

|∂µw0|
2dx =

(∫ 1

0
r2(κ−|µ|1)+n−1dr

) ∫
∂B1∩R

n
+

|∂µw0|
2dHn−1

can not be bounded. Thus x′ 7→ w0(x1, x′) is a polynomial, and we can write w0(x1, x′) = xκ1 p( x′
x1

).
Consider the multi-index µ such that |µ|1 = deg p, so ∂µw0 = xκ−|µ|11 ∂µp is a solution of div(xa

1∇ζ) = 0
in Rn

+. Therefore, ∂µw0 ∈ W1,2(B+
1 ; xθ1) for −1 < θ according to Proposition A.1, which implies that

2(κ − |µ|1) + θ > −1. So, deg p < κ + θ+1
2 .

Substituting w0(x) = xκ−1
1 (αx1 + ` · x′) for κ > 1 in the equation and comparing with w0(0) =

|∇w0(0)| = 0 we arrive at the only nonzero possible case being κ + a = 2, which contradicts a > 1.
The case κ < 1 leads to deg p = 0 and w0(x) = αxκ1, which implies κ + a = 1 and a contradiction to
a > 1. �

3. Decay rate of solutions close to degenerate points

Proposition 3.1. Let f ∈ Cα(B+
1 ) and u be solution of (1.1) satisfying the condition in Proposition 1.1.

Then the function

r 7→ r−n−3−a
∫
∂B+

r (x0)
xa

1u2(x) dHn−1

is bounded on (0, 1/8), uniformly in x0 ∈ ∂{u = 0} ∩ {x1 = 0} ∩ B1/8.

Proof. Let us divide the proof into steps.

Step 1 We claim that there exists a constant C1 < ∞ such that for all x0 ∈ ∂{u = 0} ∩ {x1 = 0} ∩ B1/8

and r ≤ 1/8,

f (x0)
∫

B+
1

xa
1ux0,r(x) dx ≥ −C1,

where ux0,r := u(rx+x0)
r2 . To prove this we observe that w := ux0,r satisfies

div(xa
1∇w) = xa

1 fr(x) := xa
1 f (x0 + rx)χ{ux0 ,r,0}, in B+

1 .

Moreover, for φ(ρ) := ρ−n−a+1
∫
∂B+

ρ
xa

1w(x) dHn−1 we have

φ′(ρ) =

∫
∂B+

1

xa
1∇w(ρx) · x dHn−1 = ρ−n−a+1

∫
B+
ρ

div(xa
1∇w(x)) dx
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= ρ−n−a+1
∫

B+
ρ

xa
1 fr(x) dx.

If f (x0) ≥ 1
8α [ f ]0,α then fr ≥ 0 for r ≤ 1/8. Therefore φ is increasing and φ(ρ) ≥ φ(0) = 0 (recall that

w(0) = 0). Similarly, if f (x0) ≤ − 1
8α [ f ]0,α, we obtain that φ(ρ) ≤ 0. Therefore the claim is true for

C1 = 0 in these cases.
In the case | f (x0)| ≤ 1

8α [ f ]0,α, then | fr(x)| ≤ 2
8α [ f ]0,α and then

|φ′(ρ)| ≤ 21−3α[ f ]0,αρ
−n−a+1

∫
B+
ρ

xa
1 dx ≤ 21−3α[ f ]0,αρ.

So, |φ(ρ)| ≤ 2−3α[ f ]0,αρ
2 and∣∣∣∣∣∣ f (x0)

∫
B+

1

xa
1ux0,r(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣ f (x0)
∫ 1

0
ρn+a−1φ(ρ)dρ

∣∣∣∣∣∣
≤

2−6α[ f ]2
0,α

n + a + 2
=: C1.

Step 2 We claim that there exists a constant C2 < ∞ such that

distL2(∂B1∩R
n
+;xa

1)(ux0,r,HP2) ≤ C2,

for every x0 ∈ ∂{u = 0} ∩ {x1 = 0} ∩ B1/8, r ≤ 1/8. Suppose towards a contradiction that this is not true,
then there exists a sequence um, xm → x̄ and rm → 0 such that

Mm = ‖um
xm,rm
− Π(um, rm, xm)‖L2(∂B1∩R

n
+;xa

1) → ∞, m→ ∞.

Let um := um
xm,rm

and pm = Π(um, rm, xm) and wm =
um−pm

Mm
. Then, since um(0) = |∇um(0)| = 0 and by the

monotonicity formula and the result of previous step, we find that∫
B+

1

xa
1|∇wm|

2 dx − 2
∫
∂B+

1

xa
1w2

m dHn−1

=
1

M2
m

Φxm(rm) − 2
∫

B+
1

f (xm)xa
1um dx


+

1
M2

m

∫
∂B+

1

xa
1

(
pm∇pm · ν − 2um∇pm · ν − 2p2

m + 4um pm

)
dHn−1 (3.1)

≤
1

M2
m

(Φxm(rm) + 2C1) ≤
1

M2
m

(
Φxm

(
1
2

)
+ 2C1

)
→ 0, m→ ∞.

Passing to a subsequence such that ∇wm ⇀ ∇w in L2(B+
1 ; xa

1) as m → ∞, the compact embedding on
the boundary implies that ‖w‖L2(∂B1∩R

n
+;xa

1) = 1, and∫
B+

1

xa
1|∇w|2dx ≤ 2

∫
∂B1

xa
1w2 dHn−1 (3.2)
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and that ∫
∂B1

wp dHn−1 = 0, ∀p ∈ HP2. (3.3)

Since div(xa
1∇wm) = x1

Mm
f (xm+r·)χ{um,0}, it follows that div(xa

1∇w) = 0 in B+
1 . Moreover, we obtain from

Lp-theory that wm → w in C1,α
loc (B+

1 ) for each α ∈ (0, 1) as m → ∞. Consequently w(0) = |∇w(0)| = 0.
Thus we can apply Lemma 2.3 and obtain from (3.2) that w is homogeneous of degree 2, contradicting
(3.3) and ‖w‖L2(∂B1) = 1. This proves the claim.

Step 3 We will show that there exists constant C2 such that for all x0 ∈ ∂{u = 0} ∩ {x1 = 0} satisfying

lim inf
r→0+

|B+
r (x0) ∩ {u = 0}|
|B+

r |
= 0, (3.4)

we have
Φx0(0+) −

∫
B+

1

xa
1 f (x0)ux0,r dx ≥ −C2rα| f (x0)|.

In order to see this, we can observe that∫
B+

1

xa
1 f (x0)ux0,r(x)dx = f (x0)

∫ 1

0

∫ 1

0
∂s

[ ∫
∂B+

ρ

(sx1)aux0,r(sx) dHn−1(x)
]

ds dρ

= f (x0)
∫ 1

0
ρ

∫ 1

0

∫
∂B+

ρ

(sx1)a∇ux0,r(sx) · ν dHn−1 ds dρ

= f (x0)
∫ 1

0
ρ

∫ 1

0
s
∫

B+
ρ

div((sx1)a∇ux0,r(sx)) dx ds dρ

= f (x0)
∫ 1

0
ρ

∫ 1

0
s
∫

B+
ρ

(sx1)a f (rsx)χΩx0 ,r
(sx) dx ds dρ

= f (x0)2
∫ 1

0
ρ1+a+n

∫ 1

0
s1+a

∫
B+

1

xa
1 dx ds dρ

+ f (x0)
∫ 1

0
ρ1+a+n

∫ 1

0
s1+a

∫
B+

1

xa
1

(
f (rsρx) − f (x0)

)
dx ds dρ

≤
f (x0)2

(n + a + 2)(a + 2)

∫
B+

1

xb
1 dx + C2rα| f (x0)|.

Now by condition (3.4), consider a sequence rm → 0 such that |B
+
rm (x0)∩{v=0}|
|B+

rm |
→ 0 and assume that

∇(ux0,rm − px0,rm) ⇀ ∇w in L2(B+
1 ; xa

1) as m → ∞. Observe now div(xa
1w) = f (x0) in B+

1 and by similar
calculation as above we will have∫

B+
1

xa
1 f (x0)w dx =

f (x0)2

(n + a + 2)(a + 2)

∫
B+

1

xa
1 dx.

On the other hand,

Φx0(0+) = lim
m→∞

Φx0(rm)

Mathematics in Engineering Volume 2, Issue 4, 698–708.



705

≥

∫
B+

1

(xa
1|∇w|2 + 2 f (x0)xa

1w)dx − 2
∫
∂B+

1

xa
1w2 dHn−1

=

∫
B+

1

(−w div(xa
1∇w) + 2 f (x0)xa

1w)dx

=

∫
B+

1

xa
1 f (x0)w dx =

f (x0)2

(n + a + 2)(a + 2)

∫
B+

1

xa
1 dx.

Step 4 In this step, we prove the proposition for the points satisfying condition (3.4). For these
points, we have

1
2
∂r

[ ∫
∂B+

1

xa
1u2

x0,r dHn−1
]

=

∫
∂B+

1

xa
1ux0,r∂rux0,r dHn−1 =

1
r

∫
∂B+

1

xa
1ux0,r(∇ux0,r · x − 2ux0,r) dHn−1

=
1
r

∫
B+

1

(xa
1|∇ux0,r|

2 + ux0,r div(xa
1∇ux0,r))dx −

2
r

∫
∂B+

1

xa
1u2

x0,r dHn−1

=
1
r

Φx0(r) − 2
∫

B+
1

f (x0)xa
1ux0,r(x) dx +

∫
B+

1

xa
1 f (rx)ux0,r(x) dx


=

1
r

Φx0(r) −
∫

B+
1

f (x0)xa
1ux0,rdx

 +
1
r

∫
B+

1

( f (rx) − f (x0))xa
1ux0,r(x) dx


≥

1
r

Φx0(0+) −
∫

B+
1

f (x0)xa
1ux0,rdx

 −Crα+β−2 −C3rα+β−2 ≥ −C2rα−1 −Crα+β−2 −C3rα+β−2

Thus r 7→ ∂r

[∫
∂B+

1
xa

1u2
x0,r dHn−1

]
is integrable and we obtain uniform boundedness of∫

∂B+
1

xa
1u2

x0,rdH
n−1 = r−n−3−b

∫
∂Br(x0)+ xa

1u2 dHn−1 for all points with property (3.4). It follows that the

boundedness holds uniformly on the closure of those points x0.

Step 5 We now consider the case

lim inf
r→0+

|B+
r (x0) ∩ {u = 0}|
|B+

r |
> 0.

Let us assume towards a contradiction that there are sequences um, rm and xm such that and Mm =

‖uxm,rm‖L2(∂B+
1 ) → +∞ as m → ∞. Setting wm =

um
xm ,rm
Mm

we obtain, as in Step 2, that a subsequence of
wm converges weakly in W1,2(B+

1 ; xa−2
1 ) to a function w, with ‖w‖L2(∂B+

1 ;xa
1) = 1, w(0) = |∇w(0)| = 0,

div(xa
1∇w) = 0 and ∫

B+
1

xa
1|∇w|2dx ≤ 2

∫
∂B+

1

xa
1w2 dHn−1.

According to Lemma 2.3, w ∈ HP2. In addition we now know that∫
B+

1

χ{w=0} ≥ lim sup
rm→0+

∫
B+

1

χ{ux0 ,rm
=0} > 0.

This however contradicts the analyticity of w inside B+
1 , knowing that ‖w‖L2(∂B1;xa

1) = 1. �
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Now we are ready to prove the main result of the article.

Proof of Theorem 1.2. From Theorem 8.17 in [4], we know that if div(b(x)∇w) = g such that 1 ≤
b(x) ≤ 5a, then there exists a universal constant C = C(a, n) such that

‖w‖L∞(BR/2) ≤ C(a, n)
(
R−n/2‖w‖L2(BR) + R2‖g‖L∞(BR)

)
.

Now for x0 ∈ ∂{u = 0}∩{x1 = 0}∩B+
1/8 and an arbitrary point y ∈ ∂B+

r (x0), we apply the above estimate

for R = 2δ/3, w = (δ/3)au and equation div (b(x)∇w) = xa
1 fχ{u,0}, where δ = y1 and b(x) =

xa
1

(δ/3)a . Note
that 1 ≤ b(x) ≤ 5a in B2δ/3(y) and

|u(y)| ≤ C(a, n)
(
(2δ/3)−n/2‖u‖L2(B2δ/3(y)) + (2δ/3)25a‖ f ‖L∞(B2δ/3(y))

)
.

According to Proposition 3.1,

‖u‖2
L2(B2δ/3(y)) ≤

(3
δ

)a
∫

B2δ/3(y)
xa

1|u|
2 dx

≤
(3
δ

)a
∫

Br+2δ/3(x0)
xa

1|u|
2 dx

≤C
(3
δ

)a
(r + 2δ/3)n+a+4.

Hence,

|u(y)| ≤ C
(
δ−(n+a)/2(r + δ)(n+a+4)/2 + δ2

)
≤ Cy2

1

((r + y1

y1

)(n+a+4)/2
+ 1

)
. �

From this theorem it follows that solutions have quadratic growth inside cones.

Corollary 3.2. Suppose u is a solution of (1.1) satisfying the condition in Proposition 1.1 and x0 ∈

∂{u = 0} ∩ {x1 = 0} ∩ B+
1/8. Then, for every constant τ > 0,

sup
Br(x0)∩C

|u| ≤ C

(1
τ

+ 1
) n+a+4

2

+ 1

 r2,

where C := {x : x1 ≥ τ|x − x0|}.
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A. A priori regularity of the problem

Let u be a solution of (1.1) for f ∈ L∞(B+
1 ). We are going to show a priori regularity for solutions

to (1.1). Consider the operator La,cu := x2
1∆u+ax1∂1u−cu. The following proposition is the regularity

result related to this operator which has been proven by Krylov [5, Theorem 2.7, Theorem 2.8].

Proposition A.1. i) For any a ∈ R, p > 1 and θ ∈ R there exists a constant c0 > 0 such that for any
c ≥ c0 the operator La,c is a bounded one-to-one operator from W2,p(Rn

+; xθ1) onto Lp(Rn
+; xθ1) and its

inverse is also bounded, in particular for any u ∈ W2,p(Rn
+; xθ1)

‖u‖W2,p(Rn
+;xθ1) ≤ C‖La,cu‖Lp(Rn

+;xθ1),

where C is independent of u and c.
ii) The statement in i) is valid for the operator La,0 when −1 < θ < a − 2 and a > 1 or either
a − 2 < θ < −1 and a < 1.

Now we can deduce a priori regularity result for u as follows.

Proof of Proposition 1.1. Notice that xβ−1
1 u ∈ C(B+

1 ) due to Sobolev embedding Theorem 3.1 in [5].
Then if the statement of proposition fails, there exists a sequence u j of solutions (1.1), x j ∈ {x1 = 0}
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and r j → 0 such that

sup
B+

r (x j)
|xβ−1

1 u j| ≤ jr1+β/2, ∀r ≥ r j, sup
B+

r j (x j)
|xβ−1

1 u j| = jr1+β/2
j .

In particular, the function ũ j(x) =
u j(x j+r j x)

jr1+β/2
j

, satisfies

sup
B+

R

|xβ−1
1 ũ j| ≤ R1+β/2, for 1 ≤ R ≤

1
r j
, (A.1)

and with equality for R = 1, along with

La,c0 ũ j =
r1−β/2

j

j
f (x j + r jx) − c0ũ j, (A.2)

where c0 is defined in Proposition A.1. According to (A.1), the right hand side of (A.2) is uniformly
bounded in Lp(B+

R; xθ1) for p(β − 1) − 1 < θ ≤ −1. From here and Proposition A.1 we conclude that
{ũ j} is bounded in W2,p(B+

R; xθ1) for some θ ≤ −1 and there is a convergent subsequence, tending to a
function u0 with properties

sup
B+

R

|xβ−1
1 u0| ≤ R1+β/2, ∀R ≥ 1, sup

B+
1

|xβ−1
1 u0| = 1, div(xa

1∇u0) = 0, (A.3)

as well as the condition θ ≤ −1 insures that the trace operator is well defined and u0 is zero on {x1 = 0}.
The Liouville type theorem in [9, Lemma 20]) implies that

|D2u0(x0)| ≤
C
R2 sup

B+
R(x0)
|u0| ≤

C(R + |x0|)2−β/2

R2 → 0.

Therefore, u0 is a linear function, which contradicts (A.3). �
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