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Abstract: In this paper we prove the existence of infinitely many saddle-shaped positive solutions for
non-cooperative nonlinear elliptic systems with bistable nonlinearities in the phase-separation regime.
As an example, we prove that the system

−∆u = u − u3 − Λuv2

−∆v = v − v3 − Λu2v

u, v > 0

in RN , with Λ > 1,

has infinitely many saddle-shape solutions in dimension 2 or higher. This is in sharp contrast with the
case Λ ∈ (0, 1], for which, on the contrary, only constant solutions exist.

Keywords: elliptic systems; entire solutions; saddle solutions; bistable nonlinearity; variational
methods

1. Introduction

This paper concerns existence of multiple positive solutions for certain non-cooperative nonlinear
elliptic systems with bistable nonlinearities, whose prototype is
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−∆u = u − u3 − Λuv2

−∆v = v − v3 − Λu2v

u, v > 0

in RN , with Λ > 1. (1.1)

This system arises in the study of domain walls and interface layers for two-components Bose-Einstein
condensates [4]. Domain walls solutions satisfying asymptotic conditions(u, v)→ (1, 0) as xN → +∞,

(u, v)→ (0, 1) as xN → −∞,
, (1.2)

in dimension N = 1 have been carefully studied in [2, 4], where in particular it is shown the existence
of such a solution for every Λ > 1 [4], and its uniqueness in the class of solutions with one monotone
component [2]. In fact, uniqueness holds also without such assumption, and even in higher dimension
[9]; precisely, in [9] it is shown that a solution to (1.1)–(1.2) (with the limits being uniform in x′ ∈ RN−1)
in RN with Λ > 1 is necessarily montone in both the components with respect to xN , and 1-dimensional.
The assumption Λ > 1 is natural, since (1.1)–(1.2) has no solution at all when Λ ∈ (0, 1]. Indeed, it is
proved that (1.1) has only constant solutions for both Λ ∈ (0, 1) [9], and Λ = 1 [9, 13].

We also refer to [1, 3] for recent results regarding a system obtained from (1.1) adding in each
equation an additional term representing the spin coupling.

To sum up, up to now it is known that (1.1) has only constant solutions for Λ ∈ (0, 1], and at least
one 1-dimensional non-constant solution for Λ > 1. Moreover, solutions with uniform limits as in (1.2)
are necessarily 1-dimensional, and unique modulo translations. In this paper we prove the existence of
infinitely many geometrically distinct solutions to (1.1) in any dimension N ≥ 2, for any Λ > 1. This
result enlightens once more the dichotomy Λ ∈ (0, 1] vs. Λ > 1. While for Λ ∈ (0, 1] problem (1.1)
is rigid in itself, and only possesses constant solutions, for Λ > 1 we have multiplicity of non-constant
solutions, and rigidity results can be recovered only with some extra assumption, such as (1.2).

Our result is based upon variational methods, and strongly exploits the symmetry of the problem.
Roughly speaking, we shall construct solutions to (1.1) such that u − v “looks like” a sing changing
solution of the Allen-Cahn equation −∆w = w − w3, with u ' w+, and v ' w−. The building blocks
w in our construction will be both the saddle-type planar solutions (also called “pizza solutions”) [5],
and the saddle solutions in R2m [7, 8].

1.1. Statement of the main results

We consider the following general version of (1.1):
−∆u = f (u) − Λupvp+1 in RN

−∆v = f (v) − Λup+1vp in RN

u, v > 0 in RN ,

with Λ > 0, (1.3)

where N ≥ 2, p ≥ 1, and f is of bistable type; more precisely, let f : R → R be a locally Lipschitz
continuous and odd nonlinearity. For a value M > 0, we define the potential

F(t) =

∫ M

t
f (s) ds,
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so that F ∈ C1,1(R), and F′ = − f . We suppose that:

F ≥ 0 = F(±M) in R, and F > 0 in (−M,M). (1.4)

Note that in this case f (0) = f (±M) = 0. F is often called a double well potential, and f is called
bistable nonlinearity. A simple example is f (t) = t − t3.

With the above notation, we introduce

W(s, t) = F(s) + F(t) +
Λ

p + 1
|s|p+1|t|p+1, (s, t) ∈ R2.

The first of our main result concerns the existence of infinitely many geometrically distinct solutions
for problem (1.3) in the plane. We consider polar coordinates (r, θ) ∈ [0,+∞) × [0, 2π) in the plane.
For any positive integer k, we define:

Rk, the rotation of angle π/k in counterclockwise sense;
Ri

k, the rotation of angle iπ/k in counterclockwise sense, with i = 1, . . . , 2k;
`0, the line of equation x2 = tan(π/2k)x1 in R2;
`i, the line Ri

k(`1), i = 1, . . . , k − 1;
Ti, the reflection with respect to `i;
αk = tan(π/(2k));
Sk, the open circular sector {−π/(2k) < θ < π/(2k)} = {αkx1 > |x2|} ⊂ R

2.

Theorem 1.1 (Saddle-type solutions in the plane). Let p ≥ 1, f ∈ C0,1(R) be odd, and suppose that its
primitive F satisfies (1.4). Suppose moreover that:

inf
s∈[0,M]

W(s, s) > F(0). (1.5)

Then, for every positive integer k, there exists a positive solution (uk, vk) to system (1.3) in R2 having
the following properties:

(i) 0 < uk, vk < M in R2;
(ii) vk = uk ◦ Ti for every i = 1, . . . , k, and uk(x1,−x2) = uk(x1, x2) in R2;

(iii) uk − vk > 0 in Sk.

Notice in particular that {uk − vk = 0} =
⋃k−1

i=0 `i, which implies that (uk, vk) , (u j, v j) if j , k.
Regarding assumption (1.5), we stress that for any bistable f it is satisfied provided that Λ > 0 is
sufficiently large, and can be explicitly checked in several concrete situations. In particular:

Corollary 1.2. For every Λ > 1, problem (1.1) has infinitely many geometrically distinct non-constant
solutions.

The corollary follows from the theorem, observing that if f (s) = s − s3 and p = 1, then

F(s) =
(1 − s2)2

4
, W(s, t) = F(s) + F(t) +

Λs2t2

2
;

thus, condition (1.5) is satisfied if and only if

inf
s∈[0,1]

W(s, s) = W
(

1
√

1 + Λ
,

1
√

1 + Λ

)
=

Λ

2(1 + Λ)
>

1
4

= F(0),
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that is, if and only if Λ > 1. Notice that, if (1.5) is violated, we have have non-existence of non-constant
solutions [9, 13], and hence (1.5) is sharp in this case.

The proof of Theorem 1.1 consists in a 2 steps procedure. At first, we construct a solution to (1.3)
in a ball BR with the desired symmetry properties, combining variational methods with an auxiliary
parabolic problem. In a second step, we pass to the limit as R → +∞, obtaining convergence to an
entire solution of (1.3). Assumption (1.5) enters in this second step in order to rule out the possibility
that the limit profile (u, v) is a pair with v = u, with u possibly a constant. Roughly speaking, (1.5)
makes the coexistence of u and v in the same region unfavorable with respect to the segregation, from
the variational point of view.

This kind of construction is inspired by [6, 11, 12], where an analogue strategy was used to prove
existence of solutions to

∆u = uv2, ∆v = u2v, u, v > 0 in RN . (1.6)

With respect to [6, 11, 12], however, the method has to be substantially modified. Solutions to (1.6)
“look like” harmonic function in the same way as solutions to (1.3) “look like” solutions to the Allen-
Cahn equation. Therefore, tools related with harmonic functions such as monotonicity formulae and
blow-up analysis, which were crucially used in [6, 11, 12], are not available in our context, and have
to be replaced by a direct inspection of the variational background. In such an inspection it emerges
the role of the competition parameter Λ, which is not present in (1.6) (of course, Λ could be added in
front of the coupling on the right hand side in (1.6); but it could be absorbed with a scaling, and hence
it would not play any role).

Remark 1.3. Let us consider the scalar equation ∆w + f (w) = 0. The existence of a saddle-type (or
pizza) solution wk with the properties

(i) −M < wk < M in R2;
(ii) wk ◦ Ti = −wk for every i = 1, . . . , k, and wk(x1,−x2) = wk(x1, x2) in R2;

(iii) wk > 0 in Sk.

was established by Alessio, Calamai and Montecchiari in [5], under slightly stronger assumption on F
with respect to those considered here. In some sense, uk − vk looks like wk, since they share the same
symmetry properties, and for this reason we can call (uk, vk) saddle-type (or pizza) solution.

Our method for Theorem 1.1 can be easily adapted also in the scalar case, giving an alternative proof
for the existence result in [5]. For the sake of completeness, we present the details in the appendix of
this paper. The main advantage is that our construction easily gives the following energy estimate∫

BR

(
1
2
|∇wk|

2 + F(wk)
)
≤ CR, (1.7)

with C > 0 depending only on k, but not on R. Such estimate seems to be unknown, expect for the case
k = 2, where it was proved in [7].

Theorem 1.1 establishes the existence of infinitely many positive solutions to (1.3) in the plane.
These can be regarded as solutions also in higher dimension N ≥ 3, but it is natural to ask whether
there exist solutions to (1.3) in RN not coming from solutions in RN−1. We can give a positive answer
to this question in any even dimension. Let N = 2m, and let us consider the Simons cone

C =
{
x ∈ R2m : x2

1 + · · · + x2
m = x2

m+1 + · · · + x2
2m

}
.
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We define two radial variables s and t by

s =

√
x2

1 + · · · + x2
m ≥ 0, t =

√
x2

m+1 + · · · + x2
2m ≥ 0. (1.8)

Theorem 1.4 (Saddle solutions in R2m). Let m ≥ 2 be a positive integer, p ≥ 1, f ∈ C0,1(R) be odd, and
suppose that its primitive F satisfies (1.4). Suppose moreover that (1.5) holds. Then, for every positive
integer m, there exists a positive solution (u, v) to system (1.3) in R2m having the following properties:

(i) 0 < u, v < M in R2m;
(ii) v(s, t) = u(t, s);

(iii) u − v > 0 in O = {s > t}.

Notice that {u − v = 0} = C, and that (u, v) looks like the saddle solution of the scalar Allen-Cahn
equation found in [7]. The strategy of the proof is the same as the one of Theorem 1.4. However, the
proof of Theorem 1.4 is a bit simpler, since we can take advantage of an energy estimate like (1.7),
which is known to hold for saddle solutions in R2m (see formula (1.15) in [7]) but, as already observed,
was unknown for saddle-type solutions in the plane.

Structure of the paper. In Section 2 we prove Theorem 1.1. In Section 3 we prove Theorem 1.4. In
the appendix, we give an alternative proof with respect to [5] of the existence of saddle-type solutions
for the scalar equation in the plane, yielding to the energy estimate (1.7).

2. Saddle-type solutions for bistable systems in the plane

In this section we prove Theorem 1.1. The existence of a solution in the whole plane R2 will be
obtained by approximation with solutions in BR.

Throughout this section, the positive integer k (index of symmetry) will always be fixed, and hence
the dependence of the quantities with respect to k will often be omitted.

In the sector S = Sk, we define

wk = min
{

M,
αx1 − |x2|
√

2

}
,

where α = αk = tan (π/(2k)). Notice that wk > 0 in Sk and wk = 0 on ∂Sk. Thus, we can extend
wk in the whole of R2 by iterated odd reflections with respect to the lines `i. In this way, we obtain a
function, still denoted by wk, defined in R2, with

(i) −M ≤ wk ≤ M in R2;
(ii) wk ◦ Ti = −wk for every i = 1, . . . , k, and wk(x1,−x2) = wk(x1, x2) in R2;

(iii) wk > 0 in Sk,

that is, wk has the same symmetry properties of the saddle-type solutions in [5].
Now, for any Ω ⊂ R2 open, and for every (u, v) ∈ H1(Ω,R2), we introduce the functional

J((u, v),Ω) :=
∫

Ω

(
1
2
|∇u|2 +

1
2
|∇v|2 + W(u, v)

)
. (2.1)
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Moreover, for R > 0, we let SR = Sk ∩ BR and consider the set

AR :=

(u, v) ∈ H1(BR,R
2)

∣∣∣∣∣∣∣∣∣
(u, v) = (w+

k ,w
−
k ) on ∂BR, 0 ≤ u, v ≤ M in BR

v = u ◦ Ti for every i = 1, . . . , k,
u(x1,−x2) = u(x1, x2) in BR, u ≥ v in SR,

 .
Notice that AR , ∅, since for instance (w+

k ,w
−
k ) ∈ AR.

Lemma 2.1. For every R > 0, there exists a solution (uR, vR) ∈ AR to
−∆u = f (u) − Λ|u|p−1u|v|p+1 in BR

−∆v = f (v) − Λ|u|p+1|v|p−1v in BR

u = w+
k , v = w−k on ∂BR.

(2.2)

Proof. The proof of the lemma is inspired by [6, Theorem 4.1]. Since the weak convergence in H1

implies the almost everywhere convergence, up to a subsequence, the set AR is weakly closed in H1.
Moreover, the functional J(· , BR) is clearly bounded from below and weakly lower semi-continuous.
Therefore, there exists a minimizer (uR, vR) of J(· , BR) in AR. To show that such a minimizer is a
solution to (3.2), we consider the auxiliary parabolic problem

∂tU − ∆U = f̃ (U) − Λ|U |p−1U |V |p+1 in (0,+∞) × BR

∂tV − ∆V = f̃ (V) − Λ|U |p+1|V |p−1V in (0,+∞) × BR

U = w+
k , V = w−k on (0,+∞) × ∂BR

(U(0, ·),V(0, ·)) ∈ AR,

(2.3)

where f̃ : R → R is a globally Lipschitz continuous odd function such that f̃ (s) = f (s) for s ∈
[−M − 1,M + 1]. The existence and uniqueness of a local solution, defined on a maximal time interval
[0,T ), follow by standard parabolic theory. Notice that

∂tU − ∆U = c1(t, x)U,

for

c1(t, x) =

−Λ|U(t, x)|p−1|V(t, x)|p+1 +
f̃ (U(t,x))
U(t,x) if U(t, x) , 0

0 if U(t, x) = 0.

Since f̃ (0) = 0, we have that c1 is bounded from above by the Lipschitz constant L of f̃ , and it is not
difficult to check that U(t, ·) ≥ 0 in BR for every t ∈ [0,T ): indeed, taking into account the boundary
conditions,

d
dt

(
1
2

∫
BR

(U−)2
)

= −

∫
BR

U−(∂tU) = −

∫
BR

U−(∆U + c1(t, x)U)

≤ −

∫
BR

|∇U−|2 + L
∫

BR

(U−)2 ≤ L
∫

BR

(U−)2,

whence it follows that
d
dt

(
e−2Lt

∫
BR

(U−)2
)
≤ 0.
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Therefore, the non-negativity of U(t, ·) for t ∈ (0,T ) follows from the non-negativity of U(0, ·). The
same argument also shows that V(t, ·) ≥ 0 for every such t. Using the positivity of U, it is not difficult
to prove that U is also uniformly bounded from above: since f̃ (M) = 0, we have

∂t(M − U) − ∆(M − U) ≥ c2(t, x)(M − U),

where c2 is the bounded function

c2(t, x) =

 f̃ (U(t,x))− f̃ (M)
U(t,x)−M if U(t, x) , 0

0 if U(t, x) = M,

and the same argument used above implies that 0 ≤ U ≤ M on (0,T ) × BR. Similarly, 0 ≤ V ≤ M. As
a consequence, the solution (U,V) can be globally continued in time on (0,+∞). Furthermore, in (2.3)
we can replace f̃ with f , since they coincide on [−M − 1,M + 1].

We also observe that, since U is constant in time on ∂BR, the energy of the solution is
non-increasing:

d
dt

J((U(t, ·),V(t, ·)); BR) =

∫
BR

∇U · ∇Ut + ∇V · ∇Vt + ∂1W(U,V)Ut + ∂2W(U,V)Vt

=

∫
BR

(−∆U + ∂1W(U,V)) Ut + (−∆V + ∂2W(U,V)) Vt

= −

∫
BR

U2
t + V2

t ≤ 0.

(2.4)

As in [6], we can now show that AR is positively invariant under the parabolic flow. Let (U,V) be a
solution with initial datum in AR. By the symmetry of (2.3), we have that (V(t,Tix),U(t,Tix)) is still a
solution. By the symmetry of initial and boundary data, and by uniqueness, such solution must
coincide with (U(t, ·),V(t, ·)). This means in particular that V(t, x) = U(t,Tix). Likewise,
U(t, x1,−x2) = U(t, x1, x2). Notice that the symmetries imply that U − V = 0 on ∂Sk. Thus, recalling
that SR = Sk ∩ BR, we have

∂t(U − V) − ∆(U − V) = c(t, x)(U − V) in (0,+∞) × SR

U − V ≥ 0 on (0,+∞) × ∂SR

U − V ≥ 0 on {0} × SR,

(2.5)

where the bounded function c is defined by

c(t, x) =

 f (U(t,x))− f (V(t,x))
U(t,x)−V(t,x) + ΛU p(t, x)V p(t, x) if U(t, x) , V(t, x)

ΛU p(t, x)V p(t, x) if U(t, x) = V(t, x).

The parabolic maximum principle implies that U ≥ V in SR globally in time, and, in turn, this gives
the invariance of AR.

At this point we consider the solution (UR,VR) to (2.3) with initial datum (uR, vR), minimizer of
J(· , BR) in AR. By minimality in AR and by (2.4), we have

J((uR, vR); BR) ≤ J((UR(t, ·),VR(t, ·)); BR) ≤ J((uR, vR); BR) =⇒ U2
t + V2

t ≡ 0,
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and hence UR ≡ uR and VR ≡ vR. But then (uR(x), vR(x)) is a (stationary) solution of the parabolic
problem (2.3), that is, it solves the stationary problem (2.2), and in addition (uR, vR) ∈ AR. This
completes the proof. �

We are ready to complete the:

Proof of Theorem 1.1. First, of all, we discuss the convergence of {(uR, vR) : R > 1}. Let ρ > 1. Since
0 ≤ uR, vR ≤ M, we have that

|∆uR(x)| ≤ max
s∈[0,M]

| f (s)| + ΛM2p+1, |∆vR(x)| ≤ max
s∈[0,M]

| f (s)| + ΛM2p+1.

Thus interior Lp estimates (see e.g. [10, Chapter 9]), applied in balls of radius 2 centered in points of
Bρ with p > N, and the Morrey embedding theorem, imply that there exists C > 0 depending only on
M and Λ (but independent of R and ρ) such that

‖uR‖C1,α(Bρ) + ‖vR‖C1,α(Bρ) ≤ C in Bρ, for all R > ρ + 2 (2.6)

(for every 0 < α < 1). By the Ascoli-Arzelà theorem, up to a subsequence {(uR, vR)} converges in
C1,α(Bρ) to a solution in Bρ, for every 0 < α < 1. Taking a sequence ρ → +∞, a diagonal selection
finally gives (uR, vR)→ (u, v) in C1,α

loc (R2), up to a subsequence, with (u, v) solution to
−∆u = f (u) − Λupvp+1 in R2

−∆v = f (v) − Λup+1vp in R2

0 ≤ u, v ≤ M in R2.

Notice that, by convergence, (u, v) satisfies the symmetry property (ii) in Theorem 1.1, and moreover
u − v ≥ 0 in Sk. As in (2.5), for any ρ > 0−∆(u − v) = c(x)(u − v) in Sρ

u − v ≥ 0 in Sρ,

for a bounded function c. Thus, the strong maximum principle implies that either u > v in Sρ, of u ≡ v
in Sρ. Since ρ > 0 is arbitrarily chosen, we have that either u > v in S, of u ≡ v in S. We claim that the
latter alternative cannot take place. To prove this claim, we use a comparison argument similar as the
one by Cabré and Terra in [7] for the construction of the saddle solution for scalar bystable equations.
First of all, we observe that, by symmetry, any function in AR is determined only by its restriction on
Sk. Thus the minimality of (uR, vR) can be read as

J((uR, vR),SR) ≤ J((u, v),SR) ∀(u, v) ∈ AR.

Let 1 < ρ < R − 2, and let ξ be a radial smooth cut-off function with ξ ≡ 1 in Bρ−1, ξ ≡ 0 in Bc
ρ,

0 ≤ ξ ≤ 1. We define

ϕR(x) = ξ(x)w+
k (x) + (1 − ξ(x))uR(x) = ξ(x) min

{
M,

αx1 − |x2|
√

2

}
+ (1 − ξ(x))uR(x),
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and
ψR(x) = ξ(x)w−k (x) + (1 − ξ(x))vR(x) = (1 − ξ(x))vR(x),

where we recall that α = tan (π/(2k)). It is immediate to verify that (ϕR, ψR) is an admissible competitor
for (uR, vR) on SR. Moreover, by (2.6), there exists C > 0 such that

‖ϕR‖W1,∞(Bρ) + ‖ψR‖W1,∞(Bρ) ≤ C ∀R > ρ + 2. (2.7)

By minimality
J((uR, vR),SR) ≤ J((ϕR, ψR),SR),

and since (ϕR, ψR) = (uR, vR) in SR \ Sρ we deduce that

J((uR, vR),Sρ) ≤ J((ϕR, ψR),Sρ) ≤ J((ϕR, 0),Sρ−1) + C|Sρ \ Sρ−1| (2.8)

where we used the global boundedness of {(ϕR, ψR)} in W1,∞(Bρ), see (2.7). The last term can be easily
computed as

|Sρ \ Sρ−1| =
π

k
(ρ2 − (ρ − 1)2) ≤

2π
k
ρ.

For the first term, recalling that F(M) = 0, ξ ≡ 1 in Bρ−1, and wk > 0 in Sk, we have∫
Sρ−1

(
1
2
|∇ϕR|

2 + F(ϕR) + F(0)
)

=

∫
Sρ−1∩{αx1−|x2 |<

√
2M}

(
1
2
|∇wk|

2 + F(wk)
)

+

∫
Sρ−1

F(0)

≤ C|Sρ−1 ∩
{
αx1 − |x2| <

√
2M

}
| + F(0)|Sρ−1|.

The set
Sk ∩

{
αx1 − |x2| <

√
2M

}
is contained in the (non-disjoint) union of the two strips{

αx1 −
√

2M < x2 < αx1, x1 > 0
}
∪

{
−αx1 < x2 < 2

√
M − αx1, x1 > 0

}
= S 1 ∪ S 2.

Therefore,

|Sρ−1 ∩
{
αx1 − |x2| <

√
2M

}
| ≤ |S 1 ∩ {0 < x1 < ρ}| + |S 2 ∩ {0 < x1 < ρ}|

= 2
∫ ρ

0

(∫ αx1

−
√

2M+αx1

1 dx2

)
dx1 = 2

√
2Mρ.

Coming back to (2.8), we conclude that there exists a constant C > 0 such that, for every ρ > 1 and
R > ρ + 2,

J((uR, vR),Sρ) ≤ Cρ + F(0)|Sρ−1|

for every 1 < ρ < R − 2, where C > 0 is a positive constant independent of both ρ and R. Passing to
the limit as R→ +∞, we infer by C1

loc-convergence that

J((u, v),Sρ) ≤ Cρ + F(0)|Sρ−1| (2.9)
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for every ρ > 1. Notice that, in this estimate, the leading term as ρ→ +∞ is

F(0)|Sρ−1| ∼
π

k
F(0)ρ2.

Suppose now by contradiction that u ≡ v in Sk. Recalling that 0 ≤ u, v ≤ M, we have that

J((u, v),Sρ) =

∫
Sρ

|∇u|2 + W(u, u) ≥
∫
Sρ

min
s∈[0,M]

W(s, s)

= min
s∈[0,M]

W(s, s)|Sρ| ∼
π

k
min

s∈[0,M]
W(s, s)ρ2

as ρ → +∞. Comparing with (2.9), we obtain a contradiction for large ρ, thanks to assumption (1.5).
Therefore, u > v in Sk. Since u = v on ∂Sk, we also infer that both u and v cannot be constant. The
maximum principle implies then that u, v > 0 in R2, and from this it is not difficult to deduce that
u, v < M: indeed, if u(x0) = M, then x0 is a strict maximum point for u with

∆u(x0) = − f (M) + ΛMpv(x0)p+1 = ΛMpv(x0)p+1 > 0,

which is not possible. This completes the proof. �

3. Existence of saddle solutions in higher dimension

The proof of Theorem 1.4 follows the same strategy as the one of Theorem 1.1, being actually a bit
simpler. Let m ≥ 2 be a positive integer. By [7, Theorem 1.3]∗, under our assumption (1.4) on F the
Allen-Cahn equation ∆w + f (w) = 0 in R2m admits a saddle solution wm, that is a solution satisfying:

(i) w depends only on the variables s and t defined in (1.8);
(ii) wm(s, t) = −wm(t, s);

(iii) wm > 0 in O = {s > t}.

In addition, |wm| < M in R2m, and∫
BR

1
2
|∇wm|

2 + F(wm) ≤ CR2m−1 for all R > 1, (3.1)

Now, as in Section 2, we consider the energy functional J((u, v),Ω) defined in (2.1) (in this section
Ω ⊂ R2m), and the set

AR :=

(u, v) ∈ H1(BR,R
2)

∣∣∣∣∣∣∣∣∣
(u, v) = (w+

m,w
−
m) on ∂BR,

v(s, t) = u(t, s),
u ≥ v in OR, 0 ≤ u, v ≤ M in BR

 ,
where OR = O ∩ BR.

Lemma 3.1. For every R > 0, there exists a solution (uR, vR) ∈ AR to
−∆u = f (u) − Λ|u|p−1u|v|p+1 in BR

−∆v = f (v) − Λ|u|p+1|v|p−1v in BR

u = w+
m, v = w−m on ∂BR.

(3.2)

∗For the existence and the energy estimate in the theorem, it is sufficient that f is locally Lipschitz, rather than C1
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The proof is analogue to the one of Lemma 2.1, and is omitted.

Proof of Theorem 1.4. As in the 2-dimensional case, we can prove that up to a subsequence (uR, vR)→
(u, v) in C1,α

loc (R2) as R→ +∞, with (u, v) solution to
−∆u = f (u) − Λupvp+1

−∆v = f (v) − Λup+1vp

0 ≤ u, v ≤ M

in R2m.

By convergence, v(s, t) = u(t, s), u − v ≥ 0 in O, and 0 ≤ u, v ≤ M in R2m. Also, for every ρ > 0−∆(u − v) = c(x)(u − v) in Oρ
u − v ≥ 0 in Oρ,

for a bounded function c. Thus, the strong maximum principle implies that either u > v in O, of u ≡ v
in O. We claim that the latter alternative cannot take place. Let 1 < ρ < R − 2, and let ξ be a radial
smooth cut-off function with ξ ≡ 1 in Bρ−1, ξ ≡ 0 in Bc

ρ, 0 ≤ ξ ≤ 1. We define

ϕR = ξw+
m + (1 − ξ)uR, ψR = ξw−m + (1 − ξ)vR.

This is an admissible competitor in AR, which coincides with (uR, vR) on BR \ Bρ. Therefore, by
minimality and recalling (3.1), we have

J((uR, vR), Bρ) ≤ J((w+
m,w

−
m), Bρ−1) + C|Bρ \ Bρ−1|

≤ E(wm, Bρ−1) +

∫
Bρ−1

F(0) + Cρ2m−1 ≤ Cρ2m−1 + F(0)|Bρ−1|.
(3.3)

If, by contradiction, u ≡ v in O, then we have that

J((u, v), Bρ) =

∫
Bρ
|∇u|2 + W(u, u) ≥

∫
Bρ

min
σ∈[0,M]

W(σ,σ) = min
σ∈[0,M]

W(σ,σ)|Bρ|.

Comparing with (2.9), we obtain a contradiction for large ρ, thanks to assumption (1.5). Thus, u > v
in O, and the conclusion of the proof is straightforward. �

A. Alternative construction of saddle-type planar solutions

In this appendix we consider the scalar Allen-Cahn equation

− ∆w = f (w) in R2, (A.1)

and we prove the following result:

Theorem A.1. Let f ∈ C0,α(R) be odd, and suppose that its anti-primitive F satisfies (1.4). Then, for
every k ∈ N, there exists a solution wk having the following properties:

(i) −M < wk < M in R2;
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(ii) wk ◦ Ti = −wk for every i = 1, . . . , k, and wk(x1,−x2) = wk(x1, x2) in R2;
(iii) wk > 0 in Sk.

Moreover, there exists a constant C > 0 (possibly depending on k) such that∫
BR

(
1
2
|∇w|2 + F(w)

)
≤ CR for every R > 0. (A.2)

Remark A.2. The existence of a solution wk with the properties (i)–(iii) was established by Alessio,
Calamai and Montecchiari in [5]. In [5] the authors also obtained a more precise description of the
asymptotic behavior of wk at infinity. On the other hand, the validity of the estimate (A.2) was
unknown.

In order to show that wk fulfills (A.2), we provide an alternative existence proof with respect to the
one in [5]. It is tempting to conjecture that the solutions given by Theorem A.1, and those found in [5],
coincide.

Our alternative proof is strongly inspired by [7], where Cabré and Terra proved existence of
solutions in R2m to (A.1) vanishing on the Simon’s cone (when restricted to the case m = 1 - i.e., when
we consider (A.1) in the plane - their result establishes the existence of the solution w2). We first
prove the existence of a solution wR = wk,R to (A.1) in the ball BR, for every R > 0, by variational
argument. Passing in a suitable way to the limit as R → +∞, we shall obtain a solution in the whole
plane R2 having the desired energy estimate.

The main simplification with respect to the proof of Theorem 1.1 stays in the fact that, dealing with
a single equation, we will not need an auxiliary parabolic problem, but we will be able to prove the
existence of a solution in BR with the desired symmetry properties directly by variational methods.

The proof of Theorem A.1 takes the rest of this appendix. Let us fix k. For any Ω ⊂ R2 open, and
for every w ∈ H1(Ω), we define

E(w,Ω) :=
∫

Ω

(
1
2
|∇w|2 + F(w)

)
.

For R > 0, we consider SR := BR ∩ Sk and the set

HR :=
{
w ∈ H1

0(S R) : w(x1,−x2) = w(x1, x2) a.e. in SR

}
.

Lemma A.3. For every R > 0, problem
−∆w = f (w) in BR

w(x1,−x2) = w(x1, x2) in BR

w = 0 on ∂BR,

(A.3)

has a solution wR, satisfying (ii) in Theorem A.1. Moreover, −M ≤ wR ≤ M in BR, wR ≥ 0 in SR, and

E(wR, S R) = min{E(w, S R) : w ∈ HR}.
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Proof. At first, we search a solution to the auxiliary problem
−∆w = f (w) in SR

w ∈ H1
0(S R), w ≥ 0 in SR

w(x1, x2) = w(x1,−x2) in SR,

(A.4)

by minimizing the function E(w,SR) in H. The existence of a minimizer follows easily by the direct
method of the calculus of variations. Since E(w,SR) = E(|w|,SR), it is not restrictive to suppose that
wR ≥ 0. Also, since E(min{w,M},SR) ≤ E(w,SR) by assumption (1.4), we can suppose that wR ≤ M.
Clearly, wR solves the first equation in (A.4) in the set SR \ {θ = 0}. The fact that wR is also a solution
across SR ∩ {θ = 0} (thus a solution in SR) follows by the principle of symmetric criticality (see
e.g., [14, Theorem 1.28] for a simple proof of this result, sufficient to our purposes).

Notice that wR ∈ C1({0 < r < R,−π/2k ≤ θ ≤ π/2k}) by standard elliptic regularity. Thus, we can
reflect wR 2k times in an odd way across `1, . . . , `k, obtaining a solution in BR \ {0}. To see that wR is in
fact a solution in BR, we take a smooth function ηδ ∈ C∞(BR) with ηδ ≡ 0 in Bδ, ηδ ≡ 1 in B2δ \ Bδ, and
|∇ηδ| ≤ C/δ in BR. Then, for every ϕ ∈ C∞c (BR), we have∫

BR

∇wR · ∇(ϕηδ) −
∫

BR

f (wR)ϕηδ = 0,

since ϕηδ is an admissible test function in BR \ {0}. Passing to the limit as δ→ 0+, we deduce that∫
BR

∇wR · ∇ϕ −

∫
BR

f (wR)ϕ = 0 ∀ϕ ∈ C∞c (BR),

that is, wR is a weak solution to (A.1) in BR. This completes the proof. �

Proof of Theorem A.1. We wish to pass to the limit as R → +∞ and obtain a solution in the whole
plane R2 as limit of the family {wR}. As in the previous sections, by elliptic estimates we have that,
up to a subsequence wR → w in C1,α

loc (R2) as R → ∞, for every α ∈ (0, 1). The limit w inherits by wR

the symmetry property (ii) in Theorem A.1. Moreover, w ≥ 0 in the sector S = Sk, and |w| ≤ M in
the whole plane R2. Actually, the strict inequality |w| < M holds, by the strong maximum principle.
To complete the proof of the theorem, it remains then to show that w satisfies estimate (A.2), and that
w . 0.

As in the proof of Theorem 1.1, {wR} has a uniform gradient bound: there exists C > 0 (independent
of R) such that

‖∇wR‖L∞(BR−1) ≤ C ∀R > 1. (A.5)

For an arbitrary ρ > 1, let now R > ρ + 2, and let ξ ∈ C∞c (Bρ), with ξ ≡ 1 in Bρ−1. We consider the
following competitor for wR:

ϕR(x) = ξ(x) min
{
αx1 − |x2|
√

2
,M

}
+ (1 − ξ(x))wR(x).

Notice that this is the same type of competitor we used in Theorem 1.1. By minimality

E(wR, S R) ≤ E(ϕR, S R),
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and since wR = ϕR in SR \ Sρ we deduce that∫
Sρ

(
1
2
|∇wR|

2 + F(wR)
)
≤

∫
Sρ

(
1
2
|∇ϕR|

2 + F(ϕR)
)

≤

∫
Sρ−1

(
1
2
|∇ϕR|

2 + F(ϕR)
)

+ C|Sρ \ Sρ−1|,

(A.6)

where we used the global boundedness of {ϕR} in W1,∞(Bρ), see (A.5). At this point we can proceed
as in the conclusion of the proof of Theorem 1.1: the right hand side in (A.6) can be estimated by Cρ,
with C independent of ρ. Thus, we conclude that there exists a constant C > 0 such that, for every
ρ > 1 and R > ρ + 2,

E(wR,Sρ) =

∫
S ρ

(
1
2
|∇wR|

2 + F(wR)
)
≤ Cρ,

Passing to the limit as R→ +∞, we infer by C1
loc-convergence that

E(w,Sρ) ≤ Cρ,

which implies, by symmetry, the estimate (A.2).
Suppose finally that w ≡ 0. Then the energy estimate (A.2) would give for every ρ > 1

πF(0)ρ2 = E(0, Bρ) ≤ Cρ,

which is not possible if ρ is sufficiently large. This proves that w . 0, and completes the proof of
Theorem A.1. �
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c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 2, Issue 3, 423–437.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Statement of the main results

	Saddle-type solutions for bistable systems in the plane
	Existence of saddle solutions in higher dimension
	Alternative construction of saddle-type planar solutions

