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Abstract: We study a poromechanic problem in presence of a moving boundary. The poroelastic
material is described by means of the Biot model while the moving boundary accounts for the effect
of surface erosion of the material. We focus on the numerical approximation of the problem, in
the framework of the finite element method. To avoid re-meshing along with the evolution of the
boundary, we adopt the cut finite element approach. The main issue of this strategy consists of the
ill-conditioning of the finite element matrices in presence of cut elements of small size. We show, by
means of numerical experiments and theory, that this issue significantly decreases the performance
of the numerical solver. For this reason, we propose a strategy that allows to overcome the ill-
conditioned behavior of the discrete problem. The resulting solver is based on the fixed stress approach,
used to iteratively decompose the Biot equations, combined with the ghost penalty stabilization and
preconditioning applied to the pressure and displacement sub-problems respectively.

Keywords: poromechanics; moving boundary; fixed-stress approach; cut finite elements;
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1. Introduction

Reconstructing the stress and deformation history of a sedimentary basin is a challenging and
important problem in the geosciences [32]. The mechanical response of a sedimentary basin is the
consequence of complex multi-physics processes involving mechanical, geochemical, thermal and
hydrological aspects. Among these, the inclusion of erosion or deposition of material plays a key role
in the reconstruction of a sedimentary basin history.

A sedimentary basin is usually represented by a porous medium filled with water. To model surface
erosion or deposition, we let the top surface of the basin evolve according to a given profile. The
dynamics of erosion/deposition is affected by many complex phenomena, which are only partially
accounted for in this study. Since the scope of this work is more focused on the methodology, precisely
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the development of a numerical solver, we address a simplified problem configuration which features a
slab of porous, deformable material that is homogeneous, completely saturated with water and affected
by a prescribed mixed erosion deposition profile on the top surface. In this way, we combine in a sigle
model the mechanical, hydrological and erosion/deposition effects.

In this work we tackle the evolution of the top surface using the cut finite element method (CutFEM).
This method is combined with a fixed-stress approach for solving the coupled flow and mechanics
models. To deal with a moving boundary, the physical domain, is embedded in a larger computational
grid. The evolution of top surface of the slab is described by the zero value of a time dependent level
set function. The CutFEM approximation allows to handle the evolution of the top layer of the slab
avoiding re-meshing techniques. However, depending on the intersection between the computational
grid and the level set function, it can worsen the condition number of the problem. To overcome the
ill-conditioning due to the CutFEM approximation, we propose the use of a stabilization terms and of
a preconditioner applied to the fixed-stress splitting scheme.

On the basis of seminal works using the finite element method for the approximation of elliptic
problems featuring unfitted boundaries and interfaces [9, 15, 20, 21], the CutFEM method was
developed and formalized as a general framework for simultaneously discretizing the geometry of the
domain and the related partial differential equations [8]. Despite its many advantages, it is well known
that this approach significantly worsens the conditioning of the discretized operators, because the
finite element discretization is set on cut elements that may become arbitrarily small and skewed,
according to the configuration of the unfitted boundary or interface with respect to the computational
mesh. To override this issue, several techniques have been proposed. Stabilization techniques acting
on the problem formulation have been successfully applied to this purpose [7,9, 10, 25,29]. It has
been also shown that the ill-conditioning of the CutFEM discretization can be addressed by means of
suitable preconditioners, [24, 28, 34]. Such techniques make CutFEM become a stable, efficient and
robust method for a wide variety of problems, including second order elliptic equations [11, 15, 20],
incompressible flow problems such as Stokes [19, 22, 25, 28] and Navier-Stokes [29] and linear
elasticity models [21]. However, the application of CutFEM to multi-physics problems involving the
coupled CutFEM approximation of multiple variables is still rather unexplored. The scope of the
present study is to shed light on some of the difficulties that appear in this context and to show how
the available theory of CutFEM can be used to overcome these issues. In particular, we address a
poromechanics problem modeled by the Biot equations. We believe that this is a particularly
interesting case because it couples the equations for incompressible flow in porous media with a
linear elasticity model for the deformations of the material. Indeed, it puts together the problems for
which CutFEM has been thoroughly studied.

The work is organized as follows. In Section 2 we introduce the mathematical formulation and
the discretization of the problem. In Section 3 we discuss the relation between the condition number
of the discrete problem and the size of cut elements. Then, we develop the new numerical solver for
Biot equations, based on the fixed stress approach combined with stabilization and preconditioners for
CutFEM. Illustrative numerical examples are performed to test the proposed algorithm in Section 4,
followed by concluding remarks in Section 5.
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2. The mathematical model and the numerical discretization

In this section we present the mathematical setting of the poromechanics problem. Then, we
introduce the numerical discretization, obtained by casting the problem into the CutFEM framework.

2.1. A mathematical model for deformable porous media with a moving boundary

We deal with the mechanical deformation of a porous medium. We consider for simplicity an
isotropic material (named the skeleton) filled with an isothermal single-phase fluid. We also assume
that the Hypothesis of Small Perturbations (HSP) holds true, so that the linearity of the problem is
ensured. In particular HSP implies several consequences that are described in the following. The
material particles of the skeleton are subject to small displacements. This hypothesis allows us to
identify the initial spatial configuration and the current configuration of the system. Small variations
of the porosity and the fluid density are also considered, namely

® — o
o

where the index () refers to the reference/initial configuration. This assumption allows us to replace ¢
and py with ¢ and p ;o whenever required. We remark that the poromechanics problem is solved only
in the physical part of the domain, namely €)(7). A sketch of a domain example is show in Figure 1.

Pr—Pso
Pro

~0,

~0, 2.1)

Figure 1. A sketch of the domain. The dark gray zone is the physical domain (€2) while the
white zone is the fictitious region (€,,,). The interface between the physical and the fictitious
regions is the surface I while X is the bottom surface of the domain.

In particular, it is shown that the upper boundary is denoted by I'(¢) and it is free to move. The lower
boudary is denoted with X and it is fixed. The lateral sides of the domain are 9€Q(¢) \ (I'(r)UX). Under the
small perturbations hypothesis, the poromechanics problem is modeled through the following system
of equations:

-V.o@m)+aVp = f in Q(1), (2.2)

6,(%+aV-u)—V-KVp 0 inQQ, 2.3)
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where u is the solid matrix displacement vector with respect to the unloaded reference configuration,
represented in Figure 1. The function p is the pore pressure and the forcing term f is the volumetric
force due to the mass of the porous medium, namely

£z, x) = —((1 - P)os + dpy)R(D)ge; 2.4)

being p;, ps the densities of the solid and fluid phases, respectively, g the standard gravity, e, the unit
vector in the vertical direction and R(#) a ramp function R(¢) = g max[(z + Oty + |t + Ot,4]), 1] where i
is a suitable slope coeflicient to be defined later on and 6t,; is the temporal interval needed to reach the
geostatic conditions.

We remind that 9, denotes the standard partial derivative with respect to time in the Eulerian
framework. The parameters @, M and K are the Biot number, the Biot modulus and the the hydraulic
conductivity, respectively. We recall that the hydraulic conductivity is defined as the ratio between the
permeability (k) and the dynamic viscosity of the fluid (us), namely K = k,/us. To complete the
definition of the problem we also assume the linear elasticity behavior for the skeleton. This implies
that the stress tensor o, appearing in (2.2), is defined by

o) :=2ue(u) + AV -u, (2.5)

where p and A are the Lamé coefficients and e£(u) is the symmetric gradient of the skeleton
displacement, defined as

1
g(u) = E(Vu + Vu'). (2.6)
For further details on poromechanics, the interested reader is referred to e.g. [13, 14].

For a well-posed problem we must complement the previous governing equations with appropriate
boundary and initial conditions. We consider the following,

p=0, om)-n=0, onI'(?), (2.7)
KVp-n=Kpsg, u=0, onx, (2.8)
KVp-n=0, o) -n=0, ondQ(t) \ ([(1H V), (2.9)

where n is the unit outward normal to the boundary. Concerning the initial condition we consider the
basin to be in the reference unloaded state so thatu = 0, p = 0 enforced at the beginning of simulations
t = —o0t,,. We point out that, as illustrated in Figure 2, by the time r = 0 the basin has reached the
geostatic state characterized by u = g, p = ps.

By taking into account the conditions (2.7), (2.8), (2.9), the weak formulation of the problem
described in (2.2)—(2.3) reads: for each ¢ € (0, T'], find (u, p) € V(¢) X Q(¢) such that

a(u,v) —a(p,V-v) = (f,v) Vv eV,

3 @0, @) + @ (V-0u,9) +c(p.g) =~ [, KVp-ng = [ Kpsgq Vg€ Q0),

where V(1) := {u € (H'(Q®)))" | u |g= 0} and Q(t) := {p € H'(Q®) | p Irn= 0}. Here, H' (Q)
denotes the Hilbert subspace of L?(€(¢)) of functions with first weak derivatives in L2(Q(t)), (-, -) is the

standard inner product in the space L>(€(#)). Equation (2.10) is characterized by the following bilinear
forms

a(u,v) := 2f pe(a) : e(v)dQ + f/l(V -w)(V-v)dQ, c(p,q) = f KVp-VqdQ.
Q) Q Q)

(2.10)

m
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The main difficulty of problem (2.10) consists of the time-dependence of the domain and of the
functional spaces. We aim at removing this dependence at the level of numerical discretization by
casting the discrete problem into the CutFEM framework.

2.2. Numerical discretization based on the cut finite element method

In the cut finite element method, briefly CutFEM, the boundary of the physical domain is
represented on a background grid using a level set function. The background grid is also used to
approximate the solution of the governing problem. In this framework the boundary conditions are
built into the discrete variational formulation, leading to a method that can handle a time varying
domain avoiding mesh moving algorithms or re-meshing techniques. A comprehensive review which
also cover the implementation aspects of the CutFEM method can be found in [8, 19].

Let Q4 be a bounded computational domain, constant in time, with an interface I'(¢) dividing Qg
into two non-overlapping subdomains €(¢) and €,,,(¢), so that ﬁr = ﬁ(t) U ﬁ,,u,(t), as show in Figure
1. The active zone, €(¢), represents the physical domain, while €,,, is a fictitious region.

Let 73, := {T'} denote a triangulation of Qs+, not necessarily conformal to the interface I'(r). The
collection of elements that are intersected by I is denoted with Qr :=T € 7, : T NT # 0.

Let us introduce the discrete spaces

V, = {v, € H'(Qr) : ily € P'(T), VT € T1}",
Q) :={qn € H'(Qr) : qulr € P*(T), VT € T3},

where P* denotes the space of scalar piecewise polynomials of order s.

We consider a decomposition of the finite element spaces V;, Q; as proposed in [28] and also
used in [34]. For simplicity, we address the decomposition for V; solely, the one for Q; follows
similarly. We separate the nodes related to each finite element space into the ones neighboring the
interface 1 F(V;) from the remaining ones in the active part of the domain 1 Q(V;) and those in the
fictitious domain 7« (V}). Precisely, let 7(V}) be the set of all degrees of freedom of V/ and let ¢
be the corresponding nodal basis functions. The degrees of freedom related to basis functions entirely
supported in Q and Q,,, are J Q(V,: ) := {k : supp(¢y) C Q} and I Qf""(V;l) = {k : supp(dr) C Qoue}
respectively. Their complementary set is 77 (V}) = Z(V}) \ (Z**(V};) U 7% (V}). Then, we use those
sets to construct the following subspaces,

V), :=span{¢y : k € I°(V})}, Vit :=span{¢y : k € T%(V})}, Vi := span{gy : k € I (V})},

and we decompose the finite element space as V, = V|, @ V}* & Vf"”’, so that any test function v, € V),
can be uniquely represented as as v, = V. + v + v
The semi-discrete scheme can be written as follows: find (uy, p) € V), X Q; such that:

(f, v, Vv, € v,

a(uy, vi) — a(py, V - vp)
@.11)

31 Gupns qn) + @ (V - Oy, qn) + (P gn) = Jr KVpi-man = [ Kppgan Yau € Q).

Since all the integrals are defined either on Q or on I', it would be equivalent to use test functions
defined on V] & V3! solely. In practice, we find more convenient to use formulation (2.11) and to set
the degrees of freedom of 7% (V}) and 7*(Q}) to zero.
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For the imposition of the pressure constraint in the internal unfitted interface I'(¢) in the second
equation of (2.11), we use Nitsche’s method following the approaches proposed in the seminal
work [20], see also [6,22] for applications of the method to Stokes problem and poromechanics. This
technique allows to weakly enforce interface conditions at the discrete level by adding appropriate
penalization terms to the variational formulation of the problem. This results in the modified problem
formulation,

1
M (0:pn> qn) + (@V - 0wy, qi) + c(pi, qn)

K
- f KVpy, -ng, — f Kth-nph+77 Prdn = f Kprgqn Vqn€ Q,, (2.12)
r'@) '@ I'(f) >

where 4 is the characteristic size of the quasi-uniform computational mesh and vy > 0 denotes a
penalization parameter independent on / and on the parameters of the problem. Finally, we consider a
backward-Euler time discretization scheme. Denoting with 7 the computational time step, the fully
discretized problem at time ¢, n = 1,2, ..., N reads as follows: find (uj, p?) € V; X Q; such that

a(uZa Vh) - a'(PZ, V. Vh) = (f’ Vh)»
% (PZ’ qZ) +a (V -y, qh) +1c(ph,qn) — Tfl“(z) KVp) -ng, -7 fl"(t) KVgy, -np} (2.13)
+ 557 [ Phan = [ Kpsgan+ 5 (P an) + @ (V- wi™, gs)

for all v, € V; and ¢, € Q;. We notice that the finite element space of p}~! may not coincide with the
one of gy, relative to the current time . To compute the integrals on the right hand side, we project p}~"!
onto the space Qg @ Qiz, such that the degrees of freedom of the projected pZ‘l and g, are conformal.
If 791(Q5)yu IT=1(Q8) € T9(Q5) U IT"(Q¢) the projection is just a simple extension to zero of the
new active degrees of freedom. Otherwise, we just discard at time n the degrees of freedom that were
active at time n — 1. We finally remark that bilinear forms of problem (2.13) are defined either on Q or
I'. As aresult the degrees of freedom 1 Qw‘f(V,’l), I QW’(Q;l) are not properly constrained. In practice, all
the matrix blocks related to these degrees of freedom are set to the identity, with a corresponding null
right hand side, such that all the degrees of freedom on Q,,,, are constrained to vanish.

2.3. Fixed-stress splitting

We focus the attention on the solution of the system (2.13) through the fixed stress iterative scheme
as presented e.g. in [4,23,26,30] and used in several studies, see for example [1,3,17,33] as a solver
and preconditioner for poromechanics problems.

In this algorithm the flow is solved first, followed by the solution of the mechanical problem. At
each time step, the procedure is iterated until the solution converges within an acceptable tolerance.

The first step reads as follows: given (uZ’k , pZ’k) €V, x Q) find pZ’kH € Q; such that

1 n 71
(M + IB) (ph’k+1 > Qh) + TC(Ph’kH > qh)

" \ K (,
- ‘z'frI(Vph’kJrl -ng,dl - Terth . nph’k”dr + %Tfrph’k“qhdr

Mathematics in Engineering Volume 1, Issue 4, 824-848.
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= fz Kpygqn + % (P an) + (@V - wi ™ qn) + B(py an) = (@V - Wi qu) Vg € 0}, (2.14)

where (-¥) denotes the iteration index. The second step of the algorithm reads: given pZ’k” € Q; find
u**! € V7 such that

a@™™ v, = &, v) + o,V v) Vv, eV, (2.15)

The iterative steps are performed until the following convergence criterion is fulfilled

Jerl K Jerl K
P Py ut - -
0 <p 0 < (2.16)
h u,
where 717, and 1, are the desired tolerances (here chosen equal to 1077).
For notational convenience, we reformulate the fixed-stress steps in a more compact form as

nk+1 _ n-1 _nk _nk _n-1
step 1 B,p, = L,(uj, W, PPy )

2.17)
step 2 BuuZ’kH = LL,(pZ’k“).

We will refer at B, and B, as the system matrices of the first (pressure) and the second (displacement)
step of the fixed-stress algorithm.

The real number 8 > 0 is a stabilization parameter and has to be chosen such that the convergence
of the scheme is ensured. We refer to e.g. [23, 30] for the choice of 8 and to [1,4,5,26,31] for a
mathematical interpretation and analysis of it. In particular, the optimization of the parameter g is
performed in [31]. We remark that all the works mentioned above are referring to classical
discretizations of the Biot equations, for the CutFEM method presented in this paper the convergence
analysis of the iterative method is thoroughly addressed in Section 3.6.

2.4. Preliminary numerical experiment

In this section we analyze the performance of the original fixed stress algorithm, namely (2.17), in
order to investigate the effects of the CutFEM discretization in the solution of the problem. To this
purpose we use two computational test cases arising from different choices of the finite element space
for the discretization of the displacement. In the first test case we take (uy, p;,) € V}L X Q;I, while in the
second case we choose (uy, py,) € Vﬁ X Q}l. We consider a cubic computational domain characterized
by an edge of 4 Km. The physical domain is described by the negative part of the following level set
function

1 r
f(x,y, 7)) = (Z - (0.7 + Z ((Y/l)z - 1)((X/l)2 - 1)) l)(l - 1.26 x 1011)

+

+ (Z - 0844l) m s

(2.18)
where 1" is the physical time in the temporal window [0,4KYy] (Ky stands for kilo-years) and [ is
the characteristic length of the domain. A sketch of the initial geometry of the physical domain is

shown in the top left part of Figure 2, while the material properties considered are reported in Table 1.
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Table 1. Material properties of the physical domain.

Young Modulus E 1010 Pa
Rock density Ds 2.2 x 103 Kg/m?
Rock permeability ki 1071 m?
Water density o 10° Kg/m?
Water viscosity I 1073 Pa s
Dimension [ 4x10° m

According to (2.18), I'(¢) is such that in some points [x, y] the elevation of ground surface decreases as
time evolves, while it increases in some other points. With this choice, we aim at demonstrating the
capability of the approach to model erosion as well as deposition of material. On a sufficiently large
spatial scale, the two phenomena must necessarily take place together, because of mass conservation.

To reach the geostatic condition we consider a temporal interval of 3.99KYy in wich the ramp function
R(7), introduced in Eq. (2.4), reads R(t) = Zmax[(t + Ot,, + |t + Ot,)), 1] with 67, = 3.99Ky and
n = (1 + Oty + |t, + 6tgsl)‘1 with 7, ® —1Ky. A schematic of the simulation set up is reported in the
timeline in the bottom part of Figure 2. We notice that the simulation is split in three parts: before
t1 = 0Ky, between #; = 0Ky and 13 = 3.99Ky and after 3 = 3.99Ky. The first part from 7y = —0t,;
to #; is used to reach the geostatic condition that are reached at #; = 0Ky. The second part of the
simulation, namely from #; = 0Ky to 3 = 3.99KYy is when the erosion/deposition take place, while
between #; and 7,,;, ® 8Ky there isn’t any change in the basin configuration. We use a time step size
of 3.15 - 10°s ~ 0.1Ky so that the simulation requires 40 time steps for the first, the second and the
third part. The level set function is updated just for 40 time steps after #; = 0 so that remains steady for
t>t; = 3.99Ky.

to

Figure 2. Configuration of the physical domain at different time steps. The gray regions
mark the reference configuration while the blue regions mark the domain deformed by
the displacement field amplified 60 times. A the bottom we illustrate the timeline of
the simulations, from the reference unloaded state {, = —3.99Ky (Ky is kilo-years), to
the geostatic state t{ = 0Ky, followed by erosion/deposition phase where we show the
deformation at #, = 1.99Ky and #; = 3.99Ky.
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The performance of the numerical solver is measured by three indices:

n
a=—"" b=-"" c=n,, (2.19)

Npax, ¥ Nnax,u

where n, and n, are the average number of GMRES iterations needed for the solution of the pressure
and the displacement subproblem, namely step 1 and step 2 of (2.17), R4y, , and 7,4y, are the maximum
number of iterations for the pressure and the displacement problem respectively, while the number of
fixed stress iterations per time step is 7.

The behavior of a and b over time for the case (u,, p;) € V}l X Q}l is reported in the left part of
Figure 3. We notice that the average number of iterations needed for the solution of the pressure and
the displacement sub-problem (a and b indices) is highly variable and a few peaks can be observed. We
remark that the indices a and b are related to the convergence rate of GMRES and, as a consequence, to
the conditioning of the two sub-problems. Depending on how the level set intersects the computational
domain, the two sub-problems may become ill-conditioned and a larger number of iterations is needed
for the fixed stress algorithm to converge. In the first test case, we notice that the indices a and b do
not reach their maximum (unit) value, meaning that the sub-problems are properly solved at every time
step. In such condition, as we see from the right panel of Figure 3 (¢ index), the number of fixed stress
iterations at each time step remains almost constant.

1 T T T T T T T I T 8 T T T T T T T T
: —all | |
0.8 I -b[] .
0.6 [ m
- - C - -
041 1 6 s
0.2 n - _
N\ i
O 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 5 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
time step time step

Figure 3. Evolution of a and b indices on the left and ¢ index on the right for (uy, p,) €
V, x 0.

The behavior of the three indices for the test case (uy, p;) € Vﬁ X Q}l is reported in Figure 4. We
notice that the variability of the indices a and b is greater that in the previous case and furthermore, at
certain time steps, the b index reaches its maximum. More precisely, the second step of the fixed stress
algorithm does not reach convergence. The index ¢ of Figure 4, shows that the ill-conditioning of the
sub-problems affects also the global convergence of the fixed stress algorithm. In particular, we notice
that the ¢ index follows the same trend of b and severe peaks occur when the solver of the subproblem
b does not converge.

From these preliminary test cases we infer that as long as the sub-problems are accurately solved,
the global convergence of the fixed stress algorithm is not significantly affected, while is highly
deteriorated when one of the two steps is not properly resolved. Then, the aim of this work is
exploring different numerical techniques to overcome the dependence of the sub-problems form the

Mathematics in Engineering Volume 1, Issue 4, 824-848.
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size of cut-elements and, as a consequence, of the fixed stress algorithm from the position of the
unfitted interface.

I s s A L A O o e e I B
0.8 I |
30 - u
0.6 L i
i c
0.4 20 - 4
2 by = | |
0 IR N RN R R 10 ™ |u. N S S —
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
time step time step

Figure 4. Evolution of a and b indices on the left and ¢ index on the right for (uy, p;,) €
V2x Q.

3. Stability analysis and conditioning of the problem

In this section we investigate the spectral properties of the systems associated to the two steps of the
fixed stress algorithm. We show that the CutFEM approximation may cause the ill-conditioning of the
sub-problems, depending on how the level set function intersects the computational grid. In the second
part of the section, we introduce a stabilization term and a preconditioner that cure the ill-conditioning
of the CutFEM approximation method.

3.1. Preliminary results for the analysis of CutFEM

In the CutFEM framework interface conditions are enforced weakly and numerical integration over
sub-elements is required. The integrals over very small sub-elements lead to very small element matrix
entries and therefore to ill-conditioned systems. Since the introduction of CutFEM various authors
have proposed different techniques to avoid this type of ill-conditioning [7, 9, 10, 24, 25, 28, 29, 34].
Among this non exhaustive list, we refer to [7], where the ghost penalty stabilization is introduced.

The idea of [7] is to add a penalty term in the interface zone that extends the coercivity of the
(physical) operator also in the region of the computational domain where the solution has no physical
significance. Let us introduce the following norms for any g, € Q; (for simplicity we use the scalar
notation, but these definitions can be straightforwardly extended to vector valued functions)

Igilloq = (qn gn)e”s Igallor = (qn gn)”s Igalling = 1IVgulloq + A~ llgullor -

Following [7] we introduce the following discrete inequalities that will be used in the analysis of the
problem:

Poincaré-Friedrichs inequality llgnllo.o < Crllgnlling 3.1

Inverse inequality lgnllina < Cih Migallog, » (3.2)

where the constants Cp, C; are independent of the size of cut elements. Furthermore, we need estimates
of the discrete functions in terms of their degrees of freedom. More precisely, we denote the degrees
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of freedom of ¢, € Q; with g, := SN qidnias q = {g:}, € RY. Then, there exist constants ¢, and
Cmax,0 SUch that

When properties of discrete functlons are con51dered on meshes that are cut by the boundary, the
smallest size of cut elements may affect the validity such properties. To define the smallest cut element,
we assume there exist a node x, such that the basis function related to such node have small support
in the physical domain, i.e. meas (Ur..rT N Q) << h?. Let x; be the nodal basis function related
to that node. Let z, be the node and z;, be the basis function such that meas;(Ur., erT N Q)/measy(T)
is minimal among the whole mesh. Then we define the smallest (relative) support of a basis function

defined on cut element as
measd(UT:zneTT N Q)
Vv .= . (34)
measy(Ur.,erT)

In the case of a mesh cut by the boundary, following [34] and in particular Lemma 3.3 and
Lemma 3.4 respectively, for piecewise linear finite elements, namely r = 1, s = 1, and for the special
function gz, related to definition (3.4), we have that there exist constants Cpin.15 Cmin2s Cmax.1> Cmax2 SUCh
that

d 2/d+1 d,2/d+1 1,12
RV < lzallg g < e KV 2l 3.5

d-2. 112 d-2_ 112
h2VIal < Nlznllf g < o ViE? (3.6)

mm 1

mm 2

Finally, in Lemma 3.7 of [34] it is shown that there exists a constant Cr, independent of the mesh cuts,
such that for any g;, € Q; it holds,

W lallsr < Crllgalli or Yan € Q- (3.7

On the basis of these results, in the following we present the analysis of the two sub-problems of the
fixed-stress approach, showing how the interface position affects their conditioning in both the standard
and the stabilized formulation.

3.2. Stability analysis of pressure problem

Equation (2.14), with a generic right hand side, can be written in a more compact form as

my(Ph, qn) + TCh(Ph> qn) = (&5 Gn)s (3.8)

where

1
my(Ph, qn) = (M +ﬁ) (Pr>qn)a s

K
cn(Pn>qn) = (Vpr, Var) — (Vp, -n,qp)r — (Vg - m, ppr + )/T(Ph, qnr .

Before proceeding, we observe that using standard arguments based on the norms and the
inequalities defined in the previous Section, it is straightforward to prove the following properties of
the pressure problem, with constants m, and M, uniformly independent to the mesh characteristic size
and the cut elements,

Coercivity — mcllpallf 0 < cu(pi> Pi) » (3.9)
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Continuity lcn(Pr, gl £ Mellpalli pollgnlling - (3.10)

To study the conditioning of the system matrix associated with (3.8), we address the spectral
properties of the matrix B, of (2.17). It is the sum of a mass ad a stiffness matrix, namely
B, = M + C. The eigenvalues/eigenfunctions of (3.8), namely 1, y;, are the solution of the following
problem

mu(Yn, qn) + 7 Vh> 1) = OOn qi)a - (3.11)

Introducing a suitable parameter Cg, equation (3.11) can be written as

¢ (Vs qn) = (@ = Co)n qn)a = {On> qn)a » (3.12)

and, as a consequence, the eigenvalues ¥ are related to the eigenvalues { associated to the operator cy,.

For this reason, we study the spectral properties of the matrix associated to (3.12).

Let k(C) := ||C|||IC~"|| be the condition number of a generic matrix C, where ||C|| := SUDy g %
and | - | denotes the euclidean norm on R". Let us consider x € R", associated to x, € O, such that
supp(x,) C Q, and therefore ||xulloo = llxulloq,. It can be shown, using the coercivity relation (3.9),

the Poincaré inequality (3.1) and (3.3) that

2 _2 2
”C” = sup |CW| (CX,X) Ch(Xh,Xh) mCHxh”l,h,Q mCCP ”xh”o’Q

> > > > > m.Cpoct. Jh.
werV W] Ix|2 Ix|2 Ix[2 Ix|2

min,0

We focus now on ||C~!||. By definition we have

- IC~'w| Al |z|
||C1||:sup =Ssup — > —.
weRN |W| weRN |CW| |CZ|

Let us now take the special function z; of (3.4),

_ (CZ’ W) _ Ch(Zh’ Wh)
|Cz| = sup =sup ——.

weRN |W| weRN |W|

Using the continuity of the bilinear form (3.10) combined with (3.6) applied to z,, (3.3) applied to wy,
and reminding that |z| = 1 we obtain that

d-2)/2. 4
cn(znwi) < Mcllzallnalwalling < MeCmax2h ™ 2v2 2] Wil no

d-2)/2, 1 -1 d-2)/2. % —17.d/2
< Mccmax,Zh( ) V2 Clh |Z| ”Wh”(),er < Mccmax,Zh( A Vzclcmax,Oh h / |Z| |W| . (313)

In conclusion we have that

2.2
c~p Cmin,O

hZV—l /2
Mc CI Cmax,OCmax,Z

KC) = lICICc Il =

meaning that the conditioning of the pressure sub-problem tends to infinity when v — 0.
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3.3. A stabilized formulation of the pressure equation

Let Ep be the set of element edges in the boundary zone, more precisely,
Ep ;= {K N K’, where either K € Qr or K’ € Qr}. (3.14)

Following [11], for any p;, and ¢, € Q}l the ghost penalty stabilization operator j(-,-) is given by

JrPia) = D (vehVpu g, Vg, ng) (3.15)

Ee&p

and Equation (3.8) is modified as follows,

my(Phs qn) + TCh(Prs qn) + TJp(Phs qn) = (&5 qn) - (3.16)

Then, the bilinear form of the stabilized pressure problem is

Cv(Pr>qn) = cr(Pnsqn) + jp(Pnsqn) » (3.17)

and we denote by G the related matrix.
In [7] it is shown that the stabilization operator does not affect the continuity and the coercivity of
the problem, such that there exist constants m¢, M¢

mC”'ph”'ih,gT < Cu(pns i) s
ICi(Pns gl < Mclllpalllinor gl ngr -
Using (3.3) and the standard inverse inequality we obtain,

G Co(p Wi
IGIl = sup IGpl _ sup sup Ch(pn wn)

< M2 2.
peRY |p| peRYN weRN |W||p|

max,0

For ||G™!|| using the coercivity, the inverse inequality and the bound (3.3) we have,
melllpalllf o, < Culpas pr) < 1GPIIPI < 1GPICs, oh~IPallogy -
Using the Poincaré type inequality (3.1) and the bound (3.3)

2 -2 2 -2 dj2
”lphl”],h,QT > Cp ”ph”()’QT > CP Cmin,Oh / ||ph||0,§27-|p|-

As a result we have

G
Gpl > meCyrct. he, VpeRY.
Ipl ’
Using the previous inequality we estimate ||G™!|| as
G'w 1
IG™"Il = sup | | = P S 2.2 pd°
weRN Iwl peRN |Gp| mCCp Cmin,Oh

It follows that k(G) = ||G|||IG™!|| = h~? is not dependent by the smallest cut element. The condition
number of G indeed scales with % as expected for the standard FEM method.
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3.4. Analysis of the displacement sub-problem

We focus on the operator a(u, v) defined as

a(uy, v,) := 2f ue(ay) : e(vy)dQ + f AV -w)(V - v,)dQ. (3.18)
Qi Q;

n

For the upper bound of the bilinear form it can be shown that the following inequalities hold true,

lauy, vi)l < 2ulleap)lloqlle(valloq + AV - willl[V - w4l

(3.19)
< Qu + Ad)lle(y)lloalle(Villoe < MallwlliallVallio -

For the lower bound of the bilinear form we have straightforwardly that a(u,, u,) > maIIVuhllé’Q. Using
Korn’s inequality, in particular [[u,lloo < Ckl|Vuplloq,VYu, € [Hg(Q)]d, (see for example [16]) we
obtain that

a(uy,uy,) > macz_(2||uh||(2),g Yy, € [Hy(Q)]*.

We now estimate the condition number of the system matrix A as k(A) = ||A||||A7!||. Let us consider
X, € V;I, such that supp(x;) C Q. Therefore we have [[X,lloo = [Xnlloo,. Using this function in the
coercivity of a(-, -) and exploiting the bound (3.3) we obtain

AW AX, X a(X;,, X
Al = sup Y1, (%20 atxi )
werdy W] x| x|

> MyConoh” - (3.20)

As in the previous case we evaluate ||A7!|| as

_ |A~w]| Iw| Iz
A7 = su = SUp e Z A 3.21
” H wele:l)N |W| weRlc:l)N |AW| |AZ| ( )

where z is the vector of degrees of freedom of the function z, related to (3.5), (3.6). Then, there holds

a(z,, Wp) < M|z, |l1 ollWalli 0
B [wl

|Az| = sup
weRdIN |W|

) (3.22)
and then following (3.13) we obtain

d-2_ 1
|AZ| < MaCICmax,Ocmax,2h v? IZI .

The condition number is therefore bounded from below by the constant

-2.2
mg CK cmin,O

M a CI Cmax,Ocmax,Z

k(A) = AINIAT = nv'2.

We notice that, also in the displacement subproblem, the conditioning of the system matrix depends on
the smallest cut element.
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3.5. Preconditioning of the displacement sub-problem

We address the second step of the fixed-stress approach (2.17) associated to the linear elasticity
problem that reads,

B = L(pi*). (3.23)

On the basis of the decomposition V, = V;, & V' & Viz””’, after filtering out the redundant degrees of
freedom of fo””’, the matrix B, admits the following block representation,

B® B
Bu = (BQF)t BF ’

where
Oy QA . Q L0 Ty Rl . roor Qy AT T . Q T
(W) Byvy = a(u;, vy, (w)B,v, :=a,,v,), @)B"v,:=au,v,).

The system (3.23) is naturally ill-conditioned because it consists of an almost incompressible
elasticity problem. In addition, the corresponding matrix is assembled on possibly small cut-elements.
We simultaneously reduce the stiffness of the system and cure the instability due to the small
cut-elements by means of a preconditioner and a stabilization term. Following [34] we assume that
the only genuinely stiff block of B, is B. As a result we propose the following preconditioner

_|B 0
P.—[O diag(Bg)]' (3.24)

We solve the problem of B, by means of preconditioned Krylov iteration that requires the inversion
of P. The solution of the diagonal lower block sub-system diag(B') is trivial, while the inversion
of the upper block diag(B%) is computationally demanding. We observe that the latter operation is
the solution of a standard linear elasticity problem. We achieve this task by means of an Algebraic
Multigrid (AMG) algorithm, which has been successfully used for this class of operators, as discussed
in [18].

We also adopt a stabilization operator for the elasticity problem, to ease the ill-conditioning related
to the presence of small cut-elements. Following the approach described in section 3.3 we add to
equation (2.15) the following ghost penalty operator

G vy = 30 (vl wy - np, 'y mg) Vg, vy €V (3.25)

Eec&Ep i=1

where &' denotes the i—th order derivative and Ep is the set of element edges in the boundary zone
defined in Eq. (3.14). This is a more general form of the ghost-penalty stabilization operator
introduced for the pressure in section 3.3, which can be applied either to linear or quadratic finite
elements, namely the case u, € V, with r = 1 and 2. For a comprehensive review of the ghost penalty
stabilization approach we remand the interested reader to [12]. In conclusion, the stabilized form of
the displacement sub-problem reads as,

a(,, vi) + ju(p, vy) = &, v) + a(pp, V-vy) Vv, €V, (3.26)
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3.6. Analysis of the fixed-stress approach with CutFEM

In this section we investigate the convergence of the fixed stress algorithm in relation with ill-
conditioning of the two sub-problems, due to the presence of small cut-elements. For this reason, we
address the pressure and elasticity problems of (2.17) in absence of the ghost penalty stabilizations.
Anyway, it is easy to see that the same conclusions of this section apply to the stabilized formulation
including j,(-,-) and j,(:,-).

Let us introduce the splitting error of the fixed stress approach as

e’[‘, =pp— p’,‘z and eﬁ =u, - “1;,- (3.27)

We subtract the fixed-stress equations form the monolithic problem formulation. The pressure equation
becomes

1 k k YK (& k k
(M +,8) (ep, qh) + 71c (Vep, th) + e (ep, qh)r +7 (KVe[J -n, qh)r -7 (Kth -n, el’)r (3.28)
=pe " ) -a(V-e " q) . Vg€ 0
The displacement error equation reads
2 (s(€l), &(vi)) + AV - €6,V - vp) = a(el, Vvi), Vv € V. (3.29)
First, we choose the test function as ¢, = e}, and v, = e~'. Equation (3.28) becomes now
1 vK
— + e + 7K||VeX + T e
(M ,3)|| “lo.0 IVellls o || o (3.30)
- 2K7(Vey - m,ép)r = e, ep) — a(v el e,
while (3.29) gives
2 ((€l), a(el™)) + AV - €, V- el = a(eh, Vel ). (3.31)
Using the polarization identity a - b = 1/4(a + b)* — 1/4(a — b)* we get
1
(aCel). eel™) = ||e(e )+ (el — lle(el) - (el DlGa. (332)
(V-€,V-e™)= —||V eillon - ||V-e’;‘1||é’g, (3.33)
and by the the binomial identity (a — b, a) = 3a* + 3(a — b)* — 3b* we obtain
Bllebllon — Blel " eh) = Blel — €7 eb) = ||€ 6.0 + —||€ — e Ga - —||€ Mo - (3.34)

Regarding the terms arising from the CutFEM approximation, using (3.7) we obtain,

K _ 0
7K (Ve -n.e;) < —<h”lleyllt + STKAIIVe, - n?
K 1

< 72—5h—1||e’;,||3lr + 36TKCry IV R g
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By choosing ¢ = %d, 1 - %% = % and y = V% we obtain
oC 7K 1 7K C
K (1= 25T )Ivelg + o (y - 2—5) lebie = 5 (IVebla + 7 llehli ) (3.35)

Using (3.30), (3.31) (3.32), (3.33), (3.34) and (3.35) we get

Cr
hy7d

A
k k1312 k k=1)12
+pllete,) + &(e, Do + 51V €, +V-€, oo

2 k112 k2 k2 k2 k k=112
~leblla + TRV g + TKlleh I+ Blebll g + Al = ¢ I

- % _ -
— plle(ey) — eel Ml o — SV e, ~ V- e o <Blle, 5q- (3.36)

Second, we address the terms arising from the splitting error of the displacement problem. From
equation (3.31) taken at iteration k and k — 1 and using the test function v, = eX — ¢!, we have

2palle(el — e DZ o + AV - (e — ek DIRg = aleh — e,V - (eh — el ). (3.37)

u

We recall that
ko k- ko k=12
IV - (€} — €5 DIl5q < dlle(el — el D5 g -

Using Cauchy-Schwarz and Young’s inequality we obtain,

ko k-1 ko k-1 a’ kK k12 1 (2p kK kly2
d

2

a k k=112 k k=14112 % k k=152

s

As a result we have,

_ A i} a’ i}
plle(e, — € Dligq + 511V - (€ — el Dlf o < —5——=lley — ¢ ' q - (3.38)
2 2 (7" + /l)
Equation (3.38) shows the convergence of the displacement is dominated by the convergence of the
pressure. Then, combining inequalities (3.36) and (3.38) we obtain,

2

2 e k2 Cr 2 k2 a k k=112
~llebll g + TKIVEL N o + TR Lllebl -+ Bl + |8 - E lef - &R,

2 7”+/1)

- A - -
+ plle(ey) + eel Dl o + IV e, +V-e 5o <Bley loq, (3.39)

which, on the basis of the Banach contraction theorem, proves that |l}'|[§ , — 0, provided that

a2

> —.
2(27” +/l)
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Finally, owning to the Poincaré inequality, for the splitting error of the pressure we obtain,

Cr

4 . (Cr
bR > €7 min (1) I R (3.40)

VA2 +
showing that the global convergence of the fixed stress algorithm is not affected by the position of the
unfitted interface I', because when v — 0 the constant of (3.40) is uniformly bounded. We conclude
that as long as the two sub-problems are well posed, in the case of piecewise linear finite elements
for the pressure approximation, the global convergence of the fixed stress algorithm depends only on
the material properties of the problem and we expect a constant number of fixed stress iteration. This
theoretical result is in accordance on what is obtained in the preliminary test case where the ¢ index
remains almost constant as shown in the right part of Figure 3.

4. Numerical experiments

In this section we investigate the performance of the stabilization term introduced in Section 3.2 and
of the preconditioner described in Section 3.5, by means of several numerical experiments. In Test 1
we consider a simple two dimensional problem, because in such simplified configuration the smallest
(relative) size of the cut element (v) is easily controlled. In the second test, named Test 2, we consider
a more realistic three dimensional case.

4.1. Test 1: a two-dimensional problem

O min cut

i
Figure 5. The geometry and triangulation of the computational domain used for Test 1 is
shown on the left. On the right, a zoom at the intersection of the level set curve and the
triangulation illustrates how small cut-elements appear.

We consider a squared domain as shown in the left part of Figure 5 with a characteristics length
[ = 4 Km divided into the physical () and fictitious region (€2,,,) by the curve I'. The material
properties are the ones reported in the right panel of Figure 1. Regarding the boundary conditions,
we consider vanishing displacement and null fluid flow on the bottom surface y = 0, while free stress
condition and vanishing pressure are imposed on the remaining faces. The surface I' is defined as the
zero value of the level set function I'(y) = y — H. Using this type of level set function and a uniform
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triangulation, we control the minimum dimension of the cut element as shown in the right panel of
Figure 5.

(A) condition number (k) (B) condition number after stab.

L I I I I I I I I I ] E I I I I I I I I I 3
10% - . = )
L — 12 £ =
2 [ - B, - 107 B, |2
10% - . 3 * Dp |4
n ~ B, 1 100k + B, |
) 107 1k F 4
0of 1wy
1013 - T ] 106 2_ ;
1010 B | | | | | | | | | ] 104 E | | | | | | | | | E

10710 1077 1071 107! 10710 1077 1071 107!

1% 1%
(C) GMRES iter. for pressure (p) (D) GMRES iter. for displacement (u)
300 T T T T T T T 1 C L ]
r—o—9

8 i | % L - Pl i
9 e 1S -~ 9 L -~ P |
g ~ S = 10%¢ E
S 100 I 10! b / .
» o o 0" 3
L Eoo o o

10710 1077 1074 107! 10710 1077 1074 107!

1% 1%

Figure 6. Panels A,B,C,D analyze how different inficators vary with the minimal size of cut-
elements (v), for Test 1. Panel A shows the contition number of B, and B,; Panel B shows
the contition number of B, and B, when the ghost penalty stabilization is adopted; Panel C
shows the number of GMRES iterations to solve the pressure system in the non stabilized
(ns) and stabilized (s) cases; Panel D shows the number of GMRES iterations to solve the
displacement system when preconditioners P and P, are used.

Both the first and the second step of the fixed stress algorithm (2.17) (pressure and displacement
step, respectively) are solved by means of GMRES. The number of iterations performed by each step
is used to investigate the performance of the pressure stabilization and the preconditioner for the
displacement. In Figure 6 (panel A) we show the conditioning of the matrices associated to the
fixed-stress sub-problems with respect to the minimum cut-element size. From that figure we notice
that the numerical experiments are consistent with the lower bound (dashed line) derived in Section 3.
However, we notice that the theoretical bound is not sharp, because when v tends to zero the
conditioning of both matrices explode with a rate higher than v~2. When the pressure stabilization and
the preconditioning of the displacement are applied, the condition number of the pressure and the
displacement systems become insensitive to the parameter v, as shown in Figure 6 (panel B). The
effect of the pressure stabilization term can be seen in Figure 6 (panel C), where we show the number
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of GMRES iterations needed by the pressure step of the fixed stress algorithm. We notice that the
introduction of the stabilization term makes the number of iterations become insensitive to the
parameter v. Concerning the solver for the displacement, the application of the preconditioner (3.24)
requires the inversion of the matrix

Q
P:= B, . 0 N
0 diag(B,

In alternative to P, we also consider the diagonal matrix P, defined as

P diag(B%) 0
b 0 diag(B")|

The number of GMRES iterations for the displacement system using these preconditioners, is shown
in Figure 6 (Panel D). We notice that both preconditioners optimally cure the stiffness of the matrix
due to presence of small cut-elements, because in both cases the convergence rate of GMRES seems
to be independent of v. However, the full preconditioner P is more effective, because it highly reduces
the number of GMRES iterations.

4.2. Test 2: a three-dimensional numerical experiment

In this section we show and comment the results for a more realistic test case. We consider a
tridimensional slab subject to mechanical compaction. The physical domain is described by the
intersection of a cube, of edge / = 4 Km, and the negative part of the level set function defined in
(2.18).

A sketch of the physical domain is shown in the top part of Figure 2 at different time steps. We
model the slab as a water saturated porous material, characterized by the properties reported in the
Table 1. Such parameters are in the range used for modeling sedimentary basins. We remand the
interested reader to [2, 13, 14, 27] for further details.

Concerning the boundary conditions we assume that the base of the slab is impermeable and fixed.
The lateral surfaces are impermeable, while a free stress condition is imposed for the displacement
problem. On the unfitted boundary at the top, we prescribe an homogeneous Dirichlet and an
homogeneous Neuman conditions for the pressure and the displacement, respectively. We study the
evolution of the slab in a temporal interval as described in Section 2.4. In particular for the second
part of the simulation, after the geostatic condition is reached, we investigate the evolution of the slab
for 8Ky using a time step of approximately 0.1Ky. In the top part of Figure 7 we show the
displacement field at #; = 0, t, = 1.99 and #; = 3.99KYy. The deformed domains (in blue) are obtained
warping the current configuration (in gray) by the displacement field magnified by a factor of 60 so
that they can be appreciated. We notice that the displacement field is highly driven by the shape of the
physical domain. In particular when the top surface is not planar, the largest deformation occurs in
correspondence of the thickest zones of the slab while, in the final part of the simulation when the
level set is planar, the displacement field becomes almost constant in the cross section of the slab.
Similar considerations also apply to the pressure field, as confirmed by the lower part of Figure 7
where we show the geostatic pressure on the left and the difference between the current and the
geostatic pressure at ¢, and 3.
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Figure 7. In the top part the displacement field at different time steps is reported. The
deformed domains are obtained warping the reference configuration (in gray) with the
displacement field amplified by a factor 60. At the lower left corner the pressure in the
geostatic state is shown. At the center and on the right of the of the lower panel the difference
betwen the actual and the geostatic pressure is shown at different time steps.

Figure 8. Test 2a: indices a, b and c¢ for P1-P1 discretization. Black curves (nsnp) are
obtained with the classic formulation of the problem. Red curves (sp) are obtained adding
the stabilization term and using the P preconditioner for the displacement problem.

Volume 1, Issue 4, 824—-848.



845

We now investigate the performance of the numerical solver based on the fixed stress algorithm
applied to Test 2. In particular we show that the pressure stabilization together with the preconditioning
of the elasticity system are effective to reduce the computational cost of the problem. We run numerical
experiments for two discretization choices, (w;, p;) € V) x Q] and (u, py) € Vi X Q).

In Figure 8 we show the three indices introduced in Section 2.4, obtained for the case (r, s) = (1, 1).
We compare the performance of the fixed stress algorithm in the original set up (black curves) and
using the stabilization term for the pressure problem, namely j,(-,-) and the preconditioner P for the
elasticity problem, as described in (3.24) (red curves).

From the index a we notice that, using the stabilization term the number of iterations for the pressure
problem is reduced. Precisely, the peak that occurs near the time step 30 for the black curve, is no
longer present for the red one. Focusing on the index b, we notice that the preconditioner P effectively
reduces the number of iterations needed for the solution of the displacement problem. Finally, from
the index ¢ we see that the number of fixed stress iterations is almost constant both in the original and
the stabilized formulation of the problem. This observation supports the conclusions of Section 3.6,
confirming that the global convergence of the fixed stress does not depend on the position of the level
set, resulting in an almost constant number of iterations.

The results obtained in the case of ((r, s) = (1, 2)) are shown in Figure 9. In particular we compare
the following cases:

(nsnp) non stabilized, non preconditioned (black line); it refers to the original formulation of the problem.
(sp) pressure-stabilized and preconditioned (red line); it refers to the stabilized formulation of the
pressure problem and the preconditioner P for the elasticity problem.
(ssp) pressure and displacement stabilized and preconditioned (blue line); these data are are obtained
using the ghost penalty stabilization j,(:, -) in the elasticity problem.

index a

index b

index ¢

05T T T T 7T T T 1 1 T L A N L L B B |

[ —nsnp | —nsnp || —nsnp ||
0.4 —sp 0.8 —sp —sp

I —ss e e
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0
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time step
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time step
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time step

Figure 9. Test 2a: indices a, b and ¢ for P2-P1 discretization. Black curves (nsnp) are
obtained with the classic formulation of the problem. Red curves (sp) are obtained adding
the stabilization term and using the P, preconditioner for the displacement problem.

Again, we see that the number of iterations for each subproblem of the fixed stress algorithm
decreases for both the sp and ssp cases. Concerning the index b, the overall number of iterations for
the displacement significantly lowers in the sp and ssp cases, despite some peaks that are still present.
However, the major advantage of using the preconditioner and the stabilization term of the
displacement is appreciated from the index c¢. More precisely, we notice that the peaks of the fixed
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stress iterations drastically decrease in the sp case and almost vanish in the ssp cases, resulting in a
great reduction in the computational cost of the whole coupled system.

5. Conclusions

In this work we have considered a free-boundary poromechanic problem, relevant for studying the
erosion/deposition of a sedimentary basin. The mathematical model for this problem consists of Biot’s
equations with a moving boundary. We have proposed a discretization method based on CutFEM and
the fixed-stress splitting scheme. The use of CutFEM avoids re-meshing the computational domain
along with the evolution of the boundary. However, it worsens the conditioning of the matrices in the
presence of cut-elements of small size. To overcome this issue, we have introduced a stabilisation term
into the problem formulation and used a preconditioner for the numerical solver. Illustrative numerical
examples have shown that these numerical techniques are effective and enable the application of the
combined CutFEM/fixed stress approach to realistic applications in geomechanics.
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