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Abstract: In this paper, we are concerned with the 2D and 3D geometric shape generation by
prescribing a set of characteristic values of a specific geometric body. One of the major motivations of
our study is the 3D human body generation in various applications. We develop a novel method that
can generate the desired body with customized characteristic values. The proposed method follows a
machine-learning flavour that generates the inferred geometric body with the input characteristic
parameters from a training dataset. The training dataset consists of some preprocessed body shapes
associated with appropriately sampled characteristic parameters. One of the critical ingredients and
novelties of our method is the borrowing of inverse scattering techniques in the theory of wave
propagation to the body generation. This is done by establishing a delicate one-to-one correspondence
between a geometric body and the far-field pattern of a source scattering problem. It enables us to
establish the one-to-one correspondence between the geometric body space and the function space
defined by the far-field patterns. Hence, the far-field patterns can act as the shape generators. The
shape generation with prescribed characteristic parameters is achieved by first manipulating the shape
generators and then reconstructing the corresponding geometric body from the obtained shape
generator by a stable multiple-frequency Fourier method. The proposed method is in sharp difference
from the existing methodologies in the literature, which usually treat the human body as a suitable
Riemannian manifold and the generation is based on non-Euclidean approximation and interpolation.
Our method is easy to implement and produces more efficient and stable body generations. We
provide both theoretical analysis and extensive numerical experiments for the proposed method. The
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main goal of the study is to introduce inverse scattering approaches in combination with machine
learning to the geometric body generation and it opens up many opportunities for further
developments.

Keywords: geometric body generation; machine learning; shape generator; inverse source scattering

1. Introduction

With the rapid technological advancement today, the access to realistic 3D human shapes is of great
importance in both computer vision and graphics, and has various applications in different industries
including virtual game design, film making, bioinformatics [41], healthcare [38], and especially, those
related to garment design. Some applications involve fitting predictions, virtual try-on simulations [13,
16, 23, 34] or size recommendations [5–7], that help to recommend relevant clothing which would fit
specific occasions or fashion trends for online customers. Such applications require a critical ingredient
on digital transformation from humans bodies to digital 3D shapes, such that the shapes maintain some
of the main features from human bodies.

The traditional approaches to access reliable digital information of a human body are through laser
range scanners [1], stereo reconstruction [18, 22, 33] or structured light methods for 3D sensing [11,
20, 24]. However, considering the cost of data storage, network transmission and expensive scanning
equipment, it is rather unpractical to scan individuals for each application. Hence many studies have
been done to generate 3D human shapes based on partial input information. These prior systems can be
mainly classified into three types: marker-based systems, silhouette-based systems and measurement-
based systems. Marker-based system estimates dynamic 3D human body shapes by capturing a sparse
set of marker positions. These techneqiues proceed by using a single static scan or multiple scans
and a marker motion capture sequence of the person [4]. For the static case, silhouette-based system
estimates human body shapes based on a set of input images by fitting the silhouette in each view
[3, 8, 9, 15]. Some apporaches also combine with machine learning that build a correlation between
a training dataset of 3D body shapes and a set of 2D images, and then predict a shape based on the
correlation [14].

Although marker-based systems and silhouette-based systems could yield satisfactory
reconstructions on 3D human body shapes under tight dresses or naked human shapes, most of the
schemes are so computationally expensive and the results are easily affected if heavy or loose clothes
are worn. To overcome these difficulties, a great deal of efforts have been devoted to the investigation
of simple and fast measurement-based systems [17, 32, 35]. Typically, one considers the landmarks or
circumferences from the human structures at specific locations as characteristic values. Since such
characteristic values are linear or curvilinear, they are relatively invariant to articulation changes than
those silhouettes measurements. If the set of characteristic values is well selected, one can achieve
meaningful estimation for both global and local body shapes. Kart et al. (2011) built a system which
only requires to input some personal information, such as weight, height and age as well as a 2D
photograph. The decision algorithm then determines the human shape according to the measurements
and the body mass index (BMI) [12]. Seo et al. [35] presented a human body generation apporach by
taking the anthropometric measurements, e.g., stature, crotch length, arm length, neck girth,
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chest/bust girth, underbust girth, waist girth and hip girth as input. They derived the relationship
between the input characteristic values and the preprocessing database of 3D scanned data of human
body models by using radial basis interpolation. At run-time, the system generates new human body
shapes from the user input characteristic values by fitting the template model onto each scanned data.

In this paper, we develop a completely novel methodology for the geometric body generation,
which fulfils the following two basic requirements: (i) the geometric body generation is automatically
determined by the input characteristic sets; (ii) the predicted geometric shape fits for all input
characteristic values and moreover it can well approximate the exact geometric body possessing the
aforesaid characteristic values. The proposed method follows a machine-learning flavour that
generates the inferred geometric body with the customized characteristic parameters from a training
dataset. The training dataset consists of some preprocessed body shapes associated with appropriately
sampled characteristic parameters. One of the critical ingredients and novelties of our method is the
borrowing of inverse scattering techniques in the theory of wave propagation to the body generation.
This is done by establishing a delicate one-to-one correspondence between a geometric body and the
far-field pattern of a source scattering problem governed by the Helmholtz system. It in turn enables
us to establish a one-to-one correspondence between the geometric body space and the function space
defined by the far-field patterns. Hence, the far-field patterns can act as the shape generators. The
shape generation with prescribed characteristic parameters is achieved by first manipulating the shape
generators in the function space and then reconstructing the corresponding geometric body from the
obtained shape generator by a stable multiple-frequency Fourier method. The proposed method is in
sharp difference from the existing methodologies in the literature, which usually treat the human body
as a suitable Riemannian manifold and the generation is based on non-Euclidean approximation and
interpolation. In fact, in all of the literature mentioned earlier on manifold learning of body
generation, one typically uses Principal Component Analysis (PCA) or Principal Geodesic Analysis
(PGA). PCA and PGA are used for optimal reduction of the data and thus efficient deformation by
computing statistics on Euclidean manifolds or non-Euclidean manifolds can be achieved; see [10,35]
and the references therein for more relevant discussion. In our new approach, the shape generator
enables us to train the learning dataset via the algebraic operations in the shape space directly without
dealing with the deformation of the manifold meshes between geometric shapes.

The rest of the paper is organized as follows. In section 2, we provide rigorous mathematical
formulations of characteristic values and shape space. Section 3 introduces the notion of shape
generator via the inverse source scattering associated with the Helmholtz system. In section 4, we
present the mathematical setup of the geometric body generation from a machine-learning
perspective. Section 5 is devoted to the development of the new method for the shape generation. In
section 6, we present several two- and three-dimensional numerical examples to show the
effectiveness and efficiency of our method. The paper is concluded in section 7 with some relevant
discussion.

2. Preliminary knowledge on shape manifold theory

In this section, we present some preliminary knowledge on the shape manifold theory that shall
be needed in our subsequent study of body generation. Generally speaking, a geometric shape or a
geometric body is a topological n-manifold, n ∈ N, equipped with certain shape descriptors, which give

Mathematics in Engineering Volume 1, Issue 4, 800–823.



803

the full information to describe the geometric shape. We call such shape descriptors as characteristic
values. We have the following formal definition.

Definition 2.1. Let D be a topological n-manifold with n ∈ N. Let ΛD := {λ( j)} j∈C be a set of parameters
associated with D that are invariant with respect to isometric deformations and are independent to
the parametrizations of D. Here, the cardinality C might be finite or infinite. ΛD is said to be a
characteristic set of D if it uniquely determines D. D and its characteristic set ΛD, written as the
(D,ΛD) is referred to as a geometric shape or a geometric body.

Clearly, Definition 2.1 includes much general geometric objects. However, for the present study, we
are mainly concerned with the case that D can be embedded into Rd, d = 2, 3, as a bounded domain.
That means, we exclude some interesting cases such as D is a Riemannian surface with boundary in
R3. Nevertheless, our study is general enough to include the human body as a specific case.

In Definition 2.1, the set of characteristic values is typically a set of measurements which gives a
systematic characterization of the size, shape and composition of a geometric object for us to determine
the shape of the object. For example, when considering a rectangular object, once can introduce a set
of characteristic values containing its height, width and length, which provide all details to determine
a unique rectangular shape. Expanding the same idea to human body shapes, one could also use
characteristic sets to represent them. There are many different ways to represent a human shape. We
would try to group those characteristic values into four main catagories, including Eucidean distance,
geodesic distance, circumference and ratio. The Eucidean or geodisic distance is linear or curvilinear
distance between two points on the human model, such as stature, crotch length, arm length, shoulder
breadth etc. The circumference can be computed by the horizontal girth of the body, such as neck girth,
chest/bust girth, under-bust girth, waist girth, hip girth, etc. The ratio can be information of weight,
Body Mass Index, muscle and fat rate. In spite of the above characteristic values, one can also consider
some pure measurements such as age or gender as characteristic values.

The full set of characteristic values gives the complete information of a geometric shape without
lossing any information. It is easy to imagine that the cardinality of a set of characteristic values
depends on the complexity of a shape. Hence, the number of characteristic values required can be
considered as the dimensionality of the geometric shape. For those complicated objects, like human
shapes, it may require infinite set of characteristic values for accurate formulations. Due to practical
reasons, one can consider a reasonable truncation of an infinite characteristic set into a finite one for a
complicated geometric shape. In doing so, we can consider our study in the following product space

S := D × V , (2.1)

where D is composed of all the bounded domains in Rd and V is an M-dimensional vector space
containing the characteristic values. In fact, in the present study, the characteristic values are usually
real numbers and one can take V = RM with M ∈ N. S is referred to as the geometric shape space.
According to the (approximate) one-to-one correspondence between a geometric shape and its
characteristic values in Definition 2.1, we readily see that all the shape information can be obtained by
a single point of this M-dimensional vector space V . By adjusting the characteristic values, we can
obtain new geometric shapes and this is a key ingredient in our human body interpolation.
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3. Shape generators via inverse source scattering

In the previous section, we introduce the important notion of shape space for our study. We
proceed to introduce another critical ingredient, shape generator, for our subsequent study of the
geometric body generation. In fact, the generation of a new geometric shape shall be based on
algebraic interpolation of exemplar models from the shape space. If the algebraic operations are to be
conducted directly in the shape space, dealing with geometric deformations of manifolds, one would
certainly encounter very complicated and tedious calculations and manipulations because of the lack
of global parametrizations for the non-Eucidean shapes involved. The shape generator can overcome
this challenge by bridging the geometric shape space and the function space. To that end, we next
introduce the inverse scattering problem in finding an active source from its generated far-field
pattern.

Let f : Rd 7→ C be a function having a compact support, f = χDϕ, where D ⊂ Rd is a bounded
domain and ϕ ∈ L∞(Rd). The set D is the external shape of f while ϕ describes the intensity of the
source at various points in D. We assume that ϕ and D do not depend on the wavenumber k ∈ R+.
In other words we are considering monochomatic scattering. The source f produces a scattered wave
u ∈ H2

loc(R
d) given by the unique solution to

(∆ + k2)u = f , lim
r→∞

r
d−1

2
(
∂r − ik

)
u = 0, (3.1)

where r = |x| for x ∈ Rd. The limit in (3.1) is known as the Sommerfeld radiation condition which
characterizes the outgoing nature of the radiating wave. By the limiting absorption principle (cf. [21]),
the solution to (3.1) can be computed as follows,

u = (∆ + k2)−1 f = lim
ε→+0

(
∆ + (k − iε)2)−1 f

= − lim
ε→+0

∫
Rd

eix·ξ f̂ (ξ)
|ξ|2 − (k − iε)2 dξ,

(3.2)

where
f̂ (ξ) := F f (ξ) = (2π)−d

∫
Rn

f (x)e−iξ·x dx (3.3)

signifies the Fourier transform of f . Inverting the Fourier transform in (3.2), one has the following
integral representation,

u = (∆ + k2)−1 f := −
i
4

(
k

2π

) d−2
2

∫
Rd
|x − y|

2−d
2 H(1)

d−2
2

(k|x − y|) f (y) dy, (3.4)

where H(1)
(d−2)/2 is the first-kind Hankel function of order (d − 2)/2. Stationary phase applied to (3.4)

yields that

u(x) =
eik|x|

|x|(d−1)/2 Cd,k

∫
Rd

e−ikx̂·y f (y) dy + O(|x|
d
2 ), |x| → ∞, (3.5)

where x̂ := x/|x| ∈ Sd−1, x ∈ Rd\{0}, and

Cd,k =
−i
√

8π

(
k

2π

) d−2
2

e−
(d−1)π

4 i.
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The far-field pattern of u is given by

u∞(x̂, k; f ) := Cd,k

∫
Rd

e−ikx̂·y f (y) dy = (2π)dCd,kF f (kx̂) ∈ L2(Sd−1). (3.6)

It is obvious that u∞ is (real) analytic in both x̂ and k. Hence, if u∞(x̂, k) is known on any open portion
of Sd−1 × R+, then it is known on the whole set by analytic continuation.

The inverse source scattering problem is concerned with the recovery of f = ϕχD by knowledge of
u∞(x̂, k; f ) for (x̂, k) ∈ Σ, where Σ is an open subset of Sd−1 × R+. According to our discussion above,
without loss of generality, we always assume that Σ = Sd−1 × R+ in what follows. The inverse source
problem arises in a variety of important applications including detection of hazardous chemicals,
medical imaging, photoacoustic and thermoacoustic tomography, brain imaging, artificial intelligence
in gesture computing and others. We refer to the recent articles [25, 26, 39, 40] by two of the authors
of this article for some recent developments on the inverse source problem.

Next, let us consider a specific case by assuming a source supported in a domain D with a constant
density 1. Then clearly by (3.6), there is a one-to-one correspondence between D and u∞(Σ; D) :=
{u∞(x̂, k; 1 · χD)}(x̂,k)∈Σ ∈ L2(Sd−1 × R+) in the sense that for two domains D1 and D2,

u∞(Σ; D1) = u∞(Σ; D2) if and only if D1 = D2. (3.7)

Based on (3.7), we next introduce

Definition 3.1. For a geometric shape (D,ΛD) ∈ S,

u∞(Σ; D) := {u∞(x̂, k; 1 · χD)}(x̂,k)∈Σ ∈ L2(Sd−1 × R+)

defined via the Helmholtz system (3.1) is called a shape generator for D.

Remark 3.1. By Definition 3.1, a geometric body D can be completely determined by a shape generator
u∞(Σ). Since u∞(Σ) is from a function space, this paves the way for the new body generation through
function interpolations.

Remark 3.2. By (3.6), we know the far-field pattern is actually the Fourier transform of the source
density up a dimensional constant. However, introducing the shape generator via the inverse scattering
approach shall provide more physical insights in our study, and moreover it enables us to borrow ideas
from the inverse scattering literature of recovering the geometric shape D from the associated far-
field pattern. This also paves the way of extending the idea by using other inverse scattering models
that have such one-to-one correspondence between geometric shapes and far-field patterns; see more
relevant discussion in section 7.

4. Mathematical setup for the geometric body generation

In this section, we introduce the mathematical formulation of the geometric body generation for
our study from a machine learning perspective. For a geometric shape (D,ΛD) with the associated
shape generator u∞(Σ; D), the pair of the high dimensional variables, written as {(ΛD, u∞(Σ; D))}, is
referred to as an input-output pair. Let {(ΛDi , u∞(Σ; Di))}i∈N with N = {0, 1, . . . ,Npair} be a set of
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input-output pairs associated with the characteristic sets {ΛDi}i∈N . Here the input characteristic sets
ΛDi are introduced as

ΛDi := {λ( j)
i } j∈C ,i∈N , (4.1)

with C = {1, . . . ,M}. In (4.1), the notation λ( j)
i represents the characteristic value of the i-th geometric

shape Di in the j-th direction of its characteristic set. Here, the cardinality N is finite. The training
dataset of the geometric body generation is introduced to be

Z := {(ΛDi , u∞(Σ; Di))}i∈N (4.2)

with
Λ = (λ(1), . . . , λ(M)) ∈ RM and u∞(Σ) ∈ L2(Sd−1 × R+). (4.3)

The training dataset consists of certain pre-sampled geometric shapes with statistically well selected
characteristic values. The corresponding shape generator of a specific body in the training dataset can
also be pre-calculated and stored. The main goal of our study is to first infer a learning model from the
training dataset, TZ : RM → L2(Sd−1 × R+) that fulfils the following requirements:

1. It fits the training data well in the sense that

TZ(ΛDi) := û∞(Σ; Di) ≈ u∞(Σ; Di), ∀Di ∈ Z. (4.4)

2. It can be used to infer the shape generator for a given new shape with prescribed characteristic
values, namely,

û∞(Σ; Dnew) := TZ(ΛDnew), (4.5)

and with a statically well selected training dataset, it is justifiable to expect that

û∞(Σ; Dnew) ≈ u∞(Σ; Dnew), (4.6)

where u∞(Σ; Dnew) is the shape generator for Dnew.

If a learning model can be achieved that fulfils the two requirements as described above, then the
body generation can be proceeded as follows. For a given new set of characteristic values, one first
generates the learned shape generator as in (4.5). By a certain inverse scattering approach, one can then
reconstruct the (approximate) shape Dnew from the corresponding shape generator û∞(Σ; Dnew). In the
next section, we shall develop the two critical ingredients in the body generation procedure described
above, namely, the learning model and the reconstruction method. To be more definite and specific, we
first introduce the following definition from a machine learning perspective.

Definition 4.1. (Body learning model) Given a training dataset

Z := {(ΛDi , u∞(Σ; Di))}i∈N . (4.7)

Let H be a compact subset of L2(Sd−1 × R+). TZ ∈ H (with specified coefficients C) is said to be the
best fit learning model associated with the training dataset Z if it is the minimizer of the following
optimization problem,

min
TZ∈H

1
Npair + 1

∑
i∈N

∥∥∥TZ(ΛDi) − u∞(Σ; Di)
∥∥∥2

H
. (4.8)
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According to Definition 4.1, the choice of the learning subspace H plays a critical role. However,
we note that the shape generator is actually (real) analytic in all of its arguments. Hence, instead of
solving the computationally costly optimization problem (4.8), we can make use of the functional
interpolation to produce a well-rounded shape learning model. This is one of the main advantages of
introducing the shape generator through the inverse scattering model. In the next section, for a given
training dataset as in (4.7), we shall derive a learning model using the cubic B-spline interpolation
through the use of the high-dimensional data-points (4.4). For the reconstruction of the approximate
body shape from the shape generator obtained through the learning model, we shall make use of a
multiple-frequency Fourier method, and it can also produce an efficient and stable recovery.
Throughout, we assume that the characteristic values in the training dataset is statistically well
selected and it is not the focus of the present article.

5. A scheme for geometric body generation

In this section, we develop the details of our scheme for the geometric body generation following
the general discussion made in the previous section. We first derive the learning model through the
functional interpolation of the high-dimensional data in the training dataset. To that end, we present
some preliminary knowledge on the cubic B-spline, and we also refer to [2,19,36,37] for more relevant
discussion on the cubic B-spline.

5.1. Preliminary knowledge on the cubic B-spline

Consider the training dataset (4.2). Let the M sets of unique grids in the directions of {λ( j)} j∈C

∆ j = {λ
( j)
0 , · · · , λ

( j)
k j
} j∈C , k j ∈ N, (5.1)

define on the intervals [a j, b j] as M sets of points λ( j)
g j ∈ [a j, b j] ⊂ R, where g j ∈ {0, . . . , k j} and

a j = λ
( j)
0 < λ

( j)
1 < · · · < λ

( j)
k j

= b j, j = 1, . . . ,M. Here, k j is the greatest number of distinct characteristic
values in the j-th direction of the characteristic set. We remark that if the characteristic values of the
training dataset are all collected in distinct values, then k j is actually the last index of the training
dataset, Npair. However, the training dataset might be collected in such a way that some body shapes
may possess the same characteristic value in the j-th direction, and hence k j is usually smaller than
Npair.

With the above notation, the training dataset stored as the array in (4.2) can be represented as
elements on the grid mesh corresponding to the characteristic numbers λ( j) as described above. The
interpolation data are the corresponding shape generators and are written as

u∞(Σ; Di) := Ug1,g2,...,gM ∈ L2(Sd−1 × R+), ∀i ∈ N , (5.2)

where g j = 0, . . . , k j, j = 1, . . . ,M. In the subsequent study, we shall stick to the same notation
g1, g2, . . . , gM to represent the linear indexing. The following example demonstrates a real application
for the human body generation.

Example 5.1. The training dataset consists of 20 bodies with two characteristic values as consideration,
say, height and relative weight. Here, the height and relative weight are the two directions of the grids,
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λ(height) and λ(weight). Suppose the heights of the sampled bodies are given by 1.5 m, 1.6 m, 1.7 m, 1.8
m, 1.9 m and the relative weights of the sampled bodies are given by 60%, 80%, 100%, 120%. Then
the first grid ∆height = {λ

(height)
0 , λ

(height)
1 , λ

(height)
2 , λ

(height)
3 , λ

(height)
4 } = {1.5, 1.6, 1.7, 1.8, 1.9} and the second

grid ∆weight = {λ
(weight)
0 , λ

(weight)
1 , λ

(weight)
2 , λ

(weight)
3 } = {0.6, 0.8, 1, 1.2}. The interpolation data are actually

stored as listed in Table 1; e.g., U0,0 = u∞(Σ; D1),U0,3 = u∞(Σ; D4),U1,3 = u∞(Σ; D8).

Table 1. Training dataset with the given characteristic grids (λ(height), λ(weight)).

2nd grid
λ

(weight)
0 λ

(weight)
1 λ

(weight)
2 λ

(weight)
3

1st

grid

λ
(height)
0

(ΛD1 , u∞(Σ,D1))
= (1.5, 0.6,U0,0)

(ΛD2 , u∞(Σ,D2))
= (1.5, 0.8,U0,1)

(ΛD3 , u∞(Σ,D3))
= (1.5, 1,U0,2)

(ΛD4 , u∞(Σ,D4))
= (1.5, 1.2,U0,3)

λ
(height)
1

(ΛD5 , u∞(Σ,D5))
= (1.6, 0.6,U1,0)

(ΛD6 , u∞(Σ,D6))
= (1.6, 0.8,U1,1)

(ΛD7 , u∞(Σ,D7))
= (1.6, 1,U1,2)

(ΛD8 , u∞(Σ,D8))
= (1.6, 1.2,U1,3)

λ
(height)
2

(ΛD9 , u∞(Σ,D9))
= (1.7, 0.6,U2,0)

(ΛD10 , u∞(Σ,D10))
= (1.7, 0.8,U2,1)

(ΛD11 , u∞(Σ,D11))
= (1.7, 1,U2,2)

(ΛD12 , u∞(Σ,D12))
= (1.7, 1.2,U2,3)

λ
(height)
3

(ΛD13 , u∞(Σ,D13))
= (1.8, 0.6,U3,0)

(ΛD14 , u∞(Σ,D14))
= (1.8, 0.8,U3,1)

(ΛD15 , u∞(Σ,D15))
= (1.8, 1,U3,2)

(ΛD16 , u∞(Σ,D16))
= (1.8, 1.2,U3,3)

λ
(height)
4

(ΛD17 , u∞(Σ,D17))
= (1.9, 0.6,U4,0)

(ΛD18 , u∞(Σ,D18))
= (1.9, 0.8,U4,1)

(ΛD19 , u∞(Σ,D19))
= (1.9, 1,U4,2)

(ΛD20 , u∞(Σ,D20))
= (1.9, 1.2,U4,3)

Let S 3(∆ j), j = 1, . . . ,M be a function subspace of C2([a j, b j]) consisting of one dimensional,
complex-valued functions in the direction of λ( j), j = 1, . . . ,M on the bounded interval [a j, b j]. The
function in S 3(∆ j), j = 1, . . . ,M is piecewise polynomial of degree 3 on every subinterval [λ(l)

g j−1, λ
( j)
g j ],

where g j = 1, . . . , k j, j = 1, . . . ,M. Then we introduce a function subspace of multidimensional and
complex-valued C2([a j, b j]) functions as

S 3 (∆1, . . . ,∆M) , (5.3)

on each rectangular grid
Ig1,g2,...,gM :=

∏
j∈C

[λ( j)
g j
, λ

( j)
g j+1] (5.4)

for all 0 ≤ g j ≤ k j − 1, j = 1, . . . ,M that are piecewise polynomials of degree 3 on every interval. For
easy reference we provide the definition of B-splines.

Definition 5.1. The sets of k j + k, j = 1, . . . ,M, B-spline basis functions {Bl,k(λ( j))}k j+k
l=1 of degree k of

the function space S k(∆ j) are defined based on concurrent boundary knots vectors with Cox-deBoor
recurrence [19],

Bl,k(λ( j)) =
λ( j) − λ

( j)
l−1−k

λ
( j)
l−1 − λ

( j)
l−1−k

Bl−1,k−1(λ( j)) +
λ

( j)
l − λ

( j)

λ
( j)
l − λ

( j)
l−k

Bl,k−1(λ( j)) (5.5)

with

Bl,0(λ( j)) =

1 if λ( j)
l ≤ λ

( j) < λ
( j)
l+1

0 else
, (5.6)
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for l = 1, . . . , k j + k, where k = 3 is for the cubic B-spline and λ( j)
l are elements of the knot vectors,

satisfying the relation λ( j)
l < λ

( j)
l+1.

All methods are in the following using splines with a k + 1 regular knot vector, and the interior
knots are the grid points. Based on Definition 5.1, we next introduce a general learning model for the
geometric shape generation through the multidimensional cubic B-spline interpolation.

Body learning model I. Given the training dataset Z := {(ΛDi , u∞(Σ; Di))}i∈N , the learning model
TZ ∈ S 3(∆1, . . . ,∆M) at Λ = (λ(1), . . . , λ(M)) for the geometric body generation associated with the sets
of the grids {∆ j} j∈C is defined as follows

TZ(Λ) =

k1+3∑
g1=1

· · ·

kM+3∑
gM=1

cg1,g2,...,gM

∏
j∈C

B j
g j,3

(λ( j)), λ( j) ∈ [a j, b j], (5.7)

which satisfies the following conditions by (4.4)

TZ(ΛDi) =

k1+3∑
g1=1

· · ·

kM+3∑
gM=1

cg1,g2,...,gM

∏
j∈C

B j
g j,3

(λ( j)
i ) = u∞(Σ; Di), (5.8)

where cg1,g2,...,gM with g j = 0, . . . , k j, j = 1, . . . ,M are the coefficients to be determined from the training
dataset Z, B j

g j,3
(λ( j)), j ∈ C are the B-spline basis functions of degree 3 defined in (5.5), and k j, j =

1, . . . ,M is the number of different characteristic values in each direction.

Remark 5.1. In learning model I, (5.7) presents a general form of the learning model TZ for the
geometric body generation associated with the non-uniform grids {∆ j} j∈C . The learning model
eventually generates a B-spline interpolation with the associated spacing for each segment. If the
training dataset consists of equidistant grids, we can derive a faster and easier learning model and this
shall be provided in the next subsection.

5.2. Uniform B-spline

In this subsection, we derive a learning model for a special case with the training dataset consisting
of equidistant grids. By (5.1), for the M set of equidistant grids ∆ j = {λ

( j)
0 , · · · , λ

( j)
k j
} j∈C with additional

conditions

λ( j)
g j

= a j + g jh j, h j =
b j − a j

k j
, , g j = 1, . . . , k j, (5.9)

the B-spline basis function βk(t) of degree k is a symmetrical, bell-shaped function constructed from
k + 1 times self-convolution of the β0(t) basis function of degree zero which is a centered rectangle
around origin [37]

β0(t) =


1, −1

2 < t < 1
2

1
2 , |x| =

1
2

0, otherwise,

(5.10)

βk(t) = β0(t) ? · · · ? β0(t)︸                ︷︷                ︸
(k + 1) times

. (5.11)
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The centered symmetric B-spline of degree k has an explicit expression [36]

βk(t) =
1
k!

k+1∑
j=0

Ck+1
j (−1) j(t +

k + 1
2
− j)k

+, (5.12)

where the function x+ is defined as follows

x+ =

x, for x > 0,
0, otherwise.

(5.13)

In this paper, we are particular intereted in the cubic B-spline. By (5.12), the closed-form representation
of the cubic B-spline basis function can be also expressed as

β3(t) =
1
6


(2 − |t|)3 1 < |t| ≤ 2,
4 − 6|t|2 + 3|t|3, |t| ≤ 1,
0, elsewhere,

(5.14)

which is used for preforming the interpolation. Then we choose the interpolation kernels to be

Lg j(λ
( j)) = β3

(
λ( j)

)
, k j = 1, . . . ,Npair + 3, (5.15)

as the basis of S 3(∆ j) in the λ( j)-direction such that L = {L1, L2, . . . , Lk j+3} is a basis of the (k j + 3)-
dimensional space S 3(∆) and hence, the basis of the

∏
j∈C (k j + 3)-dimensional space S 3(∆1, . . . ,∆M)

in the directions of λ(1), . . . , λ(M) is given by

{Lg1 Lg2 . . . LgM |g j ∈ {1, . . . ,Npair + 3}, j ∈ C }. (5.16)

Based on (5.16), (5.1) and (5.9), we next introduce the learning model for the uniform case.

Body learning model II. Given the training dataset Z := {(ΛDi , u∞(Σ; Di))}i∈N , the learning model
TZ ∈ S 3(∆1, . . . ,∆M) at Λ = (λ(1), . . . , λ(M)) for the geometric body generation associated with the sets
of equidistent grids {∆ j} j∈C defined in (5.9) is defined as follows

TZ(Λ) =

k1+3∑
g1=1

· · ·

kM+3∑
gM=1

cg1,g2,...,gM

∏
j∈C

L j
g j

(λ( j)), (5.17)

which is required to satisfy the following conditions

TZ(ΛDi) =

k1+3∑
g1=1

· · ·

kM+3∑
gM=1

cg1,g2,...,gM

∏
j∈C

L j
g j

(λ( j)
i ) = u∞(Σ; Di), (5.18)

where cg1,g2,...,gM with g j = 0, . . . , k j, j = 1, . . . ,M. are the coefficients to be determined from the training
dataset Z, L j

g j(λ
( j)) are B-spline basis functions of degree 3 defined in (5.15) and k j, j = 1, . . . ,M. is

the number of different characteristic values in each direction.
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5.3. Natural spline

In learning models I and II, the learning functionals for the non-uniform and uniform case are
respectively considered in the

∏
j∈C (k j + 3)-dimensional space S 3(∆1, . . . ,∆M).

∏
j∈C (k j + 3)

interpolation conditions are required to determine the coefficients ci1,i2,...,iM in the training models.
However, there are only

∏
j∈C (k j + 1) shape generators to specify

∏
j∈C (k j + 1) conditions in (5.8) or

(5.18). To obtain a unique correlation between the characteristic values and the shape generator, we
need to add

∏
j∈C 2 = 2M conditions, which define the second-order derivatives of the spline function

at the boundary a j and b j to be equal to 0 and lead to a natural spline.

5.4. Prediction on shape generator

With the learning models I and II established in the previous subsections, for an input new set of
characteristic values ΛDnew associated with a new geometric body Dnew, the unknown shape generator
can be generated as follows,

TZ(ΛDnew) =

k1+3∑
g1=1

· · ·

kM+3∑
gM=1

cg1,g2,...,gM

∏
j∈C

L j
g j

(λ( j)
new) = û∞(Σ; Dnew) ≈ u∞(Σ; Dnew), (5.19)

where the coefficients cg1,g2,...,gM in (5.19) could be determined by solving the natural spline problem.

5.5. Reconstruction

In this subsection, we briefly outline the Fourier method for the reconstruction of geometry shape
Dnew by using the shape generators u∞(Σ; Dnew).

Define the periodic Sobolev space by

Hσ(Rd) =
{
g ∈ L2(Rd) : (1 + |ξ|2)

σ
2 ĝ(ξ) ∈ L2(Rd),

}
,

where σ ≥ 1, ξ ∈ Zd and ĝ(ξ) denote the Fourier coefficients of g. Suppose that f ∈ Hσ(Rd) has a
compact support in domain V0 = (−a/2, a/2)d, (a > 0), then the Fourier transform of f is represented
by

f̂ξ =
1
ad

∫
V0

f (x) φξ(x) dx, (5.20)

where the overbar stands for the complex conjugate and the Fourier basis functions are given by

φξ(x) = exp
(
i
2π
a
ξ · x

)
, ξ ∈ Zd.

Definition 5.2 (Admissible wavenumbers and observation directions). Let µ be a sufficiently small
positive constant such that 0 < µ < 1 and

ξ0 :=

(µ, 0), d = 2,

(µ, 0, 0), d = 3,

then the admissible set of wavenumbers is defined by

K :=
{

2π
a
|ξ| : ξ ∈ Z3\{0}

}
∪ k0,
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correspondingly, the admissiable set of observation directions is given by

X :=
{
ξ

|ξ|
: ξ ∈ Z3\{0}

}
∪ x̂0,

where k0 = 2π|ξ0|/a and x̂0 = ξ0/|ξ0| for ξ = 0 ∈ Zd.

Due to supp S ⊂⊂ V0, for ξ ∈ Z3\{0}, the far-field pattern defined in (3.6) can be written as

u∞(x̂, k; f ) = Cd,k

∫
Rd

e−ikx̂·y f (y) dy = Cd,k

∫
V0

e−ikx̂·y f (y) dy, (5.21)

where k ∈ K and x̂ ∈ X depend on ξ. Combining (5.20) and (5.21), one has

f̂ξ =
1

adCd,k
u∞(x̂, k; f ), ξ ∈ Z3\{0}. (5.22)

For ξ = 0, using the Fourier expansion of f , we derive that

u∞(x̂0, k0; f ) = Cd,k

∫
V0

e−ik0 x̂0·y f (y) dy,

= Cd,k

∫
V0

 f̂0 +
∑

ξ∈Zd\{0}

f̂ξ φξ

 φξ0(y) dy

= Cd,k

∫
V0

f̂0φξ0(y) dy + Cd,k

∑
ξ∈Zd\{0}

f̂ξ

∫
V0

φξ(y)φξ0(y) dy

= adCd,k
sin(µπ)
µπ

f̂0 + Cd,k

∑
ξ∈Zd\{0}

f̂ξ

∫
V0

φξ(y)φξ0(y) dy,

which implies

f̂0 =
µπ

ad sin µπ

u∞(x̂0, k0; f )
Cd,k

−
∑

ξ∈Z3\{0}

f̂ξ

∫
V0

φξ(y)φξ0(y) dy

 . (5.23)

Therefore, the Fourier method is to approximate f by a truncated Fourier expansion

fN = f̂0 +
∑

1≤|ξ|∞≤N

f̂ξ φξ,

where N ∈ N+ denotes the truncation order and the Fourier coefficients are given by (5.22) and (5.23).
Hence the domain Dnew is determined since the set Dnew is the external shape of f .

Next, we investigate the stability of the proposed Fourier method. In practical computation, there
exists some noise between the shape generators u∞(Σ; Dnew) and the predictions û∞(Σ; Dnew), which
satisfies

‖û∞(Σ; Dnew) − u∞(Σ; Dnew)‖L2 ≤ δ‖u∞(Σ; Dnew)‖L2 ,

where δ > 0 denotes the noise level. Noting that (x̂, k) ∈ X × K ⊂ Σ, then the approximation of f from
predicted shape generators is given by

f δN = f̂ δ0 +
∑

1≤|ξ|∞≤N

f̂ δξ φξ,
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where

f̂ δξ =
1

adCd,k
û∞(x̂, k), ξ ∈ Z3\{0}, (5.24)

f̂ δ0 =
µπ

ad sin µπ

 û∞(x̂0, k0)
Cd,k

−
∑

ξ∈Z3\{0}

f̂ δξ

∫
V0

φξ(y)φξ0(y) dy

 . (5.25)

Theorem 5.1. Let f be a compactly supported function in Hσ(Rd), σ ≥ 1, with supp f ⊂⊂ V0, then we
have the following estimate

‖ f δ − f ‖2L2(V0) ≤ Cδ + C(τd + τ−2)δ
4

2+d .

where d ≤ τ ∈ R+ and C is a constant which depends on f , a, d, µ.

Proof. Using the Plancherel theorem, we have

‖ f δ − f ‖2L2(D) = ‖ f δ − f ‖2L2(Rd)

=
1

a2d

∫
Rd
| f̂ δξ − f̂ξ |2 dξ

=
1

a2d

(∫
|ξ|∞≤N

| f̂ δξ − f̂ξ |2 dξ +

∫
|ξ|∞>N

| f̂ δξ − f̂ξ |2 dξ
)
,

(5.26)

where N ∈ N+. Due to f ∈ Hσ(Rd), that is,(
1 + |ξ|2

) α
2 f̂ξ ∈ L2(Rd), ∀ |α| ≤ σ.

It means that both |ξ| f̂ξ and |ξ| f̂ δξ are bounded in L2(Rd), so we can find N > 0 , such that∫
|ξ|∞>N

| f̂ δξ − f̂ξ |2 dξ ≤
1

N2

∫
|ξ|∞>N

|ξ|2| f̂ δξ − f̂ξ |2 dξ <
C1

N2 , (5.27)

where C1 > 0 is a constant. For 1 ≤ |ξ|∞ ≤ N, from (5.22) and (5.24), we have

| f̂ δξ − f̂ξ | =
1

adCd,k
|û∞(x̂, k) − u∞(x̂, k)|

≤
δ

adCd,k
|u∞(x̂, k)|

=
δ

adCd,k

∣∣∣∣∣∣Cd,k

∫
V0

f (y)e−ikx̂·y dy

∣∣∣∣∣∣
≤
δ

ad

(∫
V0

| f (y)|2 dy
) 1

2
(∫

V0

|e−ikx̂·y|2 dy
) 1

2

=
‖ f ‖L2(V0)

ad/2 δ,

which implies ∫
1≤|ξ|∞≤N

| f̂ δξ − f̂ξ |2 dξ ≤ C2(2N + 1)dδ2, (5.28)
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for C2 = ‖ f ‖2L2(V0)/a
d. Define ξ = (ξ1, ξ2) ∈ Z2 or ξ = (ξ1, ξ2, ξ3) ∈ Z3, by a straight forward calculation,

one finds that ∫
V0

φξ(y)φξ0(y) dy =


0, |ξ| , |ξ1|,

−
ad cos ξ1π sin λπ

(ξ1 − λ)π
, |ξ| = |ξ1|.

For ξ = 0, using (5.23), (5.25), (5.27), (5.28) and the last equation, it derives that

| f̂ δ0 − f̂0| ≤
µπ

adCd,k sin µπ

∣∣∣ûδ∞(x̂0, k0) − uδ∞(x̂0, k0)
∣∣∣

+
µπ

ad sin µπ

∑
1≤|ξ|∞≤N

∣∣∣∣ f̂ δξ − f̂ξ
∣∣∣∣ ∣∣∣∣∣∣
∫

V0

φξ(y)φξ0(y) dy

∣∣∣∣∣∣
+

µπ

ad sin µπ

∑
|ξ|∞≥N

∣∣∣∣ f̂ δξ − f̂ξ
∣∣∣∣ ∣∣∣∣∣∣
∫

V0

φξ(x)φξ0(x) dy

∣∣∣∣∣∣
≤C3δ +

√
C2(2N + 1)dδ +

√
C1

N
,

(5.29)

where C3 = µπ‖ f ‖L2(V0)/(ad/2 sin µπ). Hence, substituting (5.27), (5.28) and (5.29) into (5.26), it
deduces that

‖ f δ − f ‖2L2(V0) ≤ Cδ2 + CNdδ2 +
C
N2 ,

where C = max{2C1, 2d+1C2,C2
3}/a

2d. Furthermore, if we take N = τδ−
2

2+d with τ ≥ d in Theorem 5.1,
then it holds that

‖ f δ − f ‖2L2(V0) ≤ Cδ + C(τd + τ−2)δ
4

2+d .

�

Let N =
[
τδ−

2
2+d , τ ≥ d

]
, here [X] denotes the largest integer that is smaller than X + 1. From

definition 5.2, the truncated wavenumbers and observation directions can be written as

KN :=
{

2π
a
|ξ| : 1 ≤ |ξ| ≤ N

}
∪ k0,

XN :=
{
ξ

|ξ|
: 1 ≤ |ξ| ≤ N

}
∪ x̂0.

Thus, the truncated Fourier expansion of f from the predictions {û∞(Σ; Dnewq)}q∈Q takes the form

f δN := f̂ δ0 +
∑

1≤|ξ|∞≤N

f̂ δξ φξ(x), (5.30)

where
f̂ δξ =

1
adCd,k

û∞(x̂, k), 1 ≤ |ξ|∞ ≤ N,

f̂ δ0 =
µπ

ad sin µπ

 û∞(x̂0, k0)
Cd,k

−
∑

1≤|ξ|∞≤N

f̂ δξ

∫
V0

φξ(y)φξ0(y) dy

 .
(5.31)
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5.6. Summary

Motivated by above discussion, we are ready to present our novel modeling methodology for
geometric shape in Rd, d = 2, 3, see Algorithm 1.

Algorithm 1 Inverse-scattering-based geometric body generation scheme
1: Select the parameter N, the set of admissible wavenumbers KN and the set of admissible

observation directions XN .
2: Given a training dataset Z := {(ΛDi , u∞(x̂, k; Di))}i∈N for x̂ ∈ XN , k ∈ KN , obtain the coefficients

cg1,...,gM of the learning model TZ by solving the problem of the natural spline interpolation.
3: Given the characteristic sets ΛDnew , predict the new shape generators {û∞(x̂, k)} for x̂ ∈ XN , k ∈ KN

with the use of the learning model TZ.
4: Compute the Fourier coefficients f̂ δ0 and f̂ δξ defined in (5.31) for 1 ≤ |ξ|∞ ≤ Nt.
5: Select a sampling mesh Th in a region V0. For each sampling point z j ∈ T , calculate the imaging

function f δN defined in (5.30). Dnew is obtained as the external shape of f δN .

6. Numerical examples

In this section, several numerical examples of geometric body generation are conducted to show
that the proposed method is effective and efficient. Here the geometric body includes general geometric
shape and human body shape.

The proposed algorithm is implemented by using Matlab 2016. The shape generator
{u∞(x̂, k; Di)}i∈N is obtained by solving the direct problem of (3.1). To avoid the inverse crime, we use
the quadratic finite elements on a truncated spherical domain enclosed by a PML layer. The mesh of
the forward solver is successively refined till the relative error of the successive measured scattered
data is below 0.1%. Then artificial shape generators are generated by applying the Kirchhoff integral
formula to the scattered data. Thus the training dataset is given by{

(ΛDi , u∞(x̂ j, k j; Di)) : x̂ j ∈ XN , k j ∈ KN

}
,

where j = 1, 2, · · · , (2N + 1)d and i = 1, 2, · · · ,Nt denotes the i-th geometry shape. In what follows,
we set τ = 2 (τ = 3) for d = 2 (d = 3) and δ = 1%, then we have N = 20 (N = 19) for d = 2 (d = 3).

Next, we present the implementation of interpolation. The characteristic value set is given by {ΛDi},
where ΛDi = {λ(1)

i , λ(2)
i , · · · , λ(M)

i } has M variables. For a fixed wavenumber k j, we use cubic spline
interpolation to obtain the coefficients ci1...,iM from the characteristic value ΛDi and the shape generator
u∞(x̂ j, k j; Di). Therefore, given a new characteristic value ΛDnew = {λ(1)

Dnew
, λ(2)

Dnew
, · · · , λ(M)

Dnew
}, we obtain

the predicted shape generators {û∞(x̂ j, k j; Dnew)}, j = 1, 2, · · · , (2N + 1)d.
Finally, we specify details of recovering the geometry. As discussed above, reconstructing the

geometry shape is equally to reconstructing the source function f . In the discrete formula, the domain
V0 is divided into a uniform mesh with size 100 × 100 in two dimensions and size 100 × 100 × 100
in three dimensions. Further, the approximated Fourier series f δN are computed at the mesh nodes
T j, j = 1, · · · , 1003 in (5.30). Thus, the geometry shape Dnew is approximated by the boundary of the
imaging results f δN .
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6.1. Kite shaped experiments

In the first example, we aim to reconstruct a kite shaped domain with scale changing. The kite
shaped domain is parameterized by

x(t) = (β1(cos t + 0.65 cos 2t − 0.65), 1.5β2 sin t), t ∈ [0, 2π],

where β1 and β2 are scale factors (characteristic values) with β1, β2 ∈ [0.5, 1.8]. The training dataset
consists of 14 × 14 different scale domains, i.e., β1 and β2 uniformly distributed on [0.5, 1.8] with
M = 142. Next, we consider four sets of different scale factors which are not covered by the training
data. In this numerical experiments, the imaging results with different characteristic values are shown
in Figure 1, where the black dotted lines denote the exact boundary. It is clear that the reconstructions
are very closed to the exact domains.

(a) (b)

(c) (d)

Figure 1. Contour plots of reconstructed kite shape with different scale factors (β1, β2): (a)
(0.93, 1.76), (b) (1.58, 0.87), (c) (0.95, 0.95), (d) (1.65, 1.65).

6.2. Rounded triangle and apple shaped experiments

In the second example, we aim to recover multi-domain with different scale factors. The apple
shaped domain is parameterized by

y(t) = β1((0.5 + 0.4 cos t + 0.1 sin 2t)/(1 + 0.7 cos t))(cos t, sin t) t ∈ [0, 2π],
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and the rounded triangle shaped domain is parameterized by

z(t) = β2(1 + 0.15 cos 3t)(cos t, sin t) t ∈ [0, 2π],

where β1 ∈ [1, 2] and β2 ∈ [0.5, 1.5] are scale factors (characteristic values) for different domains. The
training dataset consists of 11 × 11 different scale domains, that is, β1 and β2 uniformly distributed
on [1, 2] × [0.5, 1]. Similarly, we give four sets of different scale factors which are not covered by
the training data. Figure 2 shows the the reconstruction of multi-domain with different characteristic
values via contour plots, where the black dotted lines denote the exact boundary. It demonstrates very
good imaging performance of the approach.

(a) (b)

(c) (d)

Figure 2. Contour plots of reconstructed mixed shape with different scale factors (β1, β2):
(a) (1.13, 1.13), (b) (1.94, 0.53), (c) (1.88, 0.94), (d) (1.96, 1.47).

6.3. Rectangular solid experiments

In the third example, we verify the proposed method by using a set of artificial experiments on
rectangular solid. The training dataset consists of 125 rectangular solids with different height, width
and length. Here the height, width and length are uniformly distributed on [1, 2] with 5 amounts, i.e.,
1, 1.25, 1.5, 1.75, 2. Here, We consider four sets of different height, width and length of rectangular
solids which are not covered by the training data. The imaging results with different characteristic
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values are shown in Figure 3, where the black dotted lines denote the shadows of the exact cube
boundary. Due to discontinuities of the source, there is Gibbs phenomena on the boundary of the
rectangular solids. On the whole, given the characteristic values, our proposed method is valid for
determining the geometry shape.

(a) (b)

(c) (d)

Figure 3. Isosurface plots of rectangular solid with different height, width and length, where
the isosurface value is 1. The sets of height, width and length are as follows: (a) (1.9, 1.2, 1.4),
(b) (1.2, 1.5, 1.8), (c) (1.6, 1.8, 1.3), (d) (1.8, 1.8, 1.8).

6.4. Body experiments

In last example, we consider a challenging case and verify the proposed method by using a set of
synthetic experiments on 3D human body shape. The training dataset consists of 25 bodies which
are generated by the MakeHuman soft [42]. MakeHuman soft is an open source software designed
to create 3D virtual human models using 3D morphing technology. Providing the main parameters
gender, age, muscle mass, weight, height, proportion and ethnicity, etc. of any specific character, the
intermediate human shape can be reproduced with its large and own database. In this experiment, we
consider two characteristic values, i.e., height and relative weight. Define the exact weight by EW and
standard weight by S W, then the relative weight RW is calculated by

RW =
EW
S W
× 100%.
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Here the height of the body is given by 1.5 m, 1.6 m, 1.7 m, 1.8 m, 1.9 m and the relative weight of
the body is given by 60%, 80%, 100%, 120%, 140%. Some human body shapes in the training dataset
are presented in Figure 4. In addition, we choose two characteristic values of human body which are
not covered by the training data. The first body’s height is 1.55 m and the relative weight is 130%. The
second body’s height is 1.85 m and the relative weight is 110%. Figure 5(a) and Figure 6(a) present the
exact body shape with the given characteristic value. Figure 5(b) and Figure 6(b) show the prediction
of the human body shape with the given characteristic value. The results show that our method is
efficient to predict the human body shape.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Isosurface plots of some training body data. Relative weight: the left column is
60%; the center column is 100%, the right column is 140%; height: the top row is 1.50 m,
the center row is 1.70 m, the bottom row is 1.90 m.
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(a) (b)

Figure 5. The relative weight is 130%, the height is 1.55 m. (a) Exact body, (b)
reconstruction body.

(a) (b)

Figure 6. The relative weight is 110%, the height is 1.85 m. (a) Exact body, (b)
reconstruction body.

7. Concluding remarks

In this paper, we develop a machine-learning method in generating a geometric body shape through
prescribing a set of characteristic values of the body. The generation is mainly based on a given training
dataset consisting of certain pre-selected body shapes with statistically well-sampled characteristic
values. A major novelty and critical ingredient of our study is the borrowing of inverse scattering
techniques in the theory of wave propagation to the geometric shape generation. We introduce the
notion of shape generator which establishes a one-to-one correspondence between the geometric shape
space and the function space consisting of the multiple-frequency far-field patterns associated with
the time-harmonic source scattering problem. The shape generator plays an intermediate role in the
geometric shape generation. First, the training dataset of geometric shapes is converted into a subset
of the function space consisting of the corresponding shape generators. Then a learning model is
derived through a functional interpolation of the aforementioned shape generators. For a given set of
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characteristic values, one then uses the learning model to obtain the shape generator of the underlying
geometric body and finally reconstructs it through a multiple-frequency Fourier method.

In the current article, the shape generator is introduced through an inverse source scattering model
where we make use of the one-to-one correspondence between a geometric shape and the multiple-
frequency far-field pattern associated with a compactly-supported acoustic source. One may consider
to introduce the shape generator through other inverse scattering models, e.g., the inverse acoustic
obstacle scattering model (cf. [28,29,31]) or the inverse electromagnetic scattering model (cf. [27,30]).
In doing so, one may achieve other geometric shape generation schemes that are suitable for different
applications.
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