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Abstract: We discuss the problem of the approximation of the solutions of the stationary Boltzmann
equation, driven by diffuse boundary conditions at varying temperature, by means of stochastic particle
systems. In particular we extend a previous results, by substituting the hypothesis of a cutoff on small
and large velocities with the presence of an external field.
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1. Introduction

As it is well known, the Boltzmann equation is a useful tool to understand the behaviour of a
rarefied gas. From a mathematical side the study of the Boltzmann equation is mostly devoted to the
initial value problem (see e.g., [8, 27]). On the other hand in most of the physical applications the
solutions of the Boltzmann equation are seen in a stationary non-equilibrium regime. Indeed after a
short time dependent transient, the system has the tendency to stabilize in a non trivial stationary state
which should describe transport phenomena. Here we are dealing with stationary solutions in presence
of diffuse boundary conditions, namely the gas is thought to be in a vessel in contact with reservoirs
localized at the boundary, possibly with a non constant temperature. For the existence problem of
stationary solutions we address the reader to the recent reference [11] and references quoted therein.

Another interesting and largely open problem is the one of the validity of the Boltzmann equation.
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This means that we try to justify the use of the Boltzmann equation from mechanical particle systems
by means of a suitable scaling limit, the so called Boltzmann-Grad (B-G) limit. Up to now we have only
a short time result for general initial conditions [21] and a global result working only in a dispersive
situation (hence not interesting from a thermodynamical view point) [15, 16]. For recent progresses in
the topic see e.g., [3–5, 12, 23, 24].

If one is interested in the validation problem for the stationary Boltzmann equation the validity for
short time is useless. In addition even having a global result, it is probably true that the limit t → ∞
and the B-G limit are not commutable so that we are far, for the moment, to be able in proving the
validity of the stationary solutions which are known to exist. In this situation it may be interesting the
study of simplified models to understand at least part of this difficult problem.

Some years ago in [9] a stochastic particle system in a container with diffusive boundary with
varying temperature was proven to approximate the stationary solution of the corresponding Boltzmann
equation (actually the Povzner equation which is a regularization of the true Boltzmann equation). The
proof works only under severe assumptions on the Maxwellian at the boundary, namely it was assumed
an unphysical cutoff on small and large velocities which we are going to remove in the present paper.
The price we pay is the assumption of the presence of a non vanishing constant external field. In some
sense we are approaching the Benard problem, even though we are working in a perturbative regime
close to the free flow, so that quite far from the interesting features of the Benard effect.

We discuss our result more precisely. We consider, as in [9], a gas modelled by a stochastic particle
system which is the non-homogeneous extension of the well known Kac’s model ( see [17, 18]). The
gas is localized between two vertical planes at different temperatures. We assume the existence of a
non vanishing horizontal constant external field F and that the intensity of the collisions among the
particles is sufficiently small. Then we have a unique solution of the stationary problem both for the
particle system and the corresponding regularized Boltzmann equation. We prove that the one-particle
distribution function of the stationary measure of the particle system converge to the solution of the
Boltzmann equation, under a sort of local mean-field limit.

It is worth to say that our analysis is not merely academic. Indeed the particle models we are
considering is the basis for the so called direct Montecarlo simulation method [2, 8], which is widely
used for the numerical simulations of real gases. Thus our result can be seen as a justification of the use
of such algorithm assuming ”true” the Boltzmann equation which however should be still derived from
mechanical particle systems. We follow essentially the techniques of [9] and, as already mentioned, the
presence of the external field is essential to remove the cutoff on small velocities. Indeed such a cutoff

was assumed in [9] to avoid the particle to spend an unbounded amount of time to hit the boundary to
thermalize, a feature which is the key ingredient to reach the stationary regime. Now we overcome this
problem by the presence of an external field.

The central part of the main theorem in Section 4 follows essentially [9] but here we present a
simplified version of the proof.

Section 3 is devoted to the study of the approach to the stationary regime for the Knudsen flow in
presence of an external field.
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2. Notation and results

Consider
Λ = {x = (x, y, z)|x ∈ (0, L), y ∈ (0, Ly), z ∈ (0, Lz)}

a parallelepiped in R3. Let p = p(x, v; t) where x = (x, y, z) ∈ Λ, v = (vx, vy, vz) ∈ R3 and t ∈ R+ be
a positive function solving the following Boltzmann initial-boundary value problem in presence of a
constant external field F = (F, 0, 0), F > 0:

(∂t + v · ∇x + F · ∇vx) p = λQ(p, p) (2.1)

with initial condition
p(x, v, 0) = p0(x, v) (2.2)

and periodic-diffusive boundary conditionsp(x, 0, z, v, t) = p(x, Ly, z, v, t), p(x, y, 0, v, t) = p(x, y, Lz, v, t),
p(0, y, z, v, t) = J−(y, z, t)M−(v), p(L, y, z, v, t) = J+(y, z, t)M+(v),

(2.3)

where:
M± = C±e−β±v2

(2.4)

and C± are constants chosen in such a way that∫
vx>0

M−(v)vx = 1,
∫

vx<0
M+(v)|vx| = 1. (2.5)

Moreover

J+(y, z, v, t) =

∫
vx>0

p(L, y, z, v, t)vxdv, J−(y, z, v, t) =

∫
vx<0

p(0, y, z, v, t)|vx|dv (2.6)

are the incoming fluxes. Finally

Q(p, p)(x, v, t) =

∫
Λ

dy
∫
R3

dv1

∫
S 2

+

dω B(v1, v1, ω)hγ(x, y) ·

{p(x, v′, t)p(y, v′1, t) − p(x, v, t)p(y, v1, t)} (2.7)

is a regularized version of the Boltzmann collision operator where

v′ = v1 + ω · (v1 − v)ω, v′1 = v1 − ω · (v1 − v)ω (2.8)

is the usual elastic collision rule arising from the conservation of energy, momentum and angular
momentum.

Here ω is the unit vector in the direction of the transferred momentum.
Furthermore

S 2
+ = {ω|ω · (v − v1) ≥ 0}
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and we assume the collision kernel B ≥ 0 to be bounded

B(v1, v1, ω) ≤ c1. (2.9)

The function hγ is a symmetric regularizing spatial mollifier, bounded, vanishing for |x− y| > γ and
such that

∫
hγ(x, y)dy = 1. Finally λ is a positive constant modulating the intensity of the interaction.

The operator Q differs from the usual Boltzmann collision operator for hard spheres because of the
presence of the smearing function hγ and the cutoff on large relative velocities. However this does not
affect the usual conservation laws (mass, momentum and energy). Moreover, due to the normalization
(2.5) which guarantees the mass conservation at the boundary, we have the mass conservation∫

p(x, v, t)dxdv = m(t) = m(0).

From now on we shall assume that m(t) = 1.
The system we are dealing with describes a rarefied gas between two vertical plates B+ and B−

localized at x = 0 and x = L i.e., B+ = {x = (x, y, z) ∈ ∂Λ|x = L} and B− = {x = (x, y, z) ∈
∂Λ|x = 0}. Such walls are at a thermal equilibrium with two different inverse temperatures β+ and β−
respectively. We assume periodicity in the y and z directions. When a particle hits one of the two walls
it is instantaneously rejected with a probability distribution corresponding to its Maxwellian.

As already remarked the collision operator has been regularized so that it is Lipchitz continuous
in L1(x, v). Therefore a global solution can be easily constructed by virtue of the positivity and mass
conservation. Such a solution can be conveniently represented in a mild form :

p(x, v, t) = S (t)p0(x, v, t) + λ

∫ t

0
dτS (t − τ)Q(p, p)(x, v, τ) (2.10)

where S (t) is the Knudsen semigroup, that is the solution to the initial-boundary value problem

(∂t + v · ∇x + F · ∇vx) p(x, v, t) = 0 (2.11)

with same initial and boundary values as in Eqs. (2.2) and (2.3).

In this paper we are interested in the stationary equation

(v · ∇x + F ∇vx) p(x, v) = λQ(p, p)(x, v) (2.12)

with boundary conditions (2.3) and normalization∫
p(x, v)dxdv = 1. (2.13)

To start with we note that a stationary solution ḡ for the Knudsen flow i.e.,

(v · ∇x + F · ∇vx) ḡ(x, v) = 0,

can be explicitly constructed by means of the characteristics. Indeed denoting by xF(x,v; t), vF(x,v; t)
the solution of ẋF = vF ,

v̇F = F
(2.14)
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with initial condition (x, v), let (xF(−t), vF(−t)) = (xF(x, v;−t), vF(x, v;−t)) be the backward
characteristics leaving (x, v) at time zero and τ

τ = τ((x, v)) = inf{t ∈ R+|xF(x, v;−t) < Λ}

the first impact time with the boundary, then

ḡ(x, v) = J(xF(−τ))M+(vF(−τ)) for xF(−τ) ∈ B+. (2.15)

and
ḡ(x, v) = J(xF(−τ))M−(vF(−τ)) for xF(−τ) ∈ B−. (2.16)

Note that, by symmetry, ḡ(x, v) = ḡ(x, v) and the flux J is constant. Such a constant can be recovered
by the normalization condition

J
( ∫

vx<0
M+(v)dv +

∫
vx>0

M−(v)dv
)

= 1.

We now establish a preliminary result which will be proven in the next section.

Theorem 2.1
For any η > 0 there exists T (η) such that for t ≥ T (η) and any probability density f

‖S (t) f − ḡ‖L1(x,v) ≤ η. (2.17)

Moreover if φ ∈ L1(x, v) and
∫
φdxdv = 0 then

‖S (t)φ‖L1(x,v) ≤ η‖φ‖L1(x,v). (2.18)

As we shall discuss in the next section the presence of a non-vanishing external field F is essential
to obtain the independence of T (η) from f in (2.17) and hence (2.18) holds. This plays a fundamental
role in establishing our main result as we shall discuss in the next section.

Theorem 2.2
If λ is sufficiently small there exists a unique stationary solution g = g(x, v) of the problem (2.10)

g = S (t)g + λ

∫ t

0
dsS (t − s)Q(g, g), (2.19)

for all t ≥ 0. Moreover if p(t) solves problem (2.10) with p0 as initial datum, then

‖p(t) − g‖L1(x,v) ≤ e−C1t

where C1 is a positive constant
The proof of Theorem 2.2 is standard and can be recovered in [9].

Next we introduce the N-particle process which gives the approximation, in the limit N → ∞, to
problem (2.9) or (2.10).
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Let ZN = (ζ1, ..., ζN), ζi = (xi, vi), i = 1, ...,N, and set

q(ζ1, ζ2, ω) = hγ(x1, x2)B(v1, v2, ω).

We define the generator of the N-particle process, for any bounded continuous function Φ as

GN(Φ)(ZN) = G f ree(Φ)(ZN) +
λ

N
G jump

N (Φ)(ZN), (2.20)

where

G f ree(Φ)(ZN) = −

N∑
i=1

[
vi · ∇xi + F · ∇vi

]
Φ(ZN) (2.21)

with the same boundary conditions (2.3) as for the Knudsen flow. Actually the semigroup generated
by (2.21) is

S N(t) =

N∏
i=1

S [i](t),

where S [i] is the Knudsen semigroup associated to particle i. Note that the family {S [i](t)} is commuting.
The associated stochastic process consists in N independent particles moving freely. The outgoing
velocity of each particle after a collision with the boundary is distributed according to the probability
density |vx|M±(v).

Moreover
G jump

N (Φ)(ZN) =
∑

1≤i< j≤N

∫
S 2

+

[Φ(Z(i, j)
N ) − Φ(ZN)]q(ζi, ζ j, ω)dω (2.22)

where
Z(i, j)

N = (ζ1, ..., ζi−1, xi, v′i , ..., ζ j−1, x j, vj
′, ..., ζN).

The process described by GN consists of free motion (including the periodic-diffusive boundary
conditions) of the N-particle system and random collisions. These collisions take place at random
times, with random impact parameter ω. The particles of the pair involved in the collision have mutual
distance less than η, and their outgoing velocities after the interaction follow the deterministic elastic
collision. This model, sometimes called soft balls model is a non-homogeneous variant of the well
known Kac’s model (see [17, 18]). It was introduced by Cercignani in [10] and investigated from a
quantitative point of view in [9, 20]. The underlying idea is the same of the so-called direct simulation
method [2], widely used in the applications (see [25, 26]).

If the system is initially distributed according to a probability density fN(ZN), its time evolution is
given by fN(t) = exp(GNt) fN(0). In other words,

(∂t + G f ree) fN(ZN , t) =
λ

N
G jump

N fN(ZN , t), (2.23)

with the associated boundary conditions.
Next we consider the stationary version of (2.23), namely

G f ree f̃N(ZN , t) =
λ

N
G jump

N f̃N(ZN , t), (2.24)
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with the same boundary conditions. We have

Theorem 2.3
For all N > 0 there exists a unique probability density f̃N = f̃N(ZN) which is invariant under the

N-particle process.
Theorem 2.3 can be proven along the same arguments developed in [13] in a Hamiltonian context.
The main goal of this paper is to compare the stationary distribution f̃N with the one-particle

stationary distribution g constructed in Theorem 2.2.
Coming back to Eq. (2.23) we introduce the k-particle distribution functions of f N

k (ZN , t), marginals
of fN , for which we obtain the well-known BBGKY hierarchy of equations

∂t f N
k (Zk, t)+ G f ree f N

k (Zk, t) =

λ

N
G jump

k f N
k (Zk, t) + λ

N − k
N

Ck+1 f N
k+1(Zk, t), k = 1 · · ·N (2.25)

with periodic boundary condition in the vertical directions and

f N
k (ζ1, ..., ζi, ..., ζk, t) = JN

i (xi,Zk(i), t)M±(vi), (2.26)

if xi = (L, yi, zi), (vi)x > 0 or xi = (0, yizi), (vi)x < 0 respectively, Zk(i) is the configuration Zk deprived
by ζi,

JN
i (L, yi, zi,Zk(i), t) =

∫
(vi)x>0

dvi(vi)x f N
k (Zk)

and
JN

i (0, yi, zi,Zk(i), t) =

∫
(vi)x<0

dvi|(vi)x| f N
k (Zk).

Finally

Ck+1 =

k∑
i=1

Ci,k+1 (2.27)

Ci,k+1 f N
k+1(Zk, t) =

∫
dζk+1

∫
S 2

+

dω q(ζi, ζk+1)[ f N
k+1(Z(i,k+1)

k+1 ) − f N
k+1(Zk+1)]. (2.28)

The formal limit, for N → ∞ of the hierarchy (2.25) is

∂t fk(Zk, t) + G f ree fk(Zk, t) = λCk,k+1 fk+1(Zk, t), k = 1 · · ·N (2.29)

which is satisfied by fk = p⊗k being p the solution to (2.9). Therefore the term which is responsible of
the correlations is λ

N G jump f N
k (Zk, t) which however is expected to be unimportant in the limit.

For the time depending problem the convergence for N → ∞ can be proven. Before stating this
well known result we introduce a useful notation. We denote by P(t) the solution operator for the
hierarchy (2.29), namely (P(t) f0)k = fk(t) where f0 = {( f0)k} = {p⊗k

0 } is the infinite sequence of the
initial marginals. Analogously we denote by (PN(t) f0)k = f N

k (t) the solution operator of the (finite)
hierarchy for the particle system (2.25). Then
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Theorem 2.4
Setting a = 2 supz,z′

∫
dωq(z, z′, ω) then for λt < 1

8a

‖([PN(t) − P(t)] f0)k‖L1 ≤
c18k

N
(2.30)

for some geometrical constant c1 = c1(a).
For the proof see [9]. Indeed the presence of an external field does not change the proof that is

based on the fact that the semigroup generated by G f ree + λ
N G jump

k is isometric in L1.
Note that the above result holds for a short time interval only, however since the time interval of

validity does not depend on the initial condition, one can iterate the above result to reach arbitrary
times. See [9] and references therein.

Coming back to the stationary problem for the particle system, the marginals { f̃k} of the stationary
measure do satisfy the following hierarchy

G f ree f̃ N
k (Zk, t) =

λ

N
G jump f̃ N

k (Zk, t) + λ
N − k

N
Ck+1 f̃ N

k+1(Zk, t), k = 1. · · ·N. (2.31)

We now formulate the main result of the present paper

Theorem 2.5
There exists λ0 > 0 such that for any λ < λ0 and any integer k:

‖ f̃ N
k − gk‖L1 ≤

ck
2

N
(2.32)

where gk = g⊗k, being g the solution of (2.19) and c2 some positive computable constant.

3. On the Knudsen flow

In this section we prove Theorem 2.1 and develop some considerations on the Knudsen flow (2.11).
We first remark that the solution of (2.11) with initial datum p0 can be given almost explicitly in terms
of a series expansion. Indeed by (2.3) we have

p(x, v; t) = (S (t)p0)(x, v) =

∞∑
n=0

Mσ1(w
0)

∫
dw1|(w1)x|· · ·

∫
dwn|(wn)x|

χnMσ2(w
1) · · ·Mσn(w

n−1) p0(yF
n (−τ̃n),wF

n (−τ̃n)). (3.1)

We explain the above formula. Given xF(−s), vF(−s), s ∈ (0, t) the backward flow (2.14) starting
at x, v at time zero, let τ1 be the first hitting time in the time interval (0, t) (if any). Let y1 = xF(−τ1)
and w0 = vF(−τ1) be the corresponding trace on the boundary and the associate velocity respectively.
Then we select randomly a velocity w1 according to Mσ1(w1), σ1 = ± if y1 ∈ S ± respectively and
consider xF(−t), vF(−t) the backward flow (2.14) starting at y,w1 at time τ1 and so on. Therefore we
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have the sequences {y j,w j, τ j, σ j}; j = 1, 2 · · · of traces, incoming velocities, hitting times and sides of
the boundary. Moreover χn is the indicator of the event

n∑
k=1

τk < t ≤
n+1∑
k=1

τk

and τ̃n = t −
∑n

k=1 τk is the residual time after the last (n−th) collision with the boundary. See the figures
below where we denote by (x0, v0) = (yF

n (−τ̃n),wF
n (−τ̃n)) the initial point.

Note that {y j,w j, τ j, σ j} are random but y1, τ1 and σ1 are fixed according to x, v.
Denoting by tm the maximal time for which the particle can pass from a side of the boundary to the

other, by simple kinematic considerations we arrive to the conclusion that

tm =

√
2L
F

then we fix t = 3tm. Next we introduce the transition probability Pt(x, v|x0, v0) of going from x0, v0 to
x, v in the time t. It is defined as

Pt(x, v|x0, v0) =
(
S (t)δx0,v0

)
(x, v),

where δx0,v0 is the δ-function centered in (x0, v0). By the same arguments in [9], Theorem 2.1 is a
consequence of the following

Lemma
For t = 3tm, there exists λ > 0 such that∫

dx
∫

dv inf
x0,v0

Pt(x, v|x0, v0) ≥ λ.

Note that the statement of the above Lemma is not true whenever F = 0. Indeed a particle with
an arbitrary small velocity needs an unbounded amount of time to reach the boundary to thermalize.
Therefore Pt(x, v|x0, v0) is not even absolutely continuous. The presence of the external field forces
the particle to thermalize in a finite maximal time and this is enough to make working the arguments
in [9] . This is a coupling argument, namely we consider two copies of the same process yielding the
Knudsen flow, with initial states f and h, both probability densities. Then as a consequence of the
above Lemma, we have that

‖S (t)( f − g)‖L1 ≤ α2e−α1t

for two suitable constants α1 and α2. As a consequence we get both the exponential convergence to the
equilibrium ḡ, as well as (2.17). (2.18) follows as a corollary.

For F = 0 we do not know how to proceed. We shall comment on this point later on.

Proof
We assume

(x, v) ∈ A := {x, v|x ∈ (
1
2

L,
2
3

L), vx < 0}
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and, to evaluate Pt(x, v|x0, v0) we consider only the contribution with n = 3. Then we have only two
possible situations depicted in the following figures, namely either the first collision with the boundary
of xF(s), vF(s) for positive s and initial state x0, v0 happens with B+ or with B−. This feature depends
only on (x0, v0).

Note that the sequence of collisions left-right-left yields a positive final velocity so that it is
excluded.

Clearly fixed (x0, v0) and (x, v) there exists a trajectory connecting the two points in the time t.
Indeed τ1 and τ4 are not random, as well as y1 w0 and y3 w3, and t = 3tm > τ1 + τ4.

y1

y2

y3

w1

w2

w3

⌧1

⌧2

⌧3

⌧̃3
(x0,v0)

(x,v)

F !F !F !

Figure 1. The first possibility to Pt(x, v|x0, v0).

Let us start to analyze the first possibility. We have

Pt(x, v|x0, v0) ≥ M+(w0)
∫

dw1|(w1)x|

∫
dw2|(w2)x|χ2

∫
dw3|(w3)x|

M+(w1)M+(w2) δx0(y3 − w3τ̃3 −
1
2

Fτ̃2
3)δv0(w

3 − Fτ̃3), (3.2)

where χ2 = χ2(w1,w2) is the indicator of the event : y1 and y3 are connected via two jumps in a time
interval t − τ1 − τ4 . Setting w2 = ((w2)x,w⊥), we change variables,

τ̃3 = t −
3∑

i=1

τi = t − τ1 − τ2 − 2
(w2)x

F
; y3 = y2 + w⊥τ̃3 = y2 + 2w⊥

(w2)x

F

and, computing the Jacobian of this transformation, setting x0 = ((x0)x, x⊥0 ), v0 = ((v0)x, v⊥0 ), we arrive
to

Pt(x, v| x0, v0) ≥ M+(w0)
∫

dw1|(w1)x|

∫
B

dy3dτ̃3|(w2)x||(v0)x + Fτ̃3|
F3

8|(w2)x|
2

M+(w1)M+(w2) δ(x⊥0 − y3 − v⊥0 τ̃3)δ((x0)x −
1
2

Fτ̃2
3 − (v0)xτ̃3)
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≥ C(F)M+(w0)
∫

dw1|(w1)x|M+(w1) = C(F)M+(w0). (3.3)

where the set B is formed by the pair y3, τ̃3 for which χ2 = 1. This yields an upper bound for w2

and a lower bound for M+(w2). Moreover C(F) denotes a positive constant, independent of x0, v0 and
vanishing with F.

A similar estimate can be shown for the second possibility (see Figure 2).

y1

y2

y3

w1

w2

w3

⌧1

⌧2

⌧3

⌧̃3

(x0,v0)

(x,v)

F !F !F !F !

Figure 2. The second possibility to Pt(x, v|x0, v0).

Therefore integrating with respect to x and v we conclude.

The Lemma allows to prove (see [9] ) the exponential convergence. For F = 0 λ = 0 and we
do not have exponential convergence as it is shown in [1]. Actually we do not need, in principle, an
exponential convergence to apply our method but we need that the convergence rate is independent
of the initial datum and this is not the case when F = 0. For instance applying the methods of [1]
where the approach to equilibrium is investigated in the particular case of a spherical domain with
constant temperature in the boundary, we find (for special symmetric data) a rate of the form C

t but,
unfortunately, the constant C depends on ‖ f0‖L∞ and this estimate is useless in the present context. For
more recent references on the problem see [14, 19].

4. Proof

Now we prove Theorem 2.5. We follow [9] however the present proof is slightly easier because
it makes use of a simplifying cancellation not used in [9] . Moreover we do not try to optimize the
constants and this makes the proof more transparent. As in [9] such a proof is based on a fundamental
quantity, namely the kinetic error vI , I ⊂ N which we are going to define.

Given two family of of symmetric functions Φ = {ΦI} and Ψ = {ΨI} where I ⊂ N ΦI and ΨI are
functions acting on (Λ × R3)|I|, being |I| the cardinality of I, we define the ∗-product as

(Φ ∗ Ψ)I(ZI) =
∑
K⊂I

(Φ⊥)K(ZK)(Ψ)I/K(ZI/K)
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where ZI = {ζi}i∈I ,
(Φ⊥)K = (−1)|K|(Φ)K .

The kinetic error vI is defined by
vN

I = (g⊥ ∗ f̃ N)I ,

where we use the convention (g)∅ = ( f̃ N)∅ = (v)∅ = 1 and f̃ N
k = 0 for k > N.

The kinetic errors (also called v- functions in previous literature [6] and [7]) can be introduced also
in the context of mechanical system (see [24]). For a recent result concerning a wide class of models
including the one of the present paper, see [22].

Clearly
f̃ N
I = (vN ∗ g)I .

Then
vN

I = (g⊥ ∗ PN(t) f̃ N)I = (g⊥ ∗ P(t) f̃ N)I + RN
I (t) (4.1)

where,
RN

I (t)I = (g⊥ ∗ (PN(t) − P(t)) f̃ N)I .

The first step is due to the time invariance of f̃ N .
Note that, setting |I| = k > 0, by Theorem 2.4

‖RN
I (t)‖L1 ≤

K∑
h=1

(
k
h

)
‖([PN(t) − P(t)] f̃ N)h‖L1 ≤ c2

9k

N
.

As regards the first term in (4.1) it is

(g⊥ ∗ P(t)(vN ∗ g))I = (g⊥ ∗ (P(t)vN) ∗ g))I = (P(t)vN)I . (4.2)

by using the factorizing property of P(t) and the invariance of g. The last step is due to the identity∑
H⊂K

(−1)|H| = δ|K|,0.

In conclusion
vN

I = (P(t)vN)I + RN
I (t). (4.3)

For a given sequence φ = {φ j}
∞
j=1 we introduce, for α > 0, the norm

‖φ‖α = sup
j

e−α j‖φ j‖L1 .

Our goal is to show that

‖P(t)vN‖α ≤
1
2
‖vN‖α (4.4)

for suitable values of t and λ. This concludes the proof because we fix α such that eα = 9 so that, by
Theorem 2.4

‖RN
I (t)‖α ≤

c1

N
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and hence by (4.3) and the above estimate we conclude that,

‖vN‖α ≤ 2
c1

N
. (4.5)

therefore Theorem 2.5 follows easily.
We evaluate P(t)vN in terms of a series expansion which is nothing else than the iteration of (2.29)

in mild form (remind (2.27) and (2.28))

(P(t)vN)k = S (t)vN
k + λ

∫ t

0
dτS (t − τ)Ck+1(P(τ)vN)k+1.

More precisely we can write the following formal series expansion

(P(t)vN)k =
∑
n≥0

λnak,n(t)vN
k+n (4.6)

where

ak,n(t)vN
k+n =

k∑
i1=1

k+1∑
i2=1

· · ·

k+n∑
in=1

∫ t

0
dt1

∫ t1

0
· · ·

∫ tn−1

0
dτn

S (t − t1)Ci1,k+1S (t1 − t2)Ci2,k+2 · · · S (tn)vN
k+n. (4.7)

In the recent literature (see e.g., [24]) an expansion such that is called tree expansion because the
sequence i1, i2 . . . in = 1 has a useful graphical representation in terms of a tree, more precisely a (k−n)
tree indicating that we have k roots, namely the starting particles, and n creations of new particles.
Clearly a (k − n) tree is identified with k (1 − ni) trees, where i = 1 · · · k and

∑
i ni = n.

A more convenient way to write (4.6) is to use the factorizing property of P(t), namely:

(P(t)vN)k =
∑

n1≥0···nk≥0

k∏
i=1

λni a1,ni(t) vN
k+

∑
i ni

(4.8)

with the convention that a1,ni(t) acts on the i-th variable ζi of vN
k . Clearly the a1,ni(t)’s commute and if

vN
k+

∑
i ni

would factorize also (P(t)vN)k factorizes as well. Obviously this is not the case.
The difference between (4.6) and (4.8) is that in the latter we sum over all the trees associated to

each particles while in the former we equivalently sum over all the k − n trees.
The idea of the proof is the following. In the sequence n1 · · · nk we select the indices i for which

ni > 0. In this case we gain at least λ which is small. Actually we are working in a perturbative
regime close to the free motion. On the other hand when ni = 0 we gain η by (2.18). Therefore
we set I = {1, 2 · · · k} and denote by L ⊂ I the set of indices i for which ni = 0. Denoting also by
S L(t) =

∏
[i] S [i](t) the operator acting on functions of |L| variables, where S [i](t) is the Knudsen flow

associated to the variable i, as matter of facts

‖(P(t)vN)k‖L1 ≤
∑
L⊂I

∑
n1>0···nk−`>0

λni‖S L(t)
∏
i∈I/L

a(1, ni)vN
k+

∑
i ni
‖L1 . (4.9)

We observe preliminary that
∫

dζivN(ζ1 · · · ζ j) = 0 as follows from the definition, therefore

‖S L(t)
∏
i∈I/L

a(1, ni)vN
k+

∑
i ni
‖L1 ≤ η`‖

∏
i∈I/L

a(1, ni)vN
k+

∑
i ni
‖L1 , (4.10)
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provided that t ≥ T (η).
To estimate the contribution due to a(1, ni) we realize that

‖Ci, jφ j+1‖L1 ≤ C‖φ j+1‖L1

and hence

‖
∏
i∈I/L

a(1, ni)vN
k+

∑
i ni
‖L1 ≤

k−∏̀
i=1

(Ct)ni

ni!
‖vN

k+
∑

i ni
‖L1 . (4.11)

Next we observe that
2∑

i2=1

· · ·

ni∑
ini =1

= ni!

thus

e−αk‖(P(t)v)N
k ‖L1 ≤

k∑
`=0

(
k
`

)
η`

k−∏̀
i=1

(Ctλeα)ni‖vN‖α. (4.12)

Now we choose the parameters. First we fix η = 1
4 and consequently t = T (η). Finally λ will be chosen

so small that
Ctλeα

1 −Ctλeα
≤

1
4

and, by (4.12),

e−αk‖(P(t)v)N
k ‖L1 ≤ (

1
2

)k‖vN‖α.

This implies (4.4) and concludes the proof of Theorem 2.5.
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