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Abstract: Linear-In-Flux-Expressions (briefly LIFE) methodology models metabolism by using
correlations among fluxes of metabolic networks and reducing the number of model parameters. These
correlations are calculated for an equilibrium state and developed to include tools from the fields of
network flows, compartmental systems, Markov chains, and control theory. LIFE methodology was
developed with pharmacology simulators in mind, and the present study advances this goal, by focusing
on the control of metabolic networks and inclusion of enhancers and inhibitors. We consider two
control problems on metabolic networks: 1. The optimization of intakes from the outside environment
to drive the system to a desired state, and 2. The inclusion of inhibitors and enhancers and their
optimization. Simulations are included to test the approach on these more complex networks.

Keywords: systems biology; flows on graphs; control; ordinary differential equations

1. Introduction

Models in Quantitative Systems Pharmacology (briefly QSP) [2, 25, 26, 28] have been used by the
pharmaceutical industry in order to discover new drugs at less cost. In modeling metabolic networks,
bio-chemical reactions are organized into a graph, with nodes representing metabolites and edges
representing fluxes [20, 22, 24]. The dynamics is described by a Stoichiometric matrix encoding the
kinetics of the biochemical reactions.
QSP models are commonly used with the assumption that all fluxes are independent or have
insignificant correlation [1, 15, 27], which does not recognize the resilience of metabolic networks.
Thus, despite the vast knowledge by Systems Biology (as well as other
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fields [3, 8, 10, 16, 18, 19, 23, 24]), researchers were unable to accurately simulate large metabolic
networks [12, 28] as an inexpensive alternative for clinical trials. A new method called
Linear-in-Flux-Expressions (briefly LIFE), where one rewrites the system as linear with respect to the
fluxes [20], has shown potential to help pharmacology simulators recover crucial characteristics of
metabolic networks. This approach has been investigated [22] and currently works for mild
nonlinearities, however inhibitors, enhancers, and fully nonlinear dynamics are still not included.

Intakes Excretions

Network

𝑥𝑖

𝑥𝑗𝑓𝑒

Edge 𝑒

𝑥𝑖
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Stoichiometric matrix S

Metabolite dynamics

Enhancer dynamics

Figure 1. Top Left: network with intakes and excretions from and to the external
environment. Nodes xis are composed of metabolite concentrations, fluxes fe represent
biochemical reactions. Top Right: Enhancer xk affects flux fe. Bottom: network dynamics
with Stoichiometric matrix S (x) (first equation). Dynamics of a single metabolite xi is
affected by flux fe via term He (second equation). Additional terms such as K(xk) are added
to include inhibitors and enhancers (third equation).

The aim of this work is to apply results from previous studies to actual networks and extend our
results to include control of the intakes and enhancer dynamics. Figure 1 depicts the main ideas.
Metabolic networks naturally have intakes and excretions, while fluxes fe are determined by kinetics
of bio-chemical reactions. The LIFE approach consists of writing dynamics with Stoichiometric matrix
S (x) that describes the mass consumed and produced by the reactions. This matrix is dependent on
the metabolites (as opposed to classical S ( f ) dependent on fluxes) thus allowing nonlinear dynamics in
metabolites. A general condition on network topology (connection of every node to excretion, see [22])
guarantees existence and uniqueness of an equilibrium x̄ f for every flux vector f = { fe}. Thus network
dynamics is captured by the map f → x̄ f with a multivalued inverse x→ F(x) (see [19, Theorem 4]).

We first show various theories applied to a small yet significant part of human cholesterol
metabolism, called “Reverse Cholesterol Transport” (briefly RCT). In particular, nonlinear dynamics
implemented on RCT admits a unique stable equilibrium (for fixed fluxes and intakes). This allows to
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study drug discovery by control methods. More precisely, we consider both control of intakes
(corresponding to a diet and/or supplements) and the introduction of enhancers and inhibitors
(corresponding to drugs). Also, control of inhibitors/enhancers is compared versus control of the
intakes.

The control of intakes is entirely similar to the problem of controlling inputs to compartmental
systems. The main difference here is in the assumptions on the specific network dynamics. In
particular, choosing Michaelis-Menten kinetic, which gives a nonlinear dynamics in metabolites, one
has to face the problem of saturation. The latter may lead to non existence of equilibria. More
precisely, since the kinetic can support only a maximal level of discharge for a given metabolite, too
high intakes may cause the metabolite levels to increase indefinitely. By analyzing the map from
intakes to equilibria, we are able to compute the set of admissible intakes (compatible with saturation
levels) and thus reduce optimal control problems to finite-dimensional optimization ones.

The action of inhibitors and enhancers is defined for general networks: Inhibitors and enhancers
augment other edges via multiplicative Michaelis-Menten kinetics. Existence, uniqueness and
stability of equilibria is proved for the RCT example and conjectures for general networks under
suitable assumptions. The latter are entirely similar to the case without enhancers and inhibitors, thus
are expected to be satisfied by most natural metabolic networks. Lastly, we describe a process of drug
discovery by f augmenting the network with enhancers or inhibitors and finding optimal controls.

The paper is organized as follows. Section 2 introduces the LIFE methods and main definitions.
Section 3 describes the Reverse Cholesterol Transport network and provide various results by applying
well-established theories. Section 4 considers control problems for intakes, while Section 5 introduces
the dynamics with enhancer and inhibitors. Section 6 illustrated drug discovery by mean of enhancer
and inhibitors, and, finally, Section 7 contains conclusions.

2. Linear-In-Flux-Expressions

The most general description of a metabolic network includes the dynamics of the metabolites
x ∈ Rn and dynamics of fluxes f ∈ Rm:

dx
dt

= F(x, f ), (2.1)

d f
dt

= G(x, f ),

where F : Rn × Rm → Rn and G : Rn × Rm → Rm. In [14, 18] the authors show that the dynamics F
governing the metabolites typically evolves faster than the dynamics G governing the fluxes. Thus we
approximate the dynamics of the system with G ≈ 0, i.e., the fluxes remain practically constant.
One can define a directed graph related to a metabolic system (see Figure 2), with n metabolites and m
reactions. The metabolites are represented by vertices V = {v1, . . . , vn}. The reactions are represented
by a set of edges E ⊂ V × V . To represent the interactions between the network and the external
environment, we introduce two virtual vertices v0 and vn+1. The sets of vertices attached to v0, vn+1 are
denoted by I, X, the vertices in I and X are called intake vertices and excretion vertices, respectively.
The intakes are defined as the edges (v0,w) with w ∈ I ⊂ V , and the excretions are defined as the
edges (w, vn+1), w ∈ X ⊂ V . A graph is strongly connected if there exists a path between every pair
of vertices. A strongly connected component of a directed graph is a maximal strongly connected
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subgraph. A terminal component of a directed graph G = (V, E) is a strongly connected component
G′ = (V ′, E′), with V ′ ⊂ V , E′ ⊂ E, such that there exists no edge e = (v′, v), with v′ ∈ V ′ and
v ∈ V \ V ′. We define the parameters of the model: x ∈ Rn

+, S (x) is n × m, and f ∈ Rm
+ , where Rd

+

is the d-dimensional space of vectors with all positive components. Assuming G ≡ 0 and F linear in
x, the usual method of writing the system of Ordinary Differential Equations(ODEs) (2.1) governing
metabolism is given by (see [14]):

dx
dt

= J( f ) · x, (2.2)

where J( f ) is an n × n matrix depending on the fluxes of the system.
Our method is also based on the assumption G ≡ 0, but asks for linearity of F with respect to the
fluxes rather than to the metabolites. Such assumption is more often encountered when dealing with
metabolic networks [20]. We call the Linear-in-Flux-Expressions (LIFE) approach the idea of using
linearity with respect to fluxes to write the dynamics as:

dx
dt

= S (x) · f , (2.3)

where f is the column vector of fluxes and S (x) is the stoichiometric matrix defined as follows. Each
row of S (x) corresponds to a metabolite represented by a vertex and each column corresponds to a flux
of a reaction, which is represented by an edge in the directed graph. Thus we use the notation S ve(x) for
the matrix entry corresponding to vertex v and edge e. In simple words, the entry S ve(x) is a function
quantifying how much mass moves along edge e. We notice that, in systems biology, researchers often
refer to J( f ) of (2.2) as the stoichiometric matrix, see [24].

In this paper, our analysis is organized into sections with different assumptions on the entries S ve of
the stoichiometric matrix as function of the values of metabolites and fluxes. The most general class
of systems we consider satisfies the following assumption. For x ∈ (R+)n, it holds:

(A) S ve(x) =


He(x) > 0 if (e = (w, v), w ∈ V, xw > 0) or (e = (v0, v), v ∈ I)
−He(x) < 0 if xv > 0 and (e = (v,w),w ∈ V) or (e = (v, vn+1), v ∈ X)
0 otherwise

, (2.4)

where He : Rn → R+ is continuous. Notice that Assumption (A) implies that, for each v ∈ V ,

∑
v∈V

S ve(x) =


He(x) e = (v0, v̄), v̄ ∈ I,

−He(x) e = (v̄, vn+1), v̄ ∈ X,

0 otherwise.

(2.5)

All columns of S have zero sum, except those corresponding to intakes and excretions, which have
positive and negative sum, respectively. Under Assumption (A), the dynamics (2.3) can be interpreted
as mass conservation law. Here we introduce a special class of systems of type (2.3) with simplified
dynamics. We consider Assumption (A), and we impose further restriction on the functions He(x): For
an edge e = (v,w), we assume He to depend on xv only, and moreover we impose the scalar function
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He(xv) to be strictly increasing:

(B) S ve(x) =


= −He(xv) e = (v,w), v ∈ V,w ∈ V ∪ {vn+1}

= He(xw) e = (w, v), w ∈ V

= 1 e = (v0, v) v ∈ I

= 0 otherwise,

(2.6)

where He : R+ → R+ is differentiable, strictly increasing, and He(0) = 0.
A typical example of a system verifying (B) is given by metabolic networks with Hill functions
representing reactions, i.e., He(xv) =

xpe
v

K+xpe
v

with pe ∈ N, and K is called the dissociation constant.
LIFE approach allows a simple description of flux vector f which permits the system to be in
equilibrium; such vectors comprise the null space of S (x). In previous work [22], the authors showed
how the theory of Laplacian dynamics, Markov chains, network flows, and compartmental systems
apply to LIFE systems. The results tell us how the structure of the graph of the metabolic network
affects existence, uniqueness, and stability of equilibria. An example of structure the authors
investigated in [22] is a terminal component of a network, which is a part of the network not
connected to excretions. The assumptions on S (x) and the structure of the network allow also to
compute equilibria related to a given flux vector f .

3. Dynamics theories at work on Reverse Cholesterol Transport

In this section, results from [21, 22] are applied to the example network of RCT [20]. RCT (see
Figure 2) represents the mechanism of removal of cholesterol from plaques in arteries. Here, we apply
theory from [5] to derive equilibria and stability of the RCT. The various mathematical approaches
are applicable to this example as follows. Linear systems without intakes nor excretions are related
to continuous-time Markov chains [9]. Linear systems with intakes and excretions from and to the
external environment are known as compartmental systems [5, 16]. Nonlinear systems are studied
using the results from [19].
The dynamics of the RCT network can be written as (2.3), with S : R → M6×10. The matrix S is then
the concatenation of S 1−3 and S 4−10 which are the submatrices given by the first three columns and last
seven columns respectively.

S 1−3 =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


,

and S 4−10 is given by:

−H fe4
(xv1) 0 0 0 0 0 0

0 −H fe5
(xv2) 0 0 0 0 0

0 0 −H fe6
(xv3) 0 0 0 0

H fe4
(xv1) H fe5

(xv2) H fe6
(xv3) −H fe7

(xv4) −H fe8
(xv4) 0 0

0 0 0 H fe7
(xv4) 0 −H fe9

(xv5) 0
0 0 0 0 H fe8

(xv4) H fe9
(xv5) −H fe10

(xv6)


,
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while the flux vector f ∈ R10 is a 10 × 1 vector ( fi)i∈{1,...,10}.

v0 v1 v2 v3

v4

v5 v6 v7

e1

e 4 e 5

e6

e7

e9

e 8

e10

e2 e3

Figure 2. Reverse Cholesterol Transport Network. This network contains six vertices which
represent metabolites, ten edges which represent fluxes and two virtual vertices v0, v7. There
are three intake vertices v1, v2, v3 and one excretion vertex v6.

A further simplification is where He(xv) is the same function Hv(xv) for all edges e having v as an initial
vertex. This gives Assumption (C), as follows. For all x ∈ (R+)n,

(C) S ve(x) =


= −Hv(xv) e = (v,w), v ∈ V,w ∈ V ∪ {vn+1}

= Hw(xw) e = (w, v), w ∈ V

= 1 e = (v0, v) v ∈ I

= 0 otherwise,

and each Hv : R+ → R+, with Hv(0) = 0 is a differentiable and strictly increasing function. The system
can be equivalently re-written as:

ẋ = J( f )h(x) + φ, (3.1)

where h(x) =
(
h1(x1), · · · , hn(xn)

)T
, J( f ) ∈ Mn×n (a n × n matrix with real entries), and φ ∈ Rn.

The intake vector φ is written as a n × 1 vector with a zero if there is no intake flux from the outside
environment and φei the value of the flux if there is an edge to vi. For the RCT network, J( f ) and φ are
given by:

J( f ) =



− fe4 0 0 0 0 0
0 − fe5 0 0 0 0
0 0 − fe6 0 0 0
fe4 fe5 fe6 − fe7 − fe8 0 0
0 0 0 fe7 − fe9 0
0 0 0 fe8 fe9 − fe10


, φ =



fe1

fe2

fe3

0
0
0


. (3.2)

The following Proposition 1 (from [22]) shows that the existence of nontrivial equilibria implies
some network structure. We define the sets I, X, as the set of vertices attached to v0, v7 respectively.

Proposition 1. Consider system (2.3) satisfying (A). Assume there exists an equilibrium x̄ ∈ (R+)n for
a flux vector f such that fe > 0 for every e ∈ E. Then for every vertex v ∈ V for which there exists a
path from I to v, there exists a path from v to X.
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The max-flow min-cut theorem [11] implies that a positive flux vector exists if there is a path from
v0 and vn+1 as shown by the following proposition.

Proposition 2. Consider system (2.3) satisfying (A), fix an x ∈ (R+)n and intake flow vector φ̄ with
strictly positive entries. Then there exists f ∈ (R+)m in the null space of S (x) if and only if for each
v ∈ I there exists a path to X.

3.1. Linear RCT without intakes and excretions

Assume the RCT network dynamics is linear, then the flow of mass along an edge is proportional to
the mass of the metabolite represented by the initial vertex. This means that Assumption (C) is satisfied
with h(x) from (3.1) such that h(x) = x. When the network is isolated from the external environment,
the dynamics can be written as ẋ = J̄( f )x, where J̄( f ) is a Metzler matrix (i.e., has non-negative
off-diagonal entries), and all its columns sum to zero (1T J̄( f ) = 0T ).

Let G′ be a graph associated to RCT network without intakes (remove two virtual vertices v0, v7 and
remove blue edges e1, e2, e3, e10 in Figure 2). We assume each edge is associated with a strictly positive
weight fe > 0. In the theory of Laplacian dynamics [23], the matrix L = −J̄( f )T can be interpreted as
a weighted Laplacian of G′. The weighted adjacency matrix A is composed of elements Ai j = f(vi,v j) if
(vi, v j) ∈ E, and Ai j = 0 if there no directed edge from v j to vi. We defined a diagonal matrix D that
contains the row-sum of A indicating the weights leaving from each vertex. The weighted Laplacian is
given by L = D − A.

In the field of consensus dynamics [5, Theorem 6] systems are modeled using the weighted
Laplacian ẋ = −Lx. The dynamics is different from the linear LIFE dynamics, but J̄( f ) and −L have
the same eigenvalues. The study of the spectrum of the Laplacian has been investigated in the fields of
graph theory and control [22]. The results of these fields apply to LIFE systems when we consider the
metabolic network with all intakes and excretions removed. Moreover, the RCT network without
intakes and excretions is related to a continuous-time Markov chain over a finite state V = {v1, . . . , v6}.
Thus results on Markov chains are applicable to LIFE systems. The spectrum of J̄( f ) and the
asymptotic behavior of the dynamics are described by the following proposition:

Proposition 3. Assume there are no intakes nor excretions, then:
(1) All eigenvalues of J̄( f ) are either 0 or have strictly negative real part.
(2) The dimension of the nullspace of J̄( f ) is equal to the algebraic multiplicity of the 0 eigenvalue,
and is equal to the number of terminal components in the graph.
(3) From any positive initial condition, the system converges to an equilibrium, having strictly positive
entries in correspondence of vertices of terminal components, and 0 elsewhere.
(4) The equilibrium is determined by the initial mass if there is a unique terminal component.

The RCT network without intakes and excretions has a unique terminal component made up of
the singular vertex v6. Satisfying (1) and (2) of Proposition 3, the eigenvalues of J̄( f ) are: {0,− fe4 ,

− fe5 ,− fe6 ,− fe9 ,−( fe7 + fe8)}. Furthermore (3) and (4) imply that all the initial mass in the RCT will
converge to v6.

3.2. Linear RCT with intakes and excretions

In the case the linear RCT network interact with the environment via intakes and/or excretions, the
dynamics is given by ẋ = J( f )x + φ, where J( f ) and φ is defined in (3.2). The associated graph G
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is given by Figure 2. A directed graph is called weakly connected if there exists an undirected path
between each pair of vertices. A weakly connected component of a directed graph is defined as a
maximal weakly connected subgraph. We notice that G is a weakly connected component including v0

and v7. The rows of J( f ) no longer sum to 0 because of a single element in the last column representing
excretion. Thus −J( f )T does not satisfy the definition of weighted Laplacian. In [29] a term grounded
Laplacian Lg is introduced. Lg can be constructed by deleting the row and column corresponding to
a given set of vertices (called grounded vertices) from L. For RCT network, −J( f )T is a grounded
Laplacian Lg (see [22]). The spectrum of J( f ) is described by:

Proposition 4. Consider a linear system with intakes and/or excretions, then the following are
equivalent:
(a) For every v ∈ V there is a path from v to X.
(b) J( f ) is Hurwitz stable (i.e., all its eigenvalues have strictly negative real part).
(c) J( f ) is invertible.
Moreover, when J( f ) is invertible, all entries of −J( f )−1 are positive; if the graph is strongly
connected, all entries of −J( f )−1 are strictly positive.

It is clear from Figure 2 that the RCT network with intake and excretion satisfies (a). The Jacobian
J( f ) can be seen in equation 3.2, and the eigenvalues are: {− fe4 , − fe5 ,− fe6 ,− fe9 ,− fe10 ,−( fe7 + fe8)},
verifying (b).

3.3. Non-linear RCT

The non-linear RCT network satisfies Assumption (B) with h(x) may be non-linear, e.g., h(x) =
Hx

KM+x is Michaelis-Menten type of equation, where H is the saturation value, and KM is the Michaelis
constant.

Proposition 5. ( [19, Theorem 6]) Consider the non-linear system under Assumption (B) with no
intakes and excretions. The following properties hold:
(1) The total mass of the system m =

∑
v∈V xv is constant in time.

(2) From any positive initial condition x(0), the system tends to the equilibrium set.
(3) Moreover, if there is a unique terminal component, then there exists a unique equilibrium with
positive entries with the same mass as the initial mass, and the system converges to it.

This means that despite the h(x) functions being non-linear, the RCT network with no intakes and
excretions will have constant total mass and the system tends to the equilibrium set. For the general
case with intakes and excretions, we recall results from [19]:

Proposition 6. ( [19, Theorems 2 and 3]) For a system with positive initial condition:
(1) Trajectories are bounded if and only if there exists an equilibrium with positive entries.
(2) If trajectories are bounded, then they approach an equilibrium set for t → ∞. If moreover the
equilibrium set consists of isolated points, then they converge to some equilibrium.

The following results concern the existence and uniqueness of equilibria.

Proposition 7. ( [19, Theorems 4 and 5]) Under Assumption (B) the following holds,
(1) There exists an equilibrium with positive entries for arbitrary constant intakes if and only if for all
v ∈ V there is a path to X such that all edges in the path have limxv→∞ He(xv) = +∞.
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(2) If there exists an equilibrium with positive entries, and all v ∈ V connect to X, then the equilibrium
is unique.

For the RCT network, for every vertex v ∈ I there is a path from v to X, therefore by Proposition
7 there is a unique equilibrium xeq and by Proposition 6 we will approach the equilibrium as t → ∞.
Under the stricter Assumption (C) this equilibrium can be calculated analytically using equation 3.1
with h(x) being given by:(

fe1
fe4
,

fe2
fe5
,

fe3
fe6
,

fe1 + fe2 + fe3
fe7 + fe8

,
fe7 ( fe1 + fe2 + fe3 )

fe9 ( fe7 + fe8 ) ,
fe1 + fe2 + fe3

fe10

)T
. (3.3)

The equilibrium xeq can then be calculated by computing the inverse of each hi(xi) function.

4. Control of intakes

In this section, we focus on the special LIFE system under Assumption (C). Typically f is fixed
and x cannot be controlled directly, which leaves the intake vector φ as a natural choice for control
targets. We are interested in intakes φ that lead to an equilibrium. In this section the inequality x > 0,
respectively x ≥ 0, with x ∈ Rn, is to be interpreted as xi > 0, respectively xi ≥ 0, for all i = 1, . . . , n.

Proposition 8. Consider system (2.3) satisfying Assumption (C), then the set Φ of intake vector φ
giving rise to a positive equilibrium xφ > 0 is given by:

Φ = {φ|xφ := h−1(−J( f )−1φ) > 0}. (4.1)

Proof. The dynamics of systems under Assumption (C) can be rewritten as (3.1). Thus the equilibrium
of the system can be found by solving J( f )h(xφ) + φ = 0. �

The control action is then captured by the map:

φ −→ xφ = h−1(−J( f )−1φ). (4.2)

However, to obtain admissible equilibria, we need to take into account the saturation effect of nonlinear
kinetics such as Michaelis-Menten:

Proposition 9. Consider system (2.3) with Assumption (C) holding true and the function
h(x) = (hi(xi))i∈{1,...,n} in (3.1) with hi(xi) : R+ → R+ being strictly increasing and bounded by
saturation values H = (Hi)i∈{1,...,n},

hi(xi) ≤ Hi, for all i = {1, . . . , n}. (4.3)

Then for the system to tend to an equilibrium the intake vector φ must satisfy

φ = −J( f )h(xφ) ≤ −J( f )H, for φ ∈ Φ and xφ ∈ R+. (4.4)

Proof. Under Assumption (C) the system can be written as (3.1). From (3.1) and inequality (4.3),
solving for φ we get (4.4). �
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We consider the following control problem:

Definition 4.1. For a given system (2.3) satisfying Assumption (C), and a given desired equilibrium
xeq ∈ (R+)n, find the optimal intake vector φ that drives the system as close as possible to xeq.

The solution is provided by the intake vector φ which minimizes the Euclidean distance

||xφ − xeq|| =

√√
n∑

i=1

((xeq)i − (xφ)i)2. (4.5)

An alternative control problem is to minimize the distance of the kinetic vector h instead of the
metabolites:

Definition 4.2. For a given system (2.3) satisfying Assumption (C), and a given desired equilibrium
xeq ∈ (R+)n, find the optimal intake vector φ that drives the system kinetic vector h(xφ) as close as
possible to h(xeq).

The solution is given by the intake vector φ which minimizes the Euclidean distance

||h(xφ) − h(xeq)|| =

√√
n∑

i=1

((h(xeq))i − (h(xφ))i)2. (4.6)

Since h(xeq) = −J( f )−1φ is linear with respect to φ, for the second problem we can use linear solvers
to find the optimized φ. Therefore, the second control problem can be solved much more efficiently.
Notice that, in general, the two control problems are not equivalent, since the solution minimizing
(4.5) may be different than that minimizing (4.6). However, we do expect the solution to the control
problem of Definition 4.2 to provide an ansatz toward the solution to the control problem of Definition
4.2. Indeed, even if the level sets of the two functions (4.5) and (4.6) are different, they are both convex
and centered at the same point.

Let us now focus on the RCT network under Assumption (C) and explore the map (4.2): h(x) is a
6 × 1 vector h(x) = hi(xi)i∈{1,...,6}. We choose kinetics of Michaelis-Menten type with saturation value
Hi ( [17]), hi(xi) = Hi xi

KM+xi
,where KM is the Michaelis constant. Our intake vector φ is a 6× 1 vector with

last three components vanishing. Figure 4 illustrated the bounds on the kinetic and the intakes.
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H4

H5

H6

O

φ3

φ2

φ1
φ̃

φ̃

φ̃

Figure 3. In blue the 3-dimensional cube, in the space (h4, h5, h6) of kinetics of last three
metabolites, satisfying the bounds given by the saturation values H4,H5 and H6. Based on
the conditions (4.7) and (4.8), the intake vector φ must belong to the tetrahedron bounded by
the coordinate planes and the standard simplex (in green).

The matrices φ, J( f ), h, and H can be written in block form, then (4.4) becomes

(
φe

0

)
=



φe1

φe2

φe3

0
0
0


=



fe4 0 0 0 0 0
0 fe5 0 0 0 0
0 0 fe6 0 0 0
− fe4 − fe5 − fe6 fe7 + fe8 0 0

0 0 0 − fe7 fe9 0
0 0 0 − fe8 − fe9 fe10





h1

h2

h3

h4

h5

h6


=

(
D 0
J3 J4

) (
he

hd

)
≤

(
D 0
J3 J4

) (
He

Hd

)
.

So we have {
φe = Dhe,

0 = J3he + J4hd.

We define φ̃ = φe1 + φe2 + φe3 as the total mass flows in the system. Then

Hd ≥ hd = −J−1
4 (J3D−1φe) =



1
fe7 + fe8

0 0

fe7

fe9( fe7 + fe8)
1
fe9

0

1
fe10

1
fe10

1
fe10



φ̃

0
0

 .

Observing the structure of Figure 2 and that the total outflow of a vertex must equal the total inflow for
an equilibrium state, we have

φei ≤ fei+3 Hi, i = 1, 2, 3, (4.7)
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φ̃ ≤ min
{

H4( fe7 + fe8),H5
fe9( fe7 + fe8)

fe7

,H6 fe10

}
. (4.8)

Having determined the bounds on φ for existence of an equilibrium, we explore the map (4.2) on the
subset describe by the bounds.

Some parameters in the RCT network are chosen a priori, such as the fluxes f , the given functions
h(x), and the corresponding saturation values H. As a proof of concept, we randomly sample f and
the initial values for x from the uniform distribution with range (0, 1), randomly sample Hi from the
uniform distribution with range (0, 10), and randomly sample the desired equilibrium xeq from uniform
distribution (0, 3). We use these randomly generated data to test the effectiveness of the optimization
algorithm to drive the state to xeq = ((xeq)i)i∈{1,...,6}. xv4 corresponds to the High-density lipoprotein
(HDL), xv5 corresponds to the Very low-density lipoprotein (VLDL), and xv6 corresponds to the low-
density lipoprotein (LDL). According to [13], a high ratio indicates a higher risk of heart attack. A
healthy state is considered to have lower ratio of HDL+LDL

LDL . The second control problem (Definition 4.2)
can be solved using the following optimization algorithm:

Algorithm 1. For assigned fluxes and kinetics:

Step 1 : Calculate the Jacobian matrix J in (3.1) and the matrix −J( f )−1.

Step 2 : Implement linear least-square method to find φopti minimizing (4.6) with inequality constraint
−J( f )−1φ ≤ H and lower bound 0.

Step 3 : Calculate the cost and run simulation with optimized intakes φopti to verify numerically the
stability of dynamics.

Notice that not all combinations of sampled parameters lead to equilibrium: Here we show an
example leading with stability. To implement Algorithm 1, we use a linear least-square solver in
MATLAB (2018b) for Step 2, finding the optimized φopti by minimizing the cost 1

2 ||h(xφ) − h(xeq)||22 =
1
2 || − J( f )−1φ − h(xeq)||22, which is half of the square of (4.6). The flux vector is given by:

f =
(
0.71, 0.36, 0.40, 0.32, 0.23, 0.67, 0.96, 0.74, 0.44, 0.51

)T
(4.9)

and the initial value of metabolites is:(
xv10 xv20 xv30 xv40 xv50 xv60

)T
=

(
0.87, 0.80, 0.35, 0.76, 0.62, 0.21

)T
. (4.10)

The kinetic h functions for all vertices are given by:(
7.21 · xv1

1 + xv1

7.57 · xv2

1 + xv2

4.26 · xv3

1 + xv3

5.32 · xv4

1 + xv4

7.98 · xv5

1 + xv5

8.56 · xv1

1 + xv1

)T

,

while the saturation levels for h are:

H =
(
7.21, 7.57, 4.26, 5.32, 7.98, 8.56

)T
.

We randomly generate the equilibrium xeq to be matched:

xeq =
(
2.86, 2.50, 0.09, 0.64, 0.91, 2.98

)T
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with
h(xeq) =

(
5.34, 5.41, 0.36, 2.07, 3.81, 6.40

)T
.

The h(x)opti and (x)opti optimized by Algorithm 1 are:

h(x)opti =
(
5.34, 5.40, 0.35, 1.89, 4.12, 6.26

)T
,

(x)opti =
(
2.85, 2.50, 0.09, 0.55, 1.07, 2.73

)T
.

while the optimized intake vector is φopti =
(
φe1 , φe2 , φe3

)T
=

(
1.73, 1.24, 0.24

)T
. In the

following, we check the conditions (4.7) and (4.8):

φe1 = 1.73 < fe4 H1 = 0.32 × 7.21 = 2.31,
φe2 = 1.24 < fe5 H2 = 0.23 × 7.57 = 1.74,
φe3 = 0.24 < fe6 H3 = 0.67 × 4.26 = 2.85,

φ̃ = φe1 + φe2 + φe3 = 3.20 < min{9.02, 6.21, 4.38} = 4.38.
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Figure 4. The RCT network with fixed fluxes f in (4.9) and initial conditions in (4.10)
with no controls. The given equilibrium is xeq = (2.86, 2.50, 0.09, 0.64, 0.91, 2.98)T . The
simulated equilibrium is xφ = (0.440.27, 0.16, 0.20, 0.32, 0.52)T . The dots representing the
given equilibrium levels for six vertices (corresponding to the trajectory with the same color).
The cost is 4.1828.

We run the simulation with optimized intakes φopti and keep the other parameters constant. Figures
4 and 5 show simulations for the not controlled case and the one with optimized intakes. Notice that
well approximate the desired equilibrium.

5. Metabolic networks with inhibitor and enhancer

In order to include inhibitors and enhancers we introduce a new Assumption (D):

(D) S ve(x) =


= −He(xv) · Ku(xu) e = (v,w), v ∈ V,w ∈ V ∪ {vn+1}, u ∈ V

= He(xw) · Ku(xu) e = (w, v), w ∈ V

= 1 e = (v0, v) v ∈ I

= 0 otherwise,

(5.1)
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Figure 5. The RCT network with optimized intakes value (control with intakes). (xeq)opti =

(2.85, 2.50, 0.09, 0.55, 1.07, 2.73)T . The cost is 0.3022.

where Hv : Rn → R+ is differentiable and strictly increasing while Hv(0) = 0, Ku : R → [0,+∞) is
differentiable, monotonic, and Ku(0) = 1. Moreover, for enhancers Ku is increasing while for inhibitors
Ku is decreasing.

Let us clarify the differences among the assumptions we discuss. Assumption (A) requires the
function He(x) to be defined for each edge, continuous, and dependent on the entire state x. Assumption
(B) requires He(xv) to be defined for each edge, continuous, and dependent on the metabolite associated
to the initial vertex of edge e. Assumption (C) requires Hv(xv) to be defined for the initial vertex of
an edge, differentiable and strictly increasing, Hv(0) = 0, and dependent on the metabolite associated
to the initial vertex of an edge. Therefore all edges with the same initial vertex will be associated to
the same function Hv(xv). For Assumption (D) the function Hv(xv) is defined just as in Assumption
(C), however entries of S ve(x) consist of a product Hv(xv) · Ku(xu). The factor Ku(xu) models the action
of inhibitors or enhancers. This represents nonlocal action, because the inhibitor or enhancer is not
necessarily nearby (in topological sense) the affected metabolites. Assumption (A) is the most general
with Assumption (B) implying Assumption (A), and Assumption (C) implying (B), i.e., C =⇒ B =⇒

A. Assumption (D) also implies Assumption (A), but is comparable with (B), i.e., D =⇒ A,D ;
B, B; D.

To illustrate the effect of enhancers and inhibitors on dynamics under Assumption (D), an example
is shown on the RCT network of Figure 2, but with the addition of a single enhancer. It is assumed
that the metabolite v1 will act as an enhancer for the edge fe7 . When the dynamics of this network are
written , the stoichiometric matrix S : R → M6×10 where S = (S 1−3|S 4−10) is different from Section 3
only by the non-zero entries of the seventh column, i.e., S 4−10 is given by



−Hv1(xv1) 0 0 0 0 0 0
0 −Hv2(xv2) 0 0 0 0 0
0 0 −Hv3(xv3) 0 0 0 0

Hv1(xv1) Hv2(xv2) Hv3(xv3) −Kv1(xv1) · Hv4(xv4) −Hv4(xv4) 0 0
0 0 0 Kv1(xv1) · Hv4(xv4) 0 −Hv5(xv5) 0
0 0 0 0 Hv4(xv4) Hv5(xv5) −Hv6(xv6)


.
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5.1. Equilibria under Assumption (A) and (B)

The previous research focused on finding necessary and sufficient conditions for equilibria of (2.3),
as well as the uniqueness and stability of such solutions, under Assumption (A) or (B). We aim at
extending the results to the case of Assumption (D) as well. The Propositions 1 and 2 work also for
Assumption (A) and as such are still applicable when inhibitors/enhancers are added as in Assumption
(D). Proposition 1 gives necessary structural conditions to obtain an equilibrium xeq for fixed flux
vector f , specifically that any vertex with a directed path from an intake, also has a directed path to an
excretion.

5.2. Dynamics under Assumption (D)

Without further assumptions on the system, there are few conclusions about these types of
equilibria. In Section 3, additional properties summarized in Assumptions (B) and (C) were needed to
prove uniqueness and stability for this type of equilibrium (see Propositions 6 and 7). To investigate
equilibria for Assumption (D), we consider system (2.2). For a single enhancer or inhibitor, we may
write the dynamics as follows,

ẋ = J1( f )h(x) + J2( f )k(x) + φ (5.2)

where J1 is the Jacobian matrix removing the terms which are affected by inhibitors or enhancers, h(x)
is a column vector of size n given by hi(x) = Hvi(xvi), J2 is a matrix with nonzero entries only in the
column affected by the enhancer or inhibitor, k is a column vector of size n representing inhibitors and
enhancers given by ki(x) = Kv j(xv j) · Hvi(xvi) where vi is the node from which the edge begins and v j

is the node which acts as an inhibitor or enhancer, and φ is a vector of size n given by φi = fe(v0,vi) if
(v0, vi) ∈ Ẽ and φi = 0 otherwise. Note that multiple enhancers or inhibitors may require additional
matrices Ji. To see the possible necessity of added Ji matrices, consider two edges e(vi, v j) and e(vi, vk)
of a network that are enhanced by vm and vn respectively. Since both edges begin at vi they would be in
the same column of J2, however enhancer vm is represented by ki(x) = Kvm(xvm) ·Hvi(xvi), and enhancer
vn is represented by ki(x) = Kvn(xvn) · Hvi(xvi), because of this an additional J3 matrix and k2 would be
necessary.

Proposition 10. Consider system satisfying Assumption (D). For each vertex, if all of the outgoing
edges from the vertex are affected by at most one enhancer or inhibitor, then the system can always be
written as (5.2).

When all the edges leaving a vertex vi are affected by the same enhancer or inhibitor vm, then
ki(x) = Kvm(xvm) · Hvi(xvi), this allows the system to be written as (5.2).

Our main conjecture is the following.

Conjecture 1. For a metabolic network under Assumption (D) containing enhancers and inhibitors,
the following holds.

• An equilibrium with positive entries for arbitrary intakes can exist only if for all v ∈ V there is a
path to X such that all edges in the path have limxv→∞ He(xv) = +∞.

Under Assumption (D) with enhancers but no inhibitors the following hold.
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• There exists an equilibrium with positive entries for arbitrary constant intakes if and only if for
all v ∈ V there is a path to X such that all edges in the path have limxv→∞ He(xv) = +∞.

• If there exists an equilibrium with positive entries, and there is a path from all v ∈ V to X, then
the equilibrium is unique.

It is expected that under Assumption (D) there exists an equilibrium if several conditions are
verified. Here it is shown that the Reverse Cholesterol Transport network with the single enhancer
(indicated previously) has a unique equilibrium. In addition, simulations show that this equilibrium is
stable.

5.3. Unique equilibrium of the RCT network with a single enhancer

Consider the RCT network with enhancer, then the system can be written as (5.2) where J1( f ), J2( f ),
h(x), k(x) and φ matrices are given by

J1 =



− fe4 0 0 0 0 0
0 − fe5 0 0 0 0
0 0 − fe6 0 0 0
fe4 fe5 fe6 − fe8 0 0
0 0 0 0 − fe9 0
0 0 0 fe8 fe9 − fe10


, h =



Hv1(xv1)
Hv2(xv2)
Hv3(xv3)
Hv4(xv4)
Hv5(xv5)
Hv6(xv6)


,

J2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 − fe7 0 0
0 0 0 fe7 0 0
0 0 0 0 0 0


, k =



0
0
0

[Kv1(x1)] · Hv4(xv4)
0
0


, φ =



fe1

fe2

fe3

0
0
0


.

We assume that the Hvi functions satisfy the additional condition that

lim
xv→∞

He(xv) = +∞. (5.3)

Condition (5.3) is required so that we are able to satisfy equation (4.4).
In order for the system to be at equilibrium it must satisfy

0 = J1( f )h(x) + J2( f )k(x) + φ, (5.4)

which provides the following system of six equations,

− fe4 0 0 0 0 0
0 − fe5 0 0 0 0
0 0 − fe6 0 0 0
fe4 fe5 fe6 − fe8 0 0
0 0 0 0 − fe9 0
0 0 0 fe8 fe9 − fe10





Hv1(xv1)
Hv2(xv2)
Hv3(xv3)
Hv4(xv4)
Hv5(xv5)
Hv6(xv6)


=



0
0
0

− fe7 · (−[Kv1(xv1)Hv4(xv4)])
fe7 · (−[Kv1(xv1)Hv4(xv4)])

0


.

Immediately notice that the first equation gives − fv0 Hv1(xv1) = −φ1. Since Hv1 is invertible and fe4

and fe1 are constants, this gives xv1 = H−1
v1

( fe1
fe4

). Once the equilibrium value of xv1 has been found, the
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equilibrium of Kv1(xv1) is determined. Now let f ∗e7
= fe7 × Kv1(xv1). Now we rewrite the system as

J( f )h(x) + φ with,

J( f ) =



− fe4 0 0 0 0 0
0 − fe5 0 0 0 0
0 0 − fe6 0 0 0
fe4 fe5 fe6 − f ∗e7

− fe8 0 0
0 0 0 f ∗e7

− fe9 0
0 0 0 fe8 fe9 − fe10


, φ =



fe1

fe2

fe3

0
0
0


,



Hv1(xv1)
Hv2(xv2)
Hv3(xv3)
Hv4(xv4)
Hv5(xv5)
Hv6(xv6)


. (5.5)

This system satisfies the assumptions of Proposition 7 and we conclude that the RCT network has a
unique equilibrium.

To show that the equilibrium solution for the RCT network is stable, simulations were performed
with fixed randomized fluxes (sampled from a uniform distribution on interval [0,1]). Using the values
of the flows the equilibrium was calculated, and then compared with the metabolite levels reached
in simulation. The calculated equilibrium was reached in each simulation, suggesting that the RCT
network is asymptotically stable. Figure 6 shows the results of one such simulation.
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Figure 6. The trajectories of the values of metabolites over 50 hours. The simulation
results closely matched the calculated equilibrium values of x1 = 2.8081, x2 = 2.4811, x3 =

1.8517, x4 = 2.2699, x5 = 2.2943, x6 = 2.9901.

6. Drug discovery by control methods

Existence and uniqueness of equilibria for networks with enhancer and inhibitors (I-E), as explored
in Section 5, is the basis for studying drug discovery. Usually a drug affects a flux as an enhancer or
inhibitor, thus a new drug can be represented as a specific extended network and flux vector f , see
Figure 7. If networks including the drug treatment effect satisfy the assumptions for uniqueness and
stability of equilibria, then we can predict the asymptotic state of the metabolic network, which is the
unique equilibrium x f corresponding to the flux vector f . In other words, one may reduce the drug
discovery problem to an optimization one using the map f → x f and studying those f corresponding
to potential drugs. More precisely we proceed as follows:
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Figure 7. Reverse Cholesterol Transport Network with added enhancer or inhibitor
metabolite v7 which acts on edge e7.

Step 1. Consider the extended networks as in Figure 7 and study conditions on uniqueness and
stability of equilibria using the methods of previous sections. As shown in Section 5, Step 1 is not
trivial. Indeed, the I-E dynamics are non local, which means that the molecule affecting the specific
reaction is not necessarily close in the network topology (i.e., may belong to a far away component
of the network). For a given network G = (E,V), we consider the extended version G̃ = (Ẽ, Ṽ) as in
Figure 7. More precisely, we add a new vertex representing the drug molecule and being both an intake
and excretion vertex (assuming the drug is administered and there is a known excretion mechanism).
Moreover, we add an edge from the drug molecule to the affected flux edge e. We denote by fe,± the
flux vector corresponding to the extended network, where ± indicates the enhancer (+) or inhibitor (-)
expected effect. Notice that the source flux of the drug molecule depends on the scheduled treatment,
which may be given as pills, injections or others. For drug discovery purposes, we use an average flux,
while for simulations we may use a time-varying one.

Step 2. Study the map fe,± → x fe,± to minimize ‖x̄− x fe,±‖, where x̄ is a desired “healthy” state. Step
1 ensures that the map fe,± → x fe,± is well defined. Using the method of previous section, we can also
compute explicitly this map under suitable assumptions. The set of states R(x fe,±) that can be reached
using the admissible controls fe,± is called the reachable set, see [4]. In practice, we do not expect a
unique desired state to be defined, but rather a set of conditions which determine a desired or target
set X of metabolic states deemed healthy. A successful treatment prescribes the fluxes fe,± which will
drive the patient’s current state x to some state x̄∈X. If the reachable set and desired states are disjoint,
i.e., R(x fe,±) ∩ X = 0, then we look for the x fe,± realizing the minimum distance from X.

Step 3. Introduce dynamic optimization criteria on the trajectory to x fe,± to find the best fe,±.
Consider the problem to minimize

∫ T

0
L(t, x)dt where L measures the toxicity of the drug, see [6,7]. In

this case the dynamic of the drug is very important. It also becomes important to take the dosing
regimen into consideration, which means using a time varying flux for the drug intake.

In the remainder of this section we give more details on 1-2, while 3 is saved for future work. Let
us give an explicit example of our approach:

Example 6.1. Figure 7 shows the RCT network with an added vertex v7 which represents the drug.
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With the addition of the non-local enhancer or inhibitor the stoichiometric matrix of the RCT needs
an additional row and several additional columns, and the flux vector f has the additional components
f(v0,v7) , f(v7,vn+1). The new S (x) matrix is a concatenation given by S 1−3, S 4−10, and S 10−12, is shown
below,

S 1−3 =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


, S 10−12 =



0 0
0 0
0 0
0 0
0 0
0 0
1 −1


,

S 4−10 =



−H(xv1) 0 0 0 0 0 0
0 −H(xv2) 0 0 0 0 0
0 0 −H(xv3) 0 0 0 0

H(xv1) H(xv2) H(xv3) −Kv7(xv7) · H(xv4) −H(xv4) 0 0
0 0 0 Kv7(xv7) · H(xv4) 0 −H(xv5) 0
0 0 0 0 H(xv4) H(xv5) −H(xv6)
0 0 0 0 0 0 0


where kv7 : R −→ [0,+∞) is differentiable, monotonic and kv7(0) = 1. For the enhancer the function
kv7(xv7) = 1 +

xv7
xv7 +1 was used and for the inhibitor kv7(xv7) = 1 −

xv7
xv7 +1 . The addition of the drug allows

a control on the system based on the amount of drug used. It is assumed that the drug acts similarly to
an enhancer in that the mass of the drug will not be added to the network, but the drug will facilitate
the flow through the network by inhibiting or enhancing individual edges. Whether to use an inhibitor
or an enhancer drug, as well as how much drug to use depends on the initial conditions of the network.

0.4 0.6 0.8 1 1.2 1.4 1.6

Drug

2.5

3

3.5

4

4.5

Figure 8. Graph showing the control of the system using drug as an inhibitor and enhancer.
The x-axis of the graph shows the amount of inhibition or enhancement of edge e7 from the
drug, the value 1 corresponds with no control and is marked in red. The y-axis of the graph
is the ratio between total cholesterol and HDL cholesterol, a lower ratio is preferred. The red
box highlight the dot (1.00, 3.60) which represents the ratio with no control. The green box
highlight the dot (0.82, 3.28) represent the drug level to be used to match the ration obtained
by cutting in half the intakes.

For cholesterol, the healthy state depends mostly on the ratio between total cholesterol and HDL
cholesterol. The range of what is considered a healthy ratio depend on factors including age and gender,
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Figure 9. Graph showing the control of the system using the intakes as a control. The x-axis
of the graph shows the total amount of intake. The y-axis of the graph is the ratio between
total cholesterol and HDL cholesterol, a lower ratio is preferred. The red box highlight the
dot (1.48, 3.60) which represents the ratio with no control. The green box highlight the dot
(0.74, 3.28) which represents the ratio with half of the intakes. The magenta box highlight the
dot (2.96, 5.29) which represents the ratio with double intakes. The cyan pentagram highlight
the dot (3.20, 5.96) which represents the ratio with maximal intakes.

but in general a lower ratio of total cholesterol to HDL is preferred. In the case of the RCT network
the healthy state x fe,± depends on the value of v4 (representing HDL) and v6 (representing LDL), more
precisely the ratio v4+v6

v4
. We examine whether an inhibitor or enhancer better lowers this ratio. To do

this a set of fluxes were chosen from a uniform distribution so that each flux fi ∈ [0, 1]. The fluxes
f11 (corresponding to e11) and f12 (corresponding to e12) directly correspond to the drug and are treated
separately, with f12 being fixed at 1, and f11 being the control variable. The result is rather intuitive,
when the edge between v4 and v5 is enhanced the value of v4 is lowered and the ratio increases, and
when the edge is inhibited the value of v4 increases and the ratio diminishes as seen in Figure 8. From
the result it is clear that an inhibitor is the preferred type of drug for this example.
As explored in Section 4 the change in intakes also affects the state x fe,± . For comparison we also
explored the effect of the intakes on the ratio v4+v6

v4
. Even when the control of intake is possible, large

changes may not be realistic. Figure 9 shows how the ratio changes depending on the sum of the intake
values. Comparing the control of drug to the control of intakes (see green boxes) we see that the same
ratio is obtained by cutting in half intakes o using a drug that provides inhibition of the flow e7 to 0.8
of its original value.

We show another example, where each metabolite has a desired target.

Example 6.2. Here we use the same initial conditions and target state from the example in Section 4,
for a reminder Figure 4 shows an initial simulation with no control and highlights the desired
equilibrium. Next, simulations are performed to obtain the desired equilibrium using the added drug
from v7 as a control. Two different kv7 functions were used, one representing an enhancer drug and the
other an inhibitor drug. As in the previous example, the enhancer function kv7(xv7) = 1 +

xv7
xv7 +1 and

inhibitor function kv7(xv7) = 1 −
xv7

xv7 +1 were used.
In the simulations it is assumed that the value of xv7 can be easily controlled and kept at a constant

value, this would correspond to a dosing regimen having constant intake of drug. Simulations were
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Figure 10. Control of the system only using the drug as an enhancer. The colored points
show the desired equilibrium, while the lines show the actual trajectory of the metabolite
values. The simulated equilibrium is xdrug = (0.44, 0.27, 0.16, 0.15, 0.39, 0.51). The cost is
4.1782. The value of xv7 is 1, which corresponds to k(v7) = 1.5 enhance on edge e7.

performed with both enhancers and inhibitors to find the best possible value of xv7 for both types
of drug. When only drug control was used it was found that using an inhibitor did not lower the cost
between the optimized equilibrium and the desired equilibrium. Using an enhancer function the greater
the value of xv7 , the lower the cost. The upper bound of xv7 = 1 was chosen, which corresponds to
enhancement of the edge e7 to 1.5 times its usual value and reduces the total cost to 4.1782. The results
of this optimization are shown in Figure 10.

The control of the drug in this simulation has several limitations. For instance, only a single edge
was targeted, whereas in pharmacology it is likely that many different targets may be considered and
tested. Combining both methods, we control both the intakes and add a drug to act on e7. Using
optimized intakes, it was found that the inhibitor drug lowered the total cost between optimized
equilibrium and the desired equilibrium. The drugs’ optimal value was xv7 = 0.1765, which
corresponds to inhibition of the edge e7 to 0.85 times its usual value. The results are shown in Figure
11.
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Figure 11. Control of the system by controlling the intakes and using the drug as an inhibitor.
The simulated equilibrium is xintakes&drug = (2.85, 2.50, 0.09, 0.63, 0.92, 2.73). The cost is
0.2475. The value of xv7 is 0.1765, which corresponds to k(v7) = 0.85 enhancement of e7.

Three methods of control are performed; control using intakes (Section 4), control using drug, and
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Table 1. The total least-squares cost between obtained and target state of four different
control schemes of RCT are displayed. The figures corresponding to the full trajectories are
found in Figure 4, Figure 5, Figure 10, and Figure 11 respectively.

RCT systems Cost
With no controls 4.1828
Control with intakes 0.3022
Control with drugs 4.1782
Control with intakes & drugs 0.2475

finally control using both intakes and drug. The results of all three methods are summarized in Table
1. Controlling intakes rather than adding drug produced better results, although drug targeting of
additional edges may further improve the drug results.

7. Conclusion

LIFE methodology was constructed to provide a new approach to modeling metabolic networks.
Previously, in [22] the authors gave results which combined portions of several different theories and
re-purposed them to shed light on simulating metabolic networks. The focus was on simple LIFE
systems.

The intakes of a system are a reasonable target for control, and bio-molecules acting as inhibitors
and enhancers are important structure which contributes to the stability of natural networks and often
represent drug action. This work expanded the exploration of LIFE by investigating control problems:
Controlling the intakes and controlling the inhibitor or enhancers of a network. Moreover, control
methods are applied to a toy but significant example network of human metabolism called reverse
cholesterol transport. To control the ratio of total cholesterol over HDL, the action of a single inhibitor
was equivalent to a dramatic reduction of the intakes (cut by half). Our study on this network lead to
conjectures about general networks. Future work will include addressing these conjectures to expand
on LIFE methodology.
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