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Abstract: We consider a beam model representing the transverse deflections of a one dimensional
elastic structure immersed in an axial fluid flow. The model includes a nonlinear elastic restoring
force, with damping and non-conservative terms provided through the flow effects. Three different
configurations are considered: a clamped panel, a hinged panel, and a flag (a cantilever clamped at the
leading edge, free at the trailing edge). After providing the functional framework for the dynamics,
recent results on well-posedness and long-time behavior of the associated solutions are presented.
Having provided this theoretical context, in-depth numerical stability analyses follow, focusing both
on the onset of flow-induced instability (flutter), and qualitative properties of the post-flutter dynamics
across configurations. Modal approximations are utilized, as well as finite difference schemes.
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1. Introduction

In this treatment we provide a multifaceted numerical study—from the dynamical systems point of
view—for a simplified class of 1-D models representing the physical phenomenon known as
aeroelastic flutter. Flutter is fluid-structure (feedback) instability that occurs between elastic
displacements of a structure and responsive aerodynamic pressure changes at the flow-structure
interface [7, 10, 20]. The onset of flutter, for particular flow parameters, represents a bifurcation of the
system [24], and the qualitative properties of the post-flutter dynamics can be analyzed from an
infinite dimensional/control-theoretic point of view [10, 14, 25].

Beam (or plate) flutter is a topic of great interest in the engineering
literature [1, 7, 16, 17, 35, 41–43, 46], as well as, more recently, the mathematical
literature [10, 26, 32, 33] (and many references therein). Though there is a vast (mostly
engineering-oriented) literature on flow-structure instabilities, we provide a straight-forward analysis
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utilizing a 1-D structural model in multiple configurations of interest. In particular, we consider both
linear and nonlinear extensible beam models with piston-theoretic flow terms that, although
simplified, demonstrate good correspondence of the dynamics with what is empirically known about
the onset of flutter and post-flutter behaviors [1, 42]. We will demonstrate the remarkable ability of
these simplified equations to capture a robust set of un/stable behaviors associated with structures in
axial flow. We also provide modern, rigorous context for these numerical studies by discussing recent
theoretical results for the nonlinear dynamical systems associated to the PDE models given here.

Our studies primarily take the form of computational stability analyses for a beam distributed on
x ∈ [0, L], immersed in an inviscid potential flow of sufficiently high Mach number [1]; we consider
three beam configurations: clamped-clamped panel (C), hinged-hinged panel (H), and clamped-free
cantilever (CF). The fluid flows with steady velocity U ≥ 0 in the x-direction (along the length of
the beam), in contrast with so-called normal flow; thus, x = 0 is the leading edge, and x = L is the
trailing edge. The cantilever CF is taken to be a flag, clamped at the leading edge, and free at the
trailing edge.∗ The baseline linear structural model we consider is the standard Euler-Bernoulli beam,
though for the CF configuration we mention the so called Rayleigh beam (allowing for rotational
inertia).† Additionally, we consider extensible nonlinear beams in sense of Woinowsky-Krieger [45]—
see [27] for more details. For the flow theory, we employ the linear piston theory, which reduces the
flow dynamics to a simple non-conservative right hand side, written through the material derivative of
structural variable [1, 25].

As with all flutter problems [20, 35], and as we will demonstrate in the sequel, the onset of
instability can be studied via linear theory—typically as an eigenvalue problem (see e.g., [42, 43]).
Indeed, if one can model the dynamic load across the structure, the issue is to determine under what
conditions the non-conservative flow loading destabilizes structural (eigen)modes. However, to study
the qualitative properties of the dynamics in the post-flutter regime, analysis will require some
physical nonlinear restoring force to keep trajectories bounded in time [10, 14, 16, 17]. Indeed, for the
post-flutter dynamics of a given system, the theory of nonlinear dynamical systems is often used, e.g.,
compact global attractors [10, 12] as well as exponential attractors [9, 26].

1.1. Focus of this study and relation to previous literature

This study considers both pre- and post-flutter extensible, piston-theoretic beams in three
configurations, from two numerical points of view: (i) a “modal” analysis, and (ii) a traditional finite
difference scheme in space, both described in detail below.

We consider the effect of the piston-theoretic flow terms on the linear and nonlinear beam. We
offer a thorough study of each key parameter’s effect on stability, in the sense of: convergence to an
equilibrium, onset of dynamic instability, convergence to a limit cycle oscillation (or chaos), and
qualitative properties of non-transient dynamics. The analysis spans the three most physically relevant
configurations appearing in the literature, and unlike most previous work (e.g., [24, 28, 43]), we
provide comparisons of the dynamics across the configurations. The inclusion of structural
nonlinearity distinguishes this work from [28, 40, 42, 43], allowing us to discuss qualitative properties
of post-flutter behaviors. Our detailed parameter studies are done while bearing in mind the large
body of recent theoretical results, in particular those in [10, 26], and those in [27] for cantilevers with

∗A recent configuration of interest is the so called inverted flag, where the free edge leads; see [29, 39].
†See [4] for a nice description and comparison of four fundamental beam theories.
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piston-theoretic terms.
Our analysis is done in the spirit of the impressive (by now classical) references [24, 25] that study

a piston-theoretic 1-D, H panel, allowing for in-plane pre-stressing. These papers consider various
unstable behaviors, including divergence/buckling (static instability) and flutter (dynamic instability):
The earlier [24] performs a tremendously thorough ODE analysis for a truncated—low mode—system,
while [25] provides an infinite dimensional framework for discussions instability. We also mention the
classical reference [18], where the same pre-stressed panel model is reduced to a two degree of freedom
dynamical system via spectral methods, and considered as a deterministic example exhibiting chaos
(for sufficiently large flow and stressing parameters).

For more general studies of fluttering beams and plates (with extensive references), we point to [20].
In the discussion of piston theory, we mention the modern engineering references [42, 43], classic
engineering references [1, 7], and the recent mathematical-minded surveys [10]. Other mathematical
references addressing piston-theoretic models include [6, 11, 12, 26]. The article [26]: (i) performs
numerical simulations (which guide the simulations herein); (ii) theoretically addresses various classes
of attractors arising in the C beam/plate configuration. We follow much of that analysis there, in
particular tracking stability/instability of dynamics with respect to piston-theoretic terms, as well as
types and size of damping effects. The recent [27] follows the general theory/numerics approach
in [26], but focuses specifically on the CF configuration and the effect of rotational inertia in the beam.

1.2. Modeling and discussion

We now address the modeling pertinent to the theoretical discussion and numerical studies below.
Though there are various ways to consider flow-beam coupling, the simplest is to eliminate the

fluid dynamic variables altogether. Such a tack has the benefit of reducing stability questions to a
single, non-conservative dynamics. Additionally, the reduction eliminates moving boundary issues for
the flow (particularly for the cantilever). On the other hand, such a reduction is a dramatic
simplification of complex, multi-physics phenomena; however, focusing on the simple model allows
us to use robust mathematical theory and perform a thorough numerical study that can be exposited
straight-forwardly. (More sophisticated flow-structure models are certainly explored in the rigorous
mathematical literature [12–14, 44]).

Motivated by the bulk of engineering studies cited thus far, we consider beam dynamics interacting
with a potential flow. For high Mach numbers, the dynamic pressure on the surface of the structure,
given by p(x, t), can be approximated point-wise in x by the pressure on the head of a piston moving
through a column of fluid [1, 43]. The pressure can then be written in terms of the down-wash of
the fluid W = (∂t + U∂x)w, where w(x, t) is the transverse displacement of the beam, and U is the
unperturbed axial flow velocity. This results in a nonlinear expression [1] in W

p∗(x, t) = p0 − µ
[
1 +

wt + Uwx

U

]γ
, γ ≈ 1.4, (1.1)

which is then linearized to produce the so called linear piston theory used on the RHS of the beam:

p(x, t) = p0(x) − β[wt + Uwx], for U >
√

2. (1.2)

Above, p0(x) is a static pressure on the surface of the beam (for the numerical portion of this paper we
will take p0(x) = 0). The parameter β > 0 is a fluid density parameter that typically depends on U,
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though numerically we consider β decoupled from U.‡

For the structural model, we assume a slightly extensible beam [31]. Taking the standard Kirchhoff-
type hypotheses [4,30] leads to an Euler-Bernoulli beam, or the so called Rayleigh beam when allowing
for rotational inertia in beam filaments [4]. For nonlinear effects, we invoke a large deflection elasticity
model, taking into account quadratic terms in the strain-displacement relation [30]. From this, we
obtain the beam analog of the full von Karman plate equations [31], that take into account both in-
plane u and out-of-plane w (Lagrangian) dynamics. The principal nonlinear effect accounts for the
local effect of stretching on bending (thus requiring beam extensibility). Let (w,wt) correspond to the
out-of-axis (transverse) dynamics, and (u, ut) the in-axis (longitudinal) dynamics. Rotational inertia in
beam filaments is represented by α ≥ 0, and D1,D2 ≥ 0 are elastic coefficients.§

utt − D1

[
ux + 1

2 (wx)2
]

x
= 0

(1 − α∂2
x)wtt + D2∂

4
xw − D1

[
wx(ux + 1

2w2
x)
]

x
= p(x, t)

u(t = 0) = u0; ut(t = 0) = u1; w(t = 0) = w0; wt(t = 0) = w1

BC(u,w).

(1.3)

The boundary conditions BC(u,w) are determined by the configuration to be studied.

Remark 1. At present, all rigorous mathematical analyses of the conservative (1.3) model (or the 2-
D analog) require α > 0 [27, 31]. However, when considering purely transverse w dynamics of thin
beams and plates, α = 0 is almost always taken (see the discussion in [30, Ch.1]).

The beam model under consideration here is a simplification of the above system (1.3): take utt ≈ 0
and solve the resulting equation for u in terms of w, reducing the system to transverse dynamics. In
eliminating the u dynamics, we enforce the condition that u(L) is zero—an unproblematic assumption
for C and H, but certainly an imposition for CF (see Remark 3). A non-zero choice corresponds
(mathematically) to pre-stressing the beam at equilibrium. Completing the simplification, one obtains
the beam dynamics considered here:

(1 − α∂2
x)wtt + D∂4

xw + [b1 − b2||wx||
2]wxx = p0(x) − β[wt + Uwx] (1.4)

Above, we renamed or introduced various parameters: b1 ∈ R measures in-plane stretching (b1 < 0) or
compression (b1 > 0) at equilibrium (pre-stressing); b2 ≥ 0 gives the strength of the effect of stretching
on bending (i.e., the nonlinear restoring force). We delay a detailed discussion of the inertial parameter
α ≥ 0, as well as associated structural damping in the model, until the next section.

Remark 2. This model has been historically referred to as the Woinowsky-Krieger beam [34, 45], but
has also been referred to as Kirchhoff or Berger—the latter used owing to the plate equation of the same
nonlinear structure [11, 26]. Classic references [2, 3, 5, 15, 22] discuss well-posedness and long-time
behavior for extensible beams and Berger plates, typically with C or H boundary conditions.

The notation BC(w) will provide the boundary conditions corresponding to the pertinent
configuration (C, H, or CF) given mathematically in the next section. These are standard boundary
conditions, except in the CF case, when imposing u(L) ≈ 0 necessitates a new condition:

− α∂xwtt(L) + Dwxxx(L) + [b1 − b2||wx||
2]wx(L) = 0. (1.5)

‡See [43] for a discussion of the flow non-dimensionalization, and further discussion of characteristic parameter values.
§The coefficients α, D1, D2 are related as αD1 = D2 in the physical derivation of the beam equation—see [31].
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It is certainly noteworthy that the inherited boundary condition is nonlinear and nonlocal (but collapses
to the standard free boundary condition if b1 = b2 = 0). (1.5) is mathematically non-trivial, as well as
numerically challenging—[27] addresses this condition, and we elaborate on it below in Section 6.

Remark 3. For the cantilever, the restriction u(L) = const. throughout deflection is not entirely
physical, at least in the absence of external mechanical effects. Indeed, (1.5) implicitly confines the
free end of the beam to a fixed vertical line throughout deflection, thereby inducing stretching that
provides the nonlinear restoring force. For a post-flutter cantilever, free end displacements can be
quite large, with non-trivial inertial effects [21, 41]. However, in using piston theory we assume larger
values of U, known to reduce the magnitude of u(L), thereby improving the nonlinear structural
model’s viability.

With this in mind, a “good” cantilever flutter model should allow for in-plane displacements, and
should not primarily consider extensible effects. However, the added complexity of the nonlinearly
coupled u/w system in (1.3) or the recent inextensible beam models [21, 38, 41, 46] dramatically
increases computational and analytical difficulties. Rigorous results for such models are few.

In summary: Our studies here provide a thorough analysis of simple, nonlinear fluttering beams,
across various configurations. We acknowledge that the model considered here is greatly simplified:
(i) it is only 1-D, not accounting for in-axis dynamics; (ii) nonlinear effects studied here are strictly
due to extensibility, and we do not consider more sophisticated nonlinear models; (iii) we do not fully
model flow dynamics, instead relying on piston-theoretic simplifications. Yet, even this simplified
model yields interesting behaviors worthy of rigorous study, complemented by a thorough numerical
examination done from a dynamical systems point of view. Our conclusions verify empirical
conclusions from the engineering literature, as well as provide validation for recent abstract (infinite
dimensional) results for beams and plates [26, 27]. Our studies also serve as a baseline for future
studies of more complex models, testing conjectured similarities between these dynamics in certain
regimes.

2. PDE model and configurations

Recalling from Section 1.2: D > 0 is the elastic stiffness parameter, while the b1 ∈ R corresponds to
in-axis forces and b2 ≥ 0 to the nonlinear restoring force; the function p0(x) represents static pressure
on the surface of the beam, with flow parameters β > 0 (density) and U ≥ 0 (unperturbed flow velocity).
The parameter k0 ≥ 0 gives the frictional (or weak) damping coefficient, while k1 ≥ 0 measures square
root type damping (discussed in Section 2.1).

We distinguish between panel and cantilever configurations below, with a key distinction being the
allowance of rotational inertia. For the panel configurations, C and H, the dynamics are given by:


wtt + D∂4

xw + k0wt + [b1 − b2||wx||
2]wxx = p(x, t)

BC(w) =

w(0) = wx(0) = w(L) = wx(L) = 0 for config. C

w(0) = wxx(0) = w(L) = wxx(L) = 0 for config. H

(2.1)
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For the cantilever configuration CF, we allow α ≥ 0:
[1 − α∂2

x]wtt + D∂4
xw + [k0 − k1∂

2
x]wt + [b1 − b2||wx||

2]wxx = p(x, t)
w(0) = wx(0) = 0, wxx(L) = 0,
−α∂xwtt(L) + D∂3

xw(L) − k1∂xwt(L) + [b1 − b2||wx||
2]wx(L) = 0

(2.2)

In both cases above, appropriate initial conditions are specified: w(t = 0) = w0, wt(t = 0) = w1, and
we take p(x, t) = p0(x) − β[wt + Uwx].

Our numerical studies below will compare dynamics across all three configurations holding α = 0;
however, in the discussion of theoretical results, we will address technical issues associated with inertia
and damping specific to the CF configuration, and thus in said case we allow for α ≥ 0.

Remark 4. Though the clamped conditions have nice mathematical properties (e.g., H2
0 displacements

and preservation of regularity via extension by zero), the hinged boundary conditions are the easiest to
work with numerically because the in vacuo modes are purely sinusoidal. Including a clamped or free
condition gives rise to hyperbolic modes, as well as eigenvalues obtained via nontrivial transcendental
equations. Additionally, the free end yields the aforementioned complications. On the other hand, we
will see that it is easiest to destabilize the CF configuration, followed by H, with the C beam most
resistant to the flutter instability.

2.1. Rotational inertia and damping

Standard aeroelasticity literature [16–18, 43] omits structural rotational inertia. A scaling argument
is typically invoked for “thin” structures, yielding α = 0 [4, 30]. Mathematically, the presence of
α > 0 is regularizing and nontrivial: wt ∈ H1 [12]. Thus, α > 0 is helpful, so results with α = 0 are
considered stronger [11–13, 44]. As such, the focus of the numerical study here is on α = 0. For the
CF configuration the theoretical situation surrounding α is more complicated. The recent work [27]
fully explores well-posedness and long-time behavior (global attractors [12]) in the CF configurations.
We present these results below in Section 3.

To qualitatively study post-flutter dynamics, we here consider a simple nonlinear restoring
force [34, 45] described above. In the panel configurations C and H, the scalar nonlinearity can be
treated as a locally Lipschitz perturbation, and the nonlinearity introduces no boundary terms. In the
CF configuration the nonlinearity interacts with the free boundary condition (1.5), and non-trivial
boundary traces appear in the analysis of trajectory differences. These boundary terms are only
controlled with α > 0 (or by introducing boundary damping [34] or other velocity smoothing).

Another interesting issue pertains to the strength of appropriate structural damping mechanisms as
a function of α ≥ 0. The term k0 measures the strength of standard weak structural damping. For α = 0,
this is an appropriate strength of damping for stabilization; when α > 0, it is clear from the standard
energy expression (see Section 2.3) that one requires k1 > 0 in order for the damping to control of
kinetic energies. (Interesting spectral questions emerge for the less natural cases of α = 0 with k1 > 0
and k0 = 0, as well as α > 0 with k1 = 0 and k0 large—addressed below.) When k1 > 0, we say that the
damping is of the “square root” type, as ∂2

x is formally half the order of the principal stress operator
B = ∂4

x [37]. This concept can be generalized to fractional powers [B]θwt for θ ∈ [0, 1]—Kelvin-Voigt
damping occurs at θ = 1; see the more detailed discussion in [27], and references [8, 23, 36].
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Lastly, we point out the clear disparity between the inclusion of inertia α > 0, and the aerodynamic
damping provided from the flow itself in (1.2): Piston theory provides damping of the form βwt (with
dissipative sign), yet, if one includes inertia, this “natural” weak damping is not adequate to stabilize
energies. Thus, we have a mathematical incentive to take α = 0 if we wish to utilize the flow-provided
damping to help bound or stabilize trajectories.

2.2. Notation

For a given domain D, its associated L2(D) norm will be denoted as || · ||D (or simply || · || when the
context is clear). Inner products in L2(D) are written (·, ·)D (or simply (·, ·) when the context is clear).
We will also denote pertinent duality pairings as 〈·, ·〉X×X′ , for a given Hilbert space X. The space H s(D)
will denote the Sobolev space of order s, defined on a domain D, and H s

0(D) denotes the closure of
C∞0 (D) in the H s(D)-norm ‖ · ‖Hs(D) or ‖ · ‖s.

2.3. Energies and state space

The natural energy for linear beam dynamics is given by the sum of the potential and kinetic energies

E(t) = Eα(w,wt) =
1
2

{
D||wxx(t)||2 + ||wt(t)||2 + α||∂xwt||

2
}
.

Enforcing that α = 0 for H and C configurations, and that α ≥ 0 for CF, we have that the dynamics
evolve in the state spaceH , whose definition depends on the configuration:

H =



HC = H2
0(0, L) × L2(0, L)

HH = (H2 ∩ H1
0)(0, L) × L2(0, L)

HCF =

H2
∗ (0, L) × L2(0, L) for α = 0

H2
∗ (0, L) × H1(0, L) for α > 0

, (2.3)

where
H2
∗ (0, L) ≡ {w ∈ H2(0, L) : w = wx = 0 for x = 0}.

Owing to the conditional structure of the state space (depending on the configuration and, for CF,
the value of α) we opt for a compact notation, using

H =


H2

0(0, L) in configuration C
(H2 ∩ H1

0)(0, L) in configuration H
H2
∗ (0, L) in configuration CF

, (2.4)

with corresponding inner-product (u,w)H ≡ D(uxx,wxx) (equivalent to the standard H2(0, L) inner
product), and

L2
α ≡

L2(0, L) for α = 0
H1(0, L) for α > 0

, ||w||2L2
α

= α||wx||
2 + ||w||2.

We can then cleanly write the state space across all cases as

H = H × L2
α,
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with a clear meaning in a given context. We will also critically utilize the following nonlinear energies
associated to equations in (2.1) and (2.2):

E(t) = E(w,wt) = E(t) + Π(w(t)), Ê(t) = E(t) +
b2

4
||∇w(t)||4,

where the Π term represents the non-dissipative and nonlinear portion of the energy:

Π(w) =
1
4

(
b2||∇w||4 − 2b1||∇w||2

)
− (p0,w). (2.5)

As in the general case [12, Lemma 1.5.4], we can see that for any w ∈ H, 0 < η ≤ 2 and ε > 0,

||w||22−η ≤ ε
[
||wxx(t)||2 + ||wx(t)||4

]
+ M(ε). (2.6)

This yields the crucial fact that the positive nonlinear energy is dominant:

c0Ê(w,wt) −C ≤ E(w,wt) ≤ c1Ê(w,wt) + C, (2.7)

for some c0, c1,C > 0 depending on b1, b2.

3. Theory and discussion

3.1. Solutions

We now discuss the pertinent notions of solution. We will distinguish between: (i) panel
configurations (C and H), for which we consider only α = 0, and (ii) the cantilever CF, where we
admit α ≥ 0.

• Weak solutions satisfy a variational formulation of (2.1). One of the key features of such solutions
is that wtt is interpreted only distributionally.
• Strong solutions are weak solutions possessing additional regularity that permits a classical (point-

wise) interpretation of the evolution (2.1). For CF with α > 0, boundary conditions are still
interpreted weakly due to subtleties associated with inertial terms. (See [27] or [12].)
• Generalized solutions are C([0,T ],H) limits of strong solutions (when they exist). These are

weak solutions [11, 12], but they admit smooth approximation, and thus inherit some properties
of strong solutions holding with respect to the topology ofH .

Precise definitions are now given. For weak solutions, the variational form of the problem is the same
for all three C, H, CF, with the spaceH encapsulating the configuration and α ≥ 0.

Definition 3.1 (Weak Solutions). We say w ∈ H1(0,T ; L2(0, L)) is a weak solution on [0,T ] if:

(w,wt) ∈ L∞(0,T ;H) ∩Cw([0,T ];H)

and, for every φ ∈ H, we have

d
dt

[
(wt, φ) + α(wtx, φx)

]
+ (w, φ)H + (b2‖wx‖

2 − b1)(wx, φx)

+ k0(wt, φ) + k1(wtx, φx) = (p0, φ) − β(wt, φ) − βU(wx, φ),

where d/dt is taken in the sense ofD′(0,T ). Moreover, for any (χ, ψ) ∈ H

(w, χ)H

∣∣∣
t→0+ = (w0, χ)H, (wt, ψ)

∣∣∣
t→0+ = (w1, ψ). (3.1)
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Definition 3.2 (Panel strong solution). For C or H configurations, a weak solution to (2.1) is strong if
it possesses the regularity: (w,wt) ∈ L∞(0,T ; H4(0, L) × H) and d+

dt+ wt is right-continuous.

More regular cantilever solutions are considered, but only for α > 0.

Definition 3.3 (Cantilever strong solution). For the CF configuration, we say a weak solution to (2.2)
with α > 0 is strong if it possesses the regularity: w ∈ L∞(0,T ; W), where

W ≡ {v ∈ (H2
∗ ∩ H3)(0, L) : vxx(L) = 0}, (3.2)

and wt ∈ L∞(0,T ; H2
∗ (0, L)). In addition d+

dt+ wt is right-continuous and
L∞(0,T ; H1

∗ (0, L)) with H1
∗ (0, L) ≡ {w ∈ H1(0, L) : w(0) = 0}. (Such solutions satisfy the third-order

boundary condition weakly—see [27].)

Finally, the most convenient notion of solutions will be those induced by a semigroup flow:

Definition 3.4 (Semigroup well-posedness). We say (2.1) or (2.2) is semigroup well-posed if there is a
family of locally Lipschitz operators t 7→ S(t) onH , such that: For any y0 = (w0,w1) ∈ H the function
t 7→ S (t)y0 (i) is in C([0,T ];H), (ii) is a weak solution to (2.1), and (iii) is a strong C([0,T ];H) limit
of strong solutions to (2.1) on every [0,T ], T > 0. In particular, solutions are unique and depend
continuously in C([0,T ];H) on the initial data from H . Thus t 7→ S (t)y0 is a generalized solution.
Furthermore, there exists some subset of H , denoted D(A) (with A the nonlinear generator of S(t)),
invariant under the flow, such that all solutions originating there are strong solutions.

3.2. Well-posedness

For all results below D, k0, β,U ≥ 0. We employ the energetic notations from Section 2.3.

Theorem 3.5 (Linear semigroup well-posedness). For configurations C and H, the linear problem in
(2.1) (with b1 = b2 = 0) is semigroup well-posed on HC or HH (resp.). Generalized (and strong)
solutions obey the energy identity for all t ≥ 0:

E(t) + (k0 + β)
∫ t

0
||wt(τ)||2dτ

= E(0) +

∫ t

0
(p0,wt)dτ − βU

∫ t

0

∫ L

0
[wx(τ)][wt(τ)]dxdτ.

(3.3)

Similarly, for configuration CF with α, k1 ≥ 0, the linear problem in (2.2) (with b1 = b2 = 0) is
semigroup well-posed on HCF. Generalized (and strong) solutions obey the energy identity for all
t ≥ 0:

Eα(t) +

∫ t

0

[
(k0 + β)||wt(τ)||2 + k1||∂xwt||

2
]
dτ

= Eα(0) +

∫ t

0
(p0,wt)dτ − βU

∫ t

0

∫ L

0
[wx(τ)][wt(τ)]dxdτ.

(3.4)

For such a linear problem, these results are well-established.
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Theorem 3.6 (Nonlinear semigroup well-posedness). Let b1 ∈ R and b2 > 0. For configurations C
and H, the problem in (2.1) is semigroup well-posed on HC or HH (resp.). Generalized (and strong)
solutions obey the energy identity for all t ≥ 0:

E(t) + (k0 + β)
∫ t

0
||wt(τ)||2dτ = E(0) − βU

∫ t

0

∫ L

0
[wx(τ)][wt(τ)]dxdτ. (3.5)

Similarly, for configuration CF with α > 0 and k1 ≥ 0, the problem in (2.2) is (nonlinear) semigroup
well-posed onHCF. Generalized (and strong) solutions obey the energy identity for all t ≥ 0:

Eα(t) +

∫ t

0

[
(k0 + β)||wt(τ)||2 + k1||∂xwt||

2
]
dτ

= Eα(0) − βU
∫ t

0

∫ L

0
[wx(τ)][wt(τ)]dxdτ.

(3.6)

In the case of nonlinear clamped and hinged beams, the well-posedness has been known for
sometime; consult the abstract theory in [12] and note the classical references (for both 1-D Krieger
and 2-D Berger nonlinearities) [2,3,5,15,22]. In the case of the cantilevered beam CF with α ≥ 0, see
the recent work [27] (which includes discussion of other cantilevered beams [34]).

The final case not addressed by the previous theorem is the nonlinear cantilever in the absence of
rotational inertia. For this case [27] provides only an existence result.

Theorem 3.7. Let b1 ∈ R with b2 ≥ 0 and k1 ≥ 0. For (2.2) with α = 0 in the CF configuration, weak
solutions exist on [0,T ] for any T > 0.

Without boundary damping (e.g., [34]), existence of strong solutions for CF with α = 0 is open.

3.3. Long-time behavior of trajectories

We can obtain the following global-in-time stability bounds for all generalized solution to (2.1) or
(2.2) in the presence of piston-theoretic terms, β ≥ 0 and U ≥ 0:

Theorem 3.8. Let D > 0 with β > 0 and U ≥ 0. In configurations C and H, we have the following
global in time bound for generalized solutions to (2.1) for any amount of weak damping k0 ≥ 0:

sup
t≥0

{
||wxx(t)||2 + ||wt||

2
}
≤ C. (3.7)

In the case of configuration CF, with α > 0 (rotational inertia present) and k1 > 0 (active square root
damping), we have

sup
t≥0

{
||wxx(t)||2 + ||wt||

2 + α||∂xwt||
2
}
≤ C. (3.8)

Remark 5. Formally, CF trajectories for (2.2) with no inertia, α = 0, do obey a global-in-time bound
of the form (3.7), but the requisite multipliers (and associated integration by parts) are not permissible
for the weak solutions guaranteed by Theorem 3.7.

These global bounds are nontrivial, owing to the fact that the dynamics are non-gradient, as reflected
by the energy-building terms under temporal integration in (3.5) and (3.6). They follow from the
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estimates in (2.6)–(2.7), taken together with a Lyapunov argument, and rely critically on the “good”
structure of Π, reflected by the control of lower order terms in (2.6). In fact, more is true. For a
dynamical system, a compact global attractor is a uniformly attracting (in the sense of theH topology),
fully time-invariant set [12].

Theorem 3.9. Let D > 0 with β > 0 and U ≥ 0. Also let b2 > 0 with b1 ∈ R.
For configurations C and H with k0 ≥ 0 the dynamical system (S (t),H) generated by generalized

solution to (2.1) has a smooth and finite dimensional compact global attractor.
For configurations CF with α, k1 > 0 and k0 ≥ 0, the dynamical system

(S α(t),HCF) generated by generalized solution to (2.2) has a finite dimensional compact global
attractor.

In the above theorem, smooth is taken to mean that trajectories on the attractor have (w,wt) ∈
H ∩

(
H4(0, L)×H

)
, where H indicates the configuration-dependent displacement space from (2.4); the

attractor is bounded in this topology. Finite dimensional refers the fractal dimension of the attractor—
see [12] for more details.

In this study, the attractor “contains” the essential post-flutter dynamics for (2.1) or (2.2). The
aeroelastic model is non-conservative, thus the associated dynamical system has no strict Lyapunov
function [12]. In this case the global attractor is not characterized as the unstable manifold of the
equilibria set, so to obtain a compact global attractor one must show both asymptotic compactness and
ultimately dissipativity of the dynamical system [12]. Since the infinite dimensional dynamical system
associated to solutions has the property that trajectories converge—in a uniform sense—to an attractor,
we effectively reduce the analysis of the dynamics to a “nice” finite dimensional set.

The existence and properties of the attractor for panel configurations are shown in [26] (though
earlier proofs have certainly appeared for these configurations). This work also discusses the
application of a recent tool: the theory of quasi-stability [9, 12]. The theory provides the existence of
so called exponential attractors [9, 12]. A generalized fractal exponential attractor for the dynamics
(S (t),H) is a forward invariant compact set Aexp ⊂ H , with finite fractal dimension (possibly in a
weaker topology), that attracts bounded sets with uniform exponential rate. We remove the word
“generalized” if the fractal dimension of Aexp is finite inH .

Theorem 3.10. Let D > 0 with β > 0 and U ≥ 0. Also let b2 > 0 with b1 ∈ R.
For configurations C and H with k0 ≥ 0 the dynamical system (S (t),H) generated by generalized

solution to (2.1) has a generalized fractal exponential attractor.
If the imposed damping is sufficiently large, i.e., k0 > k∗(U, β, bi,D, L, β) > 0, the dynamical system

(S (t),H) generated by generalized solutions to (2.1) has a fractal exponential attractor.

In the cantilever configuration CF, the result on the existence of a compact global attractor is much
more recent [27].

4. Overview of numerical studies

Our numerical investigations of the piston-theoretic beam are multi-faceted; we seek to determine
critical parameter values that lead to the onset of instability, and to understand essential qualitative
properties of post-flutter dynamics. To be consistent with comparable engineering studies, and to be
consistent across configurations, we neglect rotational inertia here.
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In all of our experiments, we focus on the case α = 0 (and thus k1 = 0).

We also take the static pressure p0(x) ≡ 0. In Section 5 we use physical parameters to emphasize the
predictive capabilities of our methods. In Section 6, our primary interest is the qualitative properties of
post-flutter nonlinear dynamics, and, as such, we choose mathematically convenient parameter values.

We utilize two main methods for these investigations: modal analysis (described in detail in Section
5.1) and finite differences. To analyze the onset of instabilities in the linear model, we use modal
analysis as a predictive tool for finding critical parameters, and we use finite difference approximations
to determine if these predictions are in agreement with the dynamics. Subsequently in Section 6, we
perform finite difference simulations of the nonlinear model to investigate the post-flutter regime.

Finite difference simulations are accomplished via standard second-order difference formulas for
spatial derivatives, with ghost values beyond the spatial boundary as necessary for the various
boundary configurations. Temporal integration is accomplished using a stiff ODE solver. Our
simulations utilize three basic types of initial data (configuration dependent): (i) modal initial
displacement, (ii) polynomial initial displacement, and (iii) elementary initial velocity. Let us denote
x̂ = x/L.

• [nth Mode ID] For (i), we consider the in-vacuo mode shapes of a given configuration (detailed
below in Section 5.1) as an initial displacement, with zero initial velocity profile. We restrict to
mode numbers n = 1, ..., 5. For instance, in the case of CF conditions we have:

w(0, x̂) = s2(x̂) = [cos(k2 x̂) − cosh(k2 x̂)] − C2[sin(k2 x̂) − sinh(k2 x̂)], wt(0, x̂) = 0,

where k2 ≈ 4.6941 is the second Euler-Bernoulli cantilevered mode number and C2 ≈ 1.0185.
• [Polynomial ID] For (ii), with the C and CF configurations, we consider a polynomial of minimal

degree satisfying the boundary conditions for the respective configuration in the experiment. For
CF, we have

w(0, x̂) = −4̂x5 + 15x̂4 − 20x̂3 + 10x̂2, wt(0, x̂) = 0.

We again take the initial velocity profile to be zero.
• [Elementary IV] For (iii), we take the initial displacement to be identically zero, and consider a

simple initial velocity profile. In the case of C or H, we will take a symmetric quadratic function
on [0, L]; for CF we simply take a linear function of positive slope on [0, L] vanishing at x = 0:

w(0, x̂) = 0, wt(0, x̂) = x̂.

In the sections to follow, we present our numerical results. In some sections we compare across
boundary configurations, but for qualitative studies we often choose a single, particularly illustrative
example in a given configuration. In addition, we sometimes consider how qualitative aspects of the
simulations may vary across differing initial conditions. Several visualizations involve energy plots
(as a function of time), as well as plots of midpoint displacements (in time) for panel (C or H)
configurations, or free end displacements for the cantilever (CF) configuration.

5. Linear computational analysis: Flutter prediction

In this section we analyze the onset problem for flow-induced instability: namely, what
combinations of parameters of interest—U, β for the flow, k0, L for the beam—yield stable or unstable
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asymptotic-in-time dynamics. More specifically, our studies in this section are concerned with
convergence to stationary states or unbounded growth of displacements as t → ∞ (Note: when
b2 = 0, without the nonlinear restoring force, unstable trajectories will grow unboundedly).

For the readers convenience, we restate the system studied in this section here:

wtt + D∂4
xw + k0wt = −β[wt + Uwx]

w(t = 0) = w0; wt(t = 0) = w1

BC(w) =


w(0) = wx(0) = w(L) = wx(L) = 0 for config. C

w(0) = wxx(0) = w(L) = wxx(L) = 0 for config. H
w(0) = wx(0) = wxx(L) = wxxx(L) = 0 for config. CF

. (5.1)

For convenience, let us define the damping parameter k ≡ k0 + β, which consists of both imposed
damping k0 ≥ 0, as well as piston-theoretic (flow) damping β > 0.

The effects of the initial conditions are conservative (which is to say that, for β = k0 = 0, the energy
is conserved throughout deflection). With no imposed damping (k0 = 0), the transient dynamics may
or may not damp out; in this case, the only damping in the problem, then, is contributed by the flow in
the form of βwt. Additionally, with U > 0, the non-dissipative piston term −βUwx on the RHS of (2.1)
may induce instability (and thus oscillatory behavior in the linear energy E(t)). In this sense, stability
can be seen as competition between the effect of the damping in βwt bleeding energy out of the system,
and the non-dissipative flow effect Uwx inputting flow energy. As U is increased, the effect of the flow
becomes more pronounced and the location of the spectrum is shifted. For all other parameters fixed
(including β), a certain value Ucrit represents a bifurcation, and the dynamics become unstable and
exponential growth (in time) of the solution is observed. With imposed damping in the model (k0 > 0
and L, β fixed), there exists a Ucrit(k0) such that for U < Ucrit, the transient dynamics are damped out,
and for U > Ucrit instability will still be observed. We can think of Ucrit as an increasing function of
the damping k0 in the problem.

5.1. Modal analysis

Modal analysis, often referred to in engineering literature, can in fact have various meanings.
Generally, it refers to a Galerkin method whereby solutions to a structural or fluid-structural problem
are approximated by in vacuo structural eigenfunctions (“modes”) (e.g., [16, 17, 21, 28, 42, 43]). Since
the eigenfunctions of standard elasticity operators form a basis for the state space, a good
well-posedness result for the full system justifies this type of approximation. This type of
approximation can be dynamic, as in reducing an evolutionary PDE to a finite dimensional system of
ODEs by truncation, or it can be stationary, reducing the problem of dynamic instability (for linear
dynamics) to an algebraic equation. The latter is what we utilize and describe in detail.

5.1.1. Spatial modes and eigenvalues

Critical to any modal analysis are the in vacuo modes (eigenfunctions) associated with each
configuration: C, H, CF. Since we are working with the Euler-Bernoulli beam (α = 0) for our
simulations, the modes and associated eigenvalues can be computed in an elementary way. These
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functions are complete and orthonormal in L2(0, L), as well as complete and orthogonal in H2(0, L)
(with respect to (·, ·)H, where H encodes the boundary conditions (5.1)).

For the in vacuo dynamics, we have: wtt + D∂4
xw = 0. Separating variables yields the dispersion

relation: κ4
n =

ω2
n

D
, where we have labeled temporal frequencies ωn and associated mode numbers κn,

n = 1, 2, .... The spatial problem is then ∂4
xs + κ4

n s = 0, giving the fundamental set¶:{
cos(κnx) + cosh(κnx), cos(κnx) − cosh(κnx), sin(κnx) + sinh(κnx), sin(κnx) − sinh(κnx)

}
.

So the modes in any configuration are linear combinations of the above, determined by invoking the
boundary conditions; the boundary conditions also provide the specific values (κn, ωn).

Table 1. Mode shapes and characteristic values for the various boundary configurations. In
each case Cn is obtained from the characteristic equation.

Config. Mode Shape Char. Equation κn

H sin(κnx) sin(κnL) = 0 πn
C cos(κnx) − cosh(κnx) + Cn(sin(κnx) − sinh(κnx)) cos(κnL) cosh(κnL) = 1 Table 2
CF cos(κnx) − cosh(κnx) + Cn(sin(κnx) − sinh(κnx)) cos(κnL) cosh(κnL) = −1 Table 2

For C and CF in Table 1, the mode numbers κnL are obtained by numerically solving the
characteristic equation. We have

C : Cn =
−cn

(
cos(κnL) − cosh(κnL)

)
sin(κnL) − sinh(κnL)

CF : Cn =
−cn

(
cos(κnL) + cosh(κnL)

)
sin(κnL) + sinh(κnL)

.

The cn values are chosen to normalize the functions in the L2(0, L) sense.

5.1.2. Reduction to perturbed eigenvalue problem

Let us consider the Galerkin procedure for the full linear beam equation:

wtt + Dwxxxx + kwt = −βUwx (5.2)

on (0, L), with boundary conditions according to the configuration being studied; recall that k = k0 +

β. We view the terms involving β,U, k0 as perturbations and expand the solution via the in vacuo
mode functions {s j} as w(t, x) =

∑
q j(t)s j(x). The {q j} represent smooth, time-dependent coefficients.

Plugging this representation into the (5.2), multiplying by sn, and integrating over (0, L) for each n we
obtain (summing over m):[

qm,tt(t) + (β + k0)qm,t(t) + Dk4
mqm(t)

]
(sm, sn) + βU(∂xsm, sn)qm(t) = 0, (5.3)

Orthonormality of the eigenfunctions can be invoked to produce diagonal terms, whereas the terms
scaled by βU(∂xsm, sn) are off-diagonal and give rise to the instability of the ODE system.

¶This choice of linear combinations is particularly convenient.
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Remark 6. To obtain a spectral simulation for the dynamics, one could simply truncate the system
above for all 1 < m, n < N and solve the resulting N × N system for the unknown coefficients {q j(t)},

yielding the approximate solution wN(x, t) =

N∑
j=1

q j(t)s j(x).

To simply determine the stability of the problem as a function of the given parameters, we invoke a
standard engineering ansatz [20, 43] (and references therein): assume simple harmonic motion in time
of the beam according to some dominant (perturbed) frequency ω̃; we allow possible contribution from
all functions sn for n = 1, 2, ...,N via coefficients labeled αn:

w(t, x) ≈ e−iω̃t
N∑

j=1

α js j(x), (5.4)

where N is a chosen dimensional truncation. We repeat by multiplying by mode functions sn, and then
integration produces an eigenvalue problem in the perturbed frequency ω̃. With the off-diagonal entries
(∂xsm, sn) in hand (for 1 ≤ m, n ≤ N with m , n), compute diagonal terms

Ω j(ω̃) = −ω̃2 − i(β + k0)ω̃ + Dk4
j , j = 1, 2, ...,N,

we create the matrix for 1 ≤ n,m ≤ N:

A = A(ω̃) = [amn], with amn =

Ωm for m = n

βU(∂xsn, sm) for m , n.
(5.5)

As an example, for the configuration H, the entries in the matrix can be computed explicitly. Setting
N = 4 yields the linear system

Ω1
−8βU

3L
0

−16βU
15L

8βU
3L

Ω2
−24βU

5L
0

0
24βU

5L
Ω3

−48βU
7L

16βU
15L

0
48βU

7L
Ω4





α1

α2

α3

α4


= 0. (5.6)

For chosen parameter values of D, k0, β,U, L, we enforce the zero determinant condition for non-trivial
solutions in ω̃:

det
(
A(ω̃)

)
= 0,

and solve for ω̃ = [ω̃1, ..., ω̃N]T . The associated complex roots allows us to track the response of the
natural modes to the perturbation terms—damping, (k0 + β)wt and non-dissipative, βUwx.

• If Im(ω̃ j) > 0, then we call the configuration unstable, and the associated linear dynamics should
exhibit exponential growth in time with rate Im(ω̃ j) and frequency Re(ω̃ j).
• Otherwise, the linear dynamics remain bounded in time.
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Obviously, this method of determining stability has associated error—first, owing to the simple
harmonic motion ansatz, and secondly, because of truncation. Testing the conclusions drawn from this
type of modal stability determination against a full numerical scheme is one of the main numerical
points of this consideration.

Remark 7. The emergence of an unstable perturbed eigenvalue (associated to Im(ω̃)) is precisely
what is meant by self-excitation instability, which is commonly called flutter. In this way, we note that
predicting the onset of flutter is linear. As mentioned above, for one to “observe” (numerically) the
post-onset/post-flutter dynamics, a nonlinear elastic restoring force must be incorporated into the model
to keep solutions bounded in time (as the underlying linear dynamics are driven by the aforementioned
exponential growth).

Remark 8. From a practical point of view, one can make use of any reasonable N for modal
calculations involving the H configuration—these mode functions are purely sinusoidal. In modal
calculations involving CF or C, we must first solve for the kn, which is more numerically unstable for
larger n. Additionally, these approximate kn are used in the numerical integration of cosh and sinh
functions with large arguments, further propagating error. Therefore, for N ≥ 7 for C and CF, modal
calculations are cumbersome and possibly inaccurate. Engineers have devised clever approximations
of the mode functions to circumvent this issue [19], though it does not concern us too much here as
flutter is considered a “low-mode” phenomenon. As evidenced below, modal approximations perform
quite well, even for N = 6.

5.2. Prediction of the onset of instabilities

We now predict the onset of instability for the model (5.1) as the U parameter increases, with other
parameter values fixed and the nonlinear parameter b2 = 0. Indeed, there exists some critical flow
speed value, Ucrit, beyond which the system exhibits exponential growth in time.

In this section, we have adopted the non-dimensionalization procedure utilized in [42]. The
parameters chosen here represent physical values for the prediction of the flutter phenomenon.
Accordingly, we utilize these as the fixed baseline values throughout this section:

• D = 23.9 (fixed across all simulations),
• L = 300 (allowed to vary in the range 100 ≤ L ≤ 500,
• β = 1.2 · 10−4 (allowed to vary in the range 10−5 ≤ β ≤ 10−2).

When employing finite difference simulations of (5.1), the task of identifying Ucrit usually requires
several batches of simulations, usually in some bracketing approach. In general this is not practical,
as qualitative observations of flutter are somewhat subjective and may require excessive long-time
simulations (for instance, accurately determining Ucrit for L > 320). However, the modal approach
outlined in Section 5.1.2 yields a direct, simple way to find Ucrit. For given parameter values, one can
immediately analyze the perturbed eigenvalues associated with (5.5) to determine if an instability is
present (Im(ω̃ j) > 0 for some j).

In Figure 1, we compare the results of a bracketing search for Ucrit with the modal approach for a
range of L values across all three boundary configurations. The points are the Ucrit values found by a
bisection-like search employing finite difference simulations, and the curves are the values predicted
by the modal approach. We see that the modal approach is very consistent with the finite difference
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approach, and is substantially more convenient, for predicting Ucrit. The hierarchy of stability between
the three configurations C, H, and CF is also revealed in Figure 1.

200 220 240 260 280 300 320 340 360 380 400

0

5

10

15

L

U
cr

it

C Modal
C Finite Diff

H Modal
H Finite Diff
CF Modal

CF Finite Diff

Figure 1. Plot of critical U values for L, D = 23.9 and β = 1.2 · 10−4, b1 = b2 = 0.

Note that the modal approach also produces an ωcrit associated to each Ucrit (not shown here), and
the frequency of unstable oscillation is simply Re(ωcrit). Finally, as the modal analysis is such a good
predictor of Ucrit for all configurations, the laborious finite difference simulations to search for Ucrit in
the clamped-free case for L > 320 were not performed.

In Figure 2, we determine Ucrit as a function of β, with 10−5 ≤ β ≤ 10−2. We observe monotonic
linear decay in the Ucrit(β) value as β increases up to around 10−3, and then somewhat erratic behavior
for larger β. Since β affects both the damping and destabilizing terms in the model (5.2), it is not
obvious that its effects will remain monotonic on Ucrit as β increases further. Indeed, an analysis of the
dispersion relation associated to (5.2) indicates that a critical transition occurs at β = 1.

One could similarly extract critical values of L or β by fixing the other and varying U. Results
maintain the same qualitative structure, for instance, with respect to the established stability hierarchy
of boundary configurations and monotonic behavior of Ucrit.
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Figure 2. Plot of critical U values for k0, k = k0 + β, β = 1.2 · 10−4, L = 300, D = 23.9.

Another relationship of interest is that of the damping coefficient k = k0 + β on Ucrit. Note that
in Figure 3 the region below a given curve represents stable combinations of k and U. The curves
themselves represent the critical value Ucrit for any given damping coefficient k0. Conversely, given
a U value, one can extract the necessary strength of damping to yield stability. Note that in cases
where the boundary points are completely restricted (C and H), the relationship between Ucrit and k0

is asymptotically linear, while for the CF configuration it is sublinear. The spurious behavior in the
zoomed region on the right does not seem to be a numerical artifact, as the computations were done on
a very fine scale.
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Figure 3. Plot of critical U values for k0, k = k0 + β, β = 1.2 · 10−4, L = 300, D = 23.9.

We conclude this section by empirically verifying the global nature of instability across initial
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conditions (for a given configuration). In Figure 4 we plot the dynamic energy as a function of time
for the H configuration with U > Ucrit (i.e., U = 5 for L = 300, D = 23.9, β = 1.2 · 10−4, and k0 = 0).
The initial conditions are taken from among the first and second H modes (see Table 1), the
polynomial initial displacement w0(x) = x̂3(1 − x̂)3, and the elementary initial velocity
w1(x) = x̂(1 − x̂).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·104
10−10

10−4

102

108

1014

t

E
(t
)

0.1×First Mode ID
First Mode ID

Second Mode ID
Polynomial ID
Elementary IV

Figure 4. (H) Plot of E(t) with U = 5, k0 = 0, β = 1.2 · 10−4, L = 300, and D = 23.9.

We note that, in the above, all dynamic simulations reflect that U > Ucrit. Each simulation, in the
absence of the nonlinear restoring force (b2 = 0), shows the dynamics eventually growing
exponentially. Moreover, it is clear from the log-scale plot—since all slope profiles are the
same—that each simulation is growing in time by the same exponential factor, namely, the perturbed
unstable eigenvalue. Also note, as we will observe in the non-linear case (b2 > 0), there is a transient
regime at the outset of the dynamics; however, with damping provided by the flow, βwt, the effect of
the initial condition decays away after a short amount of time.

6. Nonlinear computational analysis: Qualitative properties

In this section, we present a variety of simulations across configurations and parameter values to
illustrate various aspects of the qualitative post-flutter behavior. In the simulations below, for the
most part, we take the nonlinear parameter to be positive, b2 > 0. This means, in particular, that the
nonlinear restoring force is active. Thus, for any simulation with U > Ucrit, we will observe dynamic
end behavior. We can then ask about the effect of any parameter (e.g., in-axis compression b1 > 0) on
the non-transient behavior.

For expediency of simulations, and also because the primary purpose of this section is qualitative,
we allow parameters not of interest to be set to unity. This is to say that in Section 6, we take β = L =

D = 1. Simulations below will consider varying b1, b2, k0 and U.
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For the readers convenience, we restate the system studied in this section here:

wtt + ∂4
xw + k0wt + [b1 − b2||wx||

2]wxx = −[wt + Uwx]

w(t = 0) = w0(x̂); wt(t = 0) = w1(x̂)

BC(w) =


w(0) = wx(0) = w(1) = wx(1) = 0 for config. C

w(0) = wxx(0) = w(1) = wxx(1) = 0 for config. Hw(0) = wx(0) = wxx(1) = 0,
wxxx(1) + [b1 − b2||wx||

2]wx(1) = 0
for config. CF

(6.1)

Implementation of the boundary condition for wxxx(L) in the CF configuration was computed by
utilizing a 5-point stencil for w centered at x = L. The nonlinear terms in (6.1) involving b2||wx||

2 were
handled using the wx from the previous iterate (within the same time step) for the integral computation
||wx||

2 =
∫ L

0
|wx|

2 dx.

6.1. Post-Flutter examples

To ground our discussions, we begin by showing a collection of snapshots of the in vacuo linear
(b2 = 0) beam dynamics and corresponding post-flutter dynamics. In Figure 5 on the left we have
the in vacuo (k0 = β = b1 = b2 = U = 0) dynamics with the first H mode as an initial displacement
(resulting in point-wise harmonic motion). To the right, we have a post-flutter—U > Ucrit = 360 and
b2 = 1—sequence of snapshots that are demonstrative of a typical H fluttering beam (Note that for
U > 0, the flow is from left to right).
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Figure 5. (H) Plot of in vacuo w(x, t) varying t, first mode as initial displacement (left); (H)
fluttering w(x, t) from same initial displacement (right).

In the Figures 6 and 7 below, we provide a similar snapshot of the profile of a fluttering cantilever
beam, taken with a polynomial initial displacement (see Section 4), rather than a modal initial
displacement. We show approximately one period of the non-transient dynamics of a beam, after it
has approached a limit cycle. On the left is the natural scale, and on the right, we decrease the y-scale
to emphasize the nodal point. For comparison, we provide time snapshots of both the first and second
cantilever modes in vacuo; note the similarity between the flutter profile and a superposition of the
first and second in vacuo modes.
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Figure 6. (CF) Plot of w(x, t) for k0 = 0, b2 = 1, U = 150 at varying t (left); to the (right) is
a magnification in the transverse dimension.
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Figure 7. (CF) Plot of in vacuo w(x, t) at varying t; 1st mode as initial displacement (left),
2nd mode as initial displacement (right).

6.2. Energy plots (Linear vs. Nonlinear)

In the following section we consider the C configuration. We fix the initial condition and primarily
consider varying U around Ucrit, holding other parameters fixed. We focus on the behavior of the
energies to illustrate the effect of including nonlinearity in the simulation; this is to say that, when
b2 > 0, the nonlinear restoring force is active and for U > Ucrit the trajectories remain bounded (see
Section 3.3) and lock into a limit cycle.

First, computed energies E(t) for the model (2.1) with no damping present (k0 = −β = −1) and with
no nonlinear or in-axis effects (b1 = b2 = 0) are shown in Figure 8. For this choice of k0 = −1, we
have Ucrit = 135.18. Energy profiles (log-scale) for various choices of U as multiples of Ucrit are given.
Recall that a linear profile in the energy plot represents exponential growth or decay of the dynamics
in the finite energy topology, with margin of in/stability depending on the slope of the profile. Note
the exponential growth in energies for U > Ucrit while E(t) stays bounded for 0 < U < Ucrit, and is
constant for U = 0.
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Figure 8. (C) Plot of E(t) for k = 0, b1 = b2 = 0, and varying U, Ucrit = 135.18.

In the next simulation the damping parameter is set to k0 = 0 so k = 1, and thus there is damping
present from the flow (but no structural or imposed damping) in (2.2). This results in an approximate
critical flow velocity of Ucrit = 135.9 (the presence of damping perturbs the critical flow velocity
corresponding to the onset of instability by roughly 0.5%). Computations again were performed for
various choices of U, with energies shown in Figure 9. Note the effect that the damping has on the
decay of energies for all U < Ucrit (as E(t) → 0 when t → ∞)—each curve for U < Ucrit has a linear
profile (or envelope) with negative slope, indicating exponential decay. Energy values for U ≥ Ucrit

still grow exponentially.
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Figure 9. (C) Plot of E(t) for k = 1, b1 = b2 = 0, and varying U, Ucrit = 135.9.

Finally, in Figure 10, the clamped, nonlinear beam (with b1 = 0 and b2 = 1) is considered and the
nonlinear energy E(t) is shown. Note that E(t) (and hence E(t), due to (2.7)) now remains bounded for
all supercritical (unstable) velocities U > Ucrit = 135.9, demonstrating the stability that is induced by
nonlinear restoring force. From the point of view of trajectories, each remains bounded for all time,
with global-in-time bound dependent upon U. For U < Ucrit, we note that the nonlinearity does not
dramatically affect the stability observed in the linear case—consistent with the semilinear nature of
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the nonlinearity.
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Figure 10. (C) Plot of E(t) for k = 1, b1 = 0, and b2 = 1, varying U, Ucrit = 135.9.

To show the detailed difference between the energies E(t) and E(t), Figure 11 shows both quantities
for k0 = 0, b1 = 0, and b2 = 1, with U = 2Ucrit.
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Figure 11. (C) Plot of energies for k = 1, b1 = 0, b2 = 1, and U = 2Ucrit.

6.3. Blow up for nonlinear CF with linear boundary conditions

We recall that, for conservation of energy to hold (or, equivalently, to derive the equations of motion
through Hamilton’s principle) in the CF configuration, the boundary conditions (1.5) must be altered;
in the panel configurations C and H, standard linear boundary conditions (2.1) are correct. (For more
discussion, see [27].)

A natural question, then, for the nonlinear cantilever (b2 > 0) is to ask about the stability of the
(2.2) model in the presence of standard linear clamped-free boundary conditions (as in (6.1)). We
emphasize that this combination is non-physical, as there is no conservation of energy associated to
the dynamics. Below, in Figure 12, we achieve arbitrary growth (in time) of displacements (or energies)
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for finite difference solutions to:
wtt + ∂4

xw − ‖wx‖
2wxx = 0

w(t = 0) = 0; wt(t = 0) = cx

w(0) = wx(0) = 0; wxx(1) = 0, ∂3
xw(1) = 0,

(6.2)

for c sufficiently large.
Specifically, if c = 12, the dynamics exhibit periodic behavior; when c = 13, the dynamics grow

with exponential rate. When the boundary conditions are adjusted appropriately (i.e.,
∂3

xw(1) = ||wx||
2wx(1)), the nonlinear energy E(t) is nearly perfectly conserved (Figure 12).

0 1 2 3 4 5 6 7 8 9 10
101

102

103

104

105

106

t

E(
t)

wxxx(L) = 0; c = 12

wxxx(L) = 0; c = 13

wxxx(L) = ‖wx‖2wx(L); c = 13

Figure 12. (CF) Plot of nonlinear energies for comparing linear and nonlinear boundary
conditions.

6.4. Convergence to limit cycles

In this section we demonstrate some properties of trajectories that converge to a limit cycle
oscillation, as described above.

Figure 13 shows the endpoint displacement a cantilevered beam CF with supercritical parameter
values. It is clear that the envelope of the oscillations grows significantly and until around t = 1.5, and
then undergoes decay to a nontrivial limit cycle behavior.

In Figure 14, plots of the beam midpoint displacement are shown for a very large flow velocity
(U = 5000), significant in-axis compression parameter (b = 50), and b0 = 1 for selected values of the
damping parameter k = k0 + 1. The sensitivity of the dynamics to the damping parameter can be seen
by noting the relative rate of initial decay of energy as k increases—note the quick decay to the limit
cycle for larger values of k, though the limit cycle itself is preserved across damping values.

6.5. Uniformity of limit cycle

Next, we consider the CF configuration and provide tip profile at x = L = 1 for three different initial
configurations:

• [2nd Mode ID] w(0, x) = s2(x) = [cos(κ2x) − cosh(κ2x)] − C2[sin(κ2x) − sinh(κ2x)], wt(0, x) = 0,
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Figure 13. (CF) Plot of w(t, L) for k = 1, b1 = 0, b2 = 1, and U = 2Ucrit.
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Figure 14. (C) Plot of u at beam midpoint for U = 5000, b1 = 20, b2 = 1, varying k.

where κ2 ≈ 4.6941 is the second Euler-Bernoulli cantilevered mode number (with L = 1) and

C2 =

[
cos(κ2) + cosh(κ2)
sin(κ2) + sinh(κ2)

]
≈ 1.0185;

• [Polynomial ID] w(0, x) = −4x5 + 15x4 − 20x3 + 10x2, wt(0, x) = 0;
• [Linear IV] w(0, x) = 0, wt(0, x) = x.

First, Figure 15 represents the nonlinear (b2 = 1), in vacuo (β = k0 = 0) tip displacements with the
three initial configurations described above. Figure 16 represents fluttering dynamics across the three
different initial configurations.

In these cases, we observe convergence to the “same” limit cycle for each of the initial conditions
considered. Finally, note that, although we seem to see convergence to the same LCO, the transient
regime and “time to convergence” are certainly affected by the choice of initial configuration.
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Figure 15. (CF) Plot of in vacuo tip displacement w(t, L); varying initial configuration.
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Figure 16. (CF) Plot of w(t, L) for k0 = 0, b2 = 1, U = 150; varying initial configuration.
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Figure 17. (C) Plot of E(t) for U = 100, b1 = 50, b2 = 1, and varying k.
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6.6. Convergence to nontrivial equilibrium

For certain parameter combinations, the presence of excess in-plane compression leads to a
“buckled” plate/beam configuration (a bifurcation, for the static problem). For b2 = 1, the parameter
b1 = 50 is large enough for U = 100 to impart this behavior. The transient behavior decays more
rapidly to the nontrivial steady state for larger values of k. A plot of the energy E(t) for different
values of k is given in Figure 17. Regardless of the choice of k, all simulations for U = 100, b2 = 1,
and b1 = 50 converge to the same nontrivial steady state and same linear energy level set. A plot of
the nontrivial steady state w (the buckled beam displacement) is given in Figure 18.
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Figure 18. (C) Plot of steady-state beam displacement for U = 100, b1 = 50, b2 = 1, and
varying k.

It is also possible to observe different choices of damping k resulting in convergence to different
steady states. For U = 100, b2 = 1, and b1 = 100, the choices k = 1 and k = 2 actually produce
nontrivial steady states that are roughly negatives of one another. In Figure 19 the midpoint
displacement is plotted for these two cases.
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Figure 19. (C) Plot of w at beam midpoint for U = 100, b1 = 100, b2 = 1, and varying k.

6.7. Non-simple limit cycle

It is possible to induce several different phenomena by manipulating parameter values for the
nonlinear dynamics. In Figure 20 the midpoint displacement is shown for U = 5000, k = 101,
b1 = 5000, and b2 = 5000. Note the initial transient dynamics are damped out quickly and the
dynamics converges to a non-simple limit cycle.
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Figure 20. (C) Plot of w at beam midpoint for U = 5000, b1 = 5000, b2 = 5000, k = 101.
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Figure 21. (H) Plot of w at beam midpoint for U = 200, b1 = 2000, b2 = 1, k0 = 1, and
β = 1.

Mathematics in Engineering Volume 1, Issue 3, 614–647.



642

6.8. Chaos with in-plane tension

Here we consider the following initial configurations for the nonlinear H beam taken with
substantial in-plane compression.

w(t = 0, x) = w0(x) = ε sin(2πx̂), wt(0, x) = w1(x) = x̂(1 − x̂); ε ≥ 0.

We note from [18] that this setup is a candidate to produce a deterministic, chaotic dynamical system.
(In the reference [18], the system (2.2) is reduced down to a two mode system, and the qualitative
properties—convergence to equilibria, convergence to a simple limit cycle, convergence to a non-
simple limit cycle, and “chaos”—are mapped in the (b1,U) parameter space.)

We produce an interesting example below with large U. We note that for the given value of b1

below, we are past the Euler buckling bifurcation point (Figure 21).
First, from the four profiles corresponding to ε ↘ 0, we see no discernible notion of convergence

of the dynamics. Secondly, we see no periodic behavior corresponding to the initial configuration with
ε = 0. Additionally, it is not clear that the other configurations involving ε > 0 converge to a true limit
cycle. In these cases, it is clear there is no uniformity of end behavior across initial configurations, as
was the case in the previous section.

Remark 9. We continued simulations for smaller values of ε, and it was clear that no trend in
magnitude or period of the oscillations emerged, even at very fine scales and long run-times.

The only consistent feature across the above simulations corresponds to their energy curves. All
energy plots show the same features present in Figure 22; namely a transient period followed by an
energy “bump” up to a higher level. The transition is smooth.
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Figure 22. (H) Plot of E(t),E(t) for U = 200, b1 = 2000, b2 = 1, k0 = 1, and β = 1.

6.9. Effect of magnitude of b2

The effect of increasing the nonlinear parameter b2 was studied at a supercritical flow velocity
(U > Ucrit) for the beam. In Figure 23, energy profiles for several different choices of b2 are given
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for the parameter k0 = 0 and U = 150 (Ucrit = 135.97). Note that as b2 increases, the energy plateau
decreases (for an initial configuration fixed across all simulations).
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Figure 23. (C) Plot of E(t) for k0 = 0, and U = 150, varying b2.

7. Synopsis of main numerical observations

Here we briefly outline the main observations in Sections 5 and 6 above, and succinctly connect to
the theory in Section 3.
Modal approximation works well

In Section 5.1 we describe the “modal” approach used commonly in engineering to extract the
flutter point (or point of instability, with respect to critical parameters). We demonstrate in Section 5.2
that—for physical parameters—the modal approach faithfully replicates the onset of instability with
various parameters obtained empirically (through direct numerical simulations of the PDE dynamics).
This approximation is very good across configurations, and across large ranges of relevant parameters.
Extensible nonlinearity controls non-conservative effects

In various simulations above we have confirmed what we established theoretically: the extensible
nonlinearity featured here in (2.1) (b2 > 0) is sufficient to control the non-dissipative (non-conservative)
effects introduced by the flow through piston theory (1.2). This is independent of configuration, of
course making the necessary change to the boundary condition in the CF configuration—see Section
6.3. When the damping due to piston-theory is taken into account, the overall bound on trajectories,
as the transient dynamics decay, seems independent of the initial data (i.e., its size and type), and the
magnitude of the non-transient behavior (typically an LCO) depends on the intrinsic parameters, such
as b2,U, β, L, etc.
Onset of instability is linear

Through our simulations, we have observed that below the point of onset (for instance, when U <

Ucrit in a particular configuation) the dynamics are effectively not altered by the presence of the (higher
order) semilinear effect of extensibility. This means that the emergence of instability (bifurcation) is
not really affected by the value of b2. In this way, we may claim that the onset of flutter is a purely
linear phenomenon, regarding the manner in which βUwx perturbs the in vacuo eigenmodes of the
system; however, to view the flutter dynamics without seeing energies grow exponentially in time (as
per the previous point in this section), one must include nonlinear restoring force b2 > 0.
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Instability in each critical parameter
As can be expected, we can de/stabilize the dynamics through a myriad of parameters.

Unsurprisingly, the flow parameters β and U are the principal candidates for the onset of instability.
However, within certain limits, we can utilize L and b1 (for C and H) to affect the onset of instability.
On the other hand, if we impose damping of the form k0, we can re-stabilize eigenvalues that have
become unstable due to any of the aforementioned parameters. This is to say that damping of the form
k0wt (for k0 sufficiently large) is “strong” enough to stabilize flutter. For a fixed U > Ucrit, increasing
k0 provides two regimes: Initially, it increases the rate of convergence to the stable LCO, but, for k0

sufficiently large, the flutter dynamics are eventually damped out; see Figure 14.
Relative stability across configurations

As noted from various plots above, principally Figure 1, the configurations have a relative hierarchy
of stability: the clamped panel C is the most stable; the hinged panel H is less stable; the cantilever
CF is least stable. This demonstrates the extent to which the boundary conditions (which serve to
distinguish the in vacuo eigenfunctions) affect the inherent stability of each configuration in axial flow.
It is important to emphasize, then, that across all possible configurations one could consider with the
boundary conditions presented here (including all left/right combinations), the CF configuration is the
easiest to make flutter.
Uniformity of end behavior

We have seen that, in most cases with no pre-stressing of the structure (when b1 = 0), a very strong
uniformity of end-behavior with respect to size and type (displacement, velocity) of initial data. This
is true in the fully linear case, when trajectories are stable or when they are unstable, e.g., Figure 4;
in the latter case, we note the same rate of exponential growth in time of trajectories independent of
initial condition. In the nonlinear case—where interesting behaviors are found—we typically observe
convergence to the same LCO for fixed parameters and varying initial conditions—see Figure 14.
Reproduction of qualitative behaviors

It is worth emphasizing here that this very simplified model (extensible beam with piston theoretic
RHS) for a very complex phenomenon (axial flow flutter) can replicate all expected qualitative
behaviors from the engineering point of view. This includes convergence to simple LCOs (Section
6.4), non-trivial LCOs (Figure 20), and non-trivial (buckled) steady states (Figures 17 and 18). We
have even demonstrated a compelling case for deterministic chaos in Section 6.8, by playing large
flow values U against large in-plane pre-stressing b1 >> 0 for the hinged panel H.
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A. Appendix: Fundamental frequencies

Table 2. First 10 fundamental frequencies for the Clamped-Clamped (C) and Clamped-Free
(CF) configuration.

n C; knL CF; knL
1 4.7300 1.8751
2 7.8532 4.6941
3 10.9956 7.8548
4 14.1371 10.9955
5 17.2787 14.1372
6 20.4204 17.2788
7 23.5619 20.4205
8 26.7035 23.5619
9 29.8451 26.7035
10 32.9867 29.8451
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