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Abstract: In this article, the existence, stability and bifurcation structure of time-periodic solutions
(including ones that also have the property of spatial localization, i.e., breathers) are studied in an array
of cantilevers that have magnetic tips. The repelling magnetic tips are responsible for the intersite
nonlinearity of the system, whereas the cantilevers are responsible for the onsite (potentially nonlinear)
force. The relevant model is of the mixed Fermi-Pasta-Ulam-Tsingou and Klein-Gordon type with both
damping and driving. In the case of base excitation, we provide experimental results to validate the
model. In particular, we identify regions of bistability in the model and in the experiment, which agree
with minimal tuning of the system parameters. We carry out additional numerical explorations in order
to contrast the base excitation problem with the boundary excitation problem and the problem with a
single mass defect. We find that the base excitation problem is more stable than the boundary excitation
problem and that breathers are possible in the defect system. The effect of an onsite nonlinearity is
also considered, where it is shown that bistability is possible for both softening and hardening cubic
nonlinearities.
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1. Introduction

The subject of nonlinear lattices has been, and continues to be, an intensely studied area of
research [1, 2], with prototypical examples being the Fermi-Pasta-Ulam-Tsingou (FPUT) and
Klein-Gordon (KG) models. One particular structure of interest in nonlinear lattices is the so-called
discrete breather, which is a solution that is localized in space and periodic in time. Discrete breathers
(or just breathers) have been studied in a variety of physical systems, including, optical waveguide
arrays and photorefractive crystals [3], Josephson-junction ladders [4, 5], layered antiferromagnetic
crystals [6, 7], halide-bridged transition metal complexes [8], dynamical models of the DNA double
strand [9], Bose-Einstein condensates in optical lattices [10], and many others. One mechanical
realization of a nonlinear lattice that has attracted significant attention is the so-called granular chain.
Granular chains consist of closely packed arrays of particles that interact elastically [11]. The contact
force can be tuned to yield near linear to purely nonlinear responses, and the effective stiffness
properties can also be easily changed by modifying the material, geometry, or contact angle of the
elements in contact [11]. This remarkable tunability has made the topic of granular chains an active
research area over the past two decades (see the books [11–13] and review articles [14–16]). Despite
this tunability, there are some limitations to granular chains. For example, it is difficult to excite an
arbitrary node in the chain∗. Adding an onsite force to the granular chain (to realize e.g., the cradle
problem [19]) is also challenging from an experimental perspective.

Motivated by these considerations, the present work considers a system of macroscopic cantilevered
beams that are coupled via magnetic links. This system is highly tunable, like the granular chain, but
also allows the possibility to excite arbitrary nodes in the array and offers additional tunability in the
form of an onsite force that is introduced via the cantilever. While a linear onsite force is considered for
the experimental aspect of this paper, nonlinear forces will be also explored numerically. The relevant
model equation we derive (in the more general case where the beam can be nonlinear) is of the so-
called mixed FPUT-KG type, meaning there are both intersite and onsite nonlinear forces. In terms of
breather solutions, it is well known that the site-centered† solutions are spectrally stable in Hamiltonian
lattices with onsite nonlinearities (e.g., KG lattices) and bond-centered‡ breathers are unstable. In the
presence of an intersite nonlinearity (so that the model is of the mixed FPUT-KG type) the stability of
site-centered and bond-centered solutions are exchanged at a critical value of the intersite nonlinearity
coefficient [20].

The system considered herein is a macroscopic analog of the micromechanical cantilever arrays
considered in, e.g., Ref. [21], where the cantilevers are coupled via the geometry of the base (as
opposed to via magnetic links, as in our system) and the motion is perpendicular to the transverse
direction of the base (as opposed to along transverse direction of the base, as in our system). There

∗Typically, excitations are on the boundary. While internal resonators can be used to excite internal modes [17, 18], their presence
introduces a defect into the system

†A site-centered breather is a solution that is centered at a lattice site
‡A bond-centered breather is a solution that is centered in between two lattice sites
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too, the relevant model is a mixed FPUT-KG equation. The microcantilever experiments of [21],
however, were conducted in a vacuum to eliminate damping from the model considerations, and thus
Hamiltonian dynamics were studied. For our experimental set-up, the Hamiltonian variant is a
possible approximate model, however the effects of damping are non-negligible due to the scale of the
system. Therefore, the focus of this article will be on a damped-driven, mixed FPUT-KG equation. In
particular, time-periodic excitations, including breathers, will be studied. In this respect, our paper
can be thought of as a damped-driven extension of the paper [20].

The present paper is organized as follows: In Section 2 we describe the experimental set-up which
is modeled in Section 3. We explore the linear problem and outline the numerical methods for the
computation of periodic orbits in Section 4. After validating the model in Section 5 via direct
comparison with experimental results, we present a number of numerical results in Section 6
concerning the existence, stability and bifurcation structure of time-periodic solutions in various
set-ups, including homogeneous ones under various excitations and defect ones. Section 7 concludes
the paper.

2. Experimental set-up

The array of cantilevers we consider is fixed to a rigid aluminum slab [Figure 1 (center)]. The
boundaries of the array are also rigid aluminum slabs with magnets at their tops. Using 3D printed
holders, we also embed three magnets within the tip of each cantilevers (right, 6 mm × 4 mm × 2 mm
from supermagnete.ch) and orient them along the vertical axis such that the cantilevers repel each other.
A phospher bronze metal sheet (M3) from Hassler-Profile is used to manufacture the cantilevers. The
base of the cantilever array is guided to move freely along the direction of the first flexural resonance
mode of the cantilever.

We use a shaker (Brüel & Kjær Type-4810) driven by an audio amplifier (Topping TP22) to excite
the base of the cantilever array. A lock-in amplifier is used to generate the excitation signal and filter
the measured velocity of the base (bottom, Zurich Instruments HF2LI). We acquire the velocity of the
base using a laser Doppler vibrometer (Polytec OFV-505, Polytec OFV-5000). The positions of the
cantilever tips are acquired at 400 fps using a high speed camera (Vision Research Phantom v1610).
Subsequently, we use digital image correlation (DIC) to calculate sub-pixel-resolution positions of the
cantilever tips (VIC 2D). Additionally, we use an oscilloscope (Tektronix DPO3014) to acquire the
time-domain signals.

To characterize the system we start by considering a single cantilever with no magnets on the
system boundaries. We measure the geometric parameters of the cantilever using a caliper and the tip
mass using a scale (Table 1). By measuring the dynamic response of the single cantilevers we can
experimentally characterize the resonance frequency and the damping characteristics of the
cantilevers as shown in Figure 2. The damping coefficient γ is estimated from the damping ratio ξ,
which is estimated using

ξ =
1
f0

∂ f
∂φ
,

where ∂φ

∂ f is the slope of the phase with respect to the swept frequency at the resonance frequency f0.
Using the tabulated material properties of the phosphor bronze (Table 1) and the other geometric
parameters, we predict a resonance frequency of 53.66 Hz (using the methods outlined in Section 3).
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Figure 1. Schematic of the experimental set-up.

Experimentally, we found a median resonance frequency of 50.41 Hz. We believe the 6% frequency
shift is due to the added flexibility from the fixation of the cantilever that uses small screw
connections. To optimize the model, we subsequently estimate the stiffness of the analytical model
using the measured resonance frequency and the effective mass.
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Figure 2. Probability distribution of the cantilever resonance frequency (left), the damping
coefficient (center) and the effective mass of the cantilever model (right). We use the median
values for Table 1.
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Table 1. (Left) Geometric and physical parameters of the set-up and (right) the estimated
parameters of the analytical model.

Description Symbol Value Description Symbol Value
Length L 59.15 mm Effective mass m 3.594 g
Width w 23 mm Onsite stiffness κ 361.1 N/m
Thickness h 0.5 mm Onsite nonlinearity β 0
Density ρ 8.8 · 103 kg/m3 Damping coefficient γ 2.95 · 10−3 Ns/m
Young’s modulus Y 118 GPa Magnet distance d0 6.3993 mm
Damping coefficient γ 2.95 · 10−3 Ns/m Magnet coefficient A 2.942 · 10−8 N/mp

Top mass Mt 2.162 g Magnet exponent p −3.412

We then characterize the force deflection relationship of the magnets using an Instron E3000.
Figure 3 shows the measured data and an approximation of the force deflection relationship using

Fmag(d) = Adp = A(d0 + ∆d)p,

where A, p are the fitting parameters. The distance d can be separated into two parts, d0 (the initial
distance) and ∆d (additional deflection). See Table 1. We estimate the inter-magnet distance d0 by
measuring the distance between the outermost magnets and averaging this distance after removing one
magnet-width (Table 1).
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Figure 3. Characterization of the magnetic interaction forces: The black dots and the red
crosses are experimental measurements. We exclude the noisy data (red crosses) for the
estimation of the fitting function (blue curve). The experimental data is well described by the
fitting function which follows the centerline of the measured force.

3. Model derivation

We first consider a single beam that is cantilevered to a movable base. If the displacement of the
base is y(t) and the displacement of the tip of the beam is x(t) then the lumped-parameter model for the
dynamics of the beam tip is given by [22],

mẍ + γ(ẋ − ẏ) + κ(x − y) = 0 (3.1)

where the dot stands for differentiation with respect to time t and m, γ, κ are the so-called effective
mass, damping coefficient, and stiffness, respectively. This model is derived by considering only the
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fundamental mode of vibration from the Euler-Bernoulli model of a clamped beam. Through this
derivation, one finds the effective stiffness to be

κ =
3YI
L3

where YI is the beam’s bending stiffness and L is the length of the beam. If a tip mass is present (which
is the case in our system), the effective mass is found by expressing the total kinetic energy of the beam
in terms of the velocity at the tip through the Rayleigh quotient [22],

m =
33

140
m̃L + Mt

where m̃ is the mass per unit length of the beam and Mt is the mass of the tip. The effective damping
coefficient is

γ = 2ξ
√

mκ

where ξ is the effective damping ratio. Since we will eventually consider an array of beams that are all
attached to the same base, it is useful to introduce the relative displacement z(t) = x(t) − y(t), which
represents the position of the tip of the beam relative to the base,

mz̈ + γż + κz = −mÿ, (3.2)

where the external driving force is given in terms of the base displacement via the expression −mÿ.
We now consider the effect of adding magnets to the tip of the cantilever. The repelling force of

two magnets whose center-to-center separation distance is d0 is given by F = Adp
0 where A and p are

determined empirically, see Section 2. The experimentally measured values for all quantities and the
effective parameter values are given in Table 1. If the beams decorated with magnets are separated by
a distance d0 on the base, and we let the quantity un(t) represent the displacement of the n − th beam
tip relative to its location on the base, then we arrive at the model equation of interest,

mün = A [d0 + un − un−1]p
− A [d0 + un+1 − un]p

− γu̇n − κun + βu3
n + Fext cos (2π f t), (3.3)

where n = 1, . . . ,N and N is the number of cantilevers. The term βu3
n is a phenomenological term

added to account for the possibility of nonlinearity in the beam [22] for the numerical considerations
later in the paper. It is assumed that the base is excited harmonically with the driving frequency
fd, e.g., y(t) = y0 cos(2π fdt) where y0 is the amplitude of the excitation. Thus, the external force
coefficient is given by Fext = −y0(2π fd)2m. If a base excitation is introduced, the walls are assumed to
be immovable so that u0(t) = uN+1(t) = 0. This is the situation for the experimental set-up. We also
will explore numerically the possibility of boundary excitation with a non-moving base, in which case
u0(t) = α cos(2π fdt), uN+1(t) = 0 and Fext = 0.

4. Linear analysis and computation of periodic orbits and their stability

The Hamiltonian lattice corresponds to β = y0 = γ = 0. To consider linearized dynamics (with p ,
1) we require small amplitudes, i.e., |un−un+1 |

d0
� 1, so that the magnetic coupling force can be linearized.
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Figure 4. The dispersion relation Eq. (4.1) is shown in the left panel. The right panel shows
the results of the damped-driven linear system through the amplitude response of the 5th bead
a5 ( log(a5/max f∈[ f`, fu] a5) is shown on the horizontal axis) as a function of the frequency f
on the vertical axis). The frequency is shown on the vertical axis to be consistent with the
left panel. The red dot corresponds to the frequency fd = 72.5 Hz.

The resulting linearized Hamiltonian variant of Eq. (3.3) has plane wave solutions u ∼ exp(i(kn + ωt))
where the dispersion relationship is given by

ω(k)2 =
2K2(cos(k) − 1) + κ

M
(4.1)

where K2 = pAdp−1
0 < 0. In the case of N → ∞, i.e., an infinite lattice, k ∈ [0, π], and for a lattice

consisting of N (finite) nodes with zero boundary conditions k = kn = nπ
N+1 with n = 1, 2, . . . ,N. The

dispersion curve in terms of frequency f = ω/2π is shown in Figure 4 (left). The lower and upper
cutoff frequencies, f` = ω(0)/2π ≈ 50.6 Hz and fu = ω(π)/2π ≈ 126.8 Hz respectively, are shown as
dashed lines in Figure 4.

In the damped-driven linear system, namely when β = 0, |un−un+1 |

d0
� 1 and y0 , 0 , γ time-

periodic steady-states of the form un(t) = an cos(2π fdt + φn) can be found explicitly, where an and φn

are the amplitude and phase of the nth node, respectively. An example plot of a5 for fd ∈ [0, 140] and
Fext = 1.54 · 10−6 N is shown in Figure 4 (right). The critical points correspond to the N = 21 linear
resonant frequencies. An example linear resonance at f ≈ 75.2 Hz is shown as a red dot in Figure 4
(right).

For the remainder of the article, we will be interested in time-periodic orbits of the nonlinear
Eq. (3.3) (i.e., where the conditions β = 0 and |un−un+1 |

d0
� 1 do not necessarily hold). In this case, exact

analytical solutions are not available (although they can be approximated via long wavelength
approximations [23]). Thus, we will turn to numerical computations. We compute time-periodic
orbits of Eq. (3.3) with period Td = 1/ fd with high precision by finding roots of the map
F := x(Td) − x(0), where x(Td) is the solution of Eq. (3.3) at time Td with initial condition x(0). Roots
of this map (and hence time-periodic solutions of Eq. (3.3)) are found via Newton iterations. This
requires the Jacobian of F, which is of the form V(Td) − I, where I is the identity matrix, V is the
solution to the N2 variational equations V ′ = DF · V with initial condition V(0) = I, and DF is the
Jacobian of the equations of motion evaluated at a given state vector of the form of X = [u , u̇]T where
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u = [u1 , u2 , . . . , uN]T . Note that the solution frequency and drive frequency are both fd by
construction. An initial guess for the Newton iterations can be provided by the linear steady-state
solutions un(t) = an cos(2π fdt + φn). To investigate the dynamical stability of the obtained states, a
Floquet analysis is used to compute the multipliers associated with the solutions. The Floquet
multipliers for a solution are obtained by computing the eigenvalues of the monodromy matrix (which
is V(Tb) upon convergence of the Newton scheme). If a solution has all Floquet multipliers on the unit
circle, the solution is called (spectrally) stable. An instability that is result of a multiplier on the
(positive) real line is called a real (exponential in nature) instability. However, there can also be
oscillatory instabilities, which correspond to complex-conjugate pairs of Floquet multipliers lying
outside the unit circle (in the complex plane). In the bifurcation diagrams that are to follow in this
paper, solid blue segments will correspond to stable parametric regions while the dashed red segments
correspond to real unstable regions and green dashed-dotted segments correspond to oscillatorily
unstable regions. The bifurcation diagrams are obtained using a pseudo-arclength continuation
algorithm.

5. Model validation
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Figure 5. The left panel corresponds to continuation results over the driving frequency fd.
In particular, the maximum (over one period) position of the fifth bead, i.e., u5 is monitored
as a function of fd. The vertical black dashed line corresponds to a value of the frequency
of 75.2 Hz. The right panel shows the maximum (again over one period) of u5 as a function
of the excitation amplitude of the base, i.e., y0 for two nearly close driving frequencies of
fd = 75.6 Hz and fd = 75.5 Hz. Note that black markers correspond to experimental results.
In the experiments and simulations shown here, there are N = 21 nodes.

We now present experimental data that demonstrate that Eq. (3.3) is a reasonable model for the
cantilever array decorated with magnets.

In the experiment, we perform amplitude sweeps at a fixed frequency (in particular at fd = 75.2 Hz,
which is close to a resonant frequency, see the red dot in Figure 4). In particular, we let the system
settle to steady-state for a fixed frequency (and the steady-state amplitude is recorded) and then the
drive amplitude is changed slightly and we let the system once again reach steady-state, etc. The
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experimental results are shown in Figure 5 (right), where the upward sweep is shown as square markers
and the downward sweep is shown as triangles. The hysteretic behavior identified in the experiments
reveals that the system is bistable for various values of the base excitation amplitude (see e.g., the
dashed line at 7µm of Figure 5 (right)). To validate our model, we performed a similar procedure
theoretically. In particular, we carried out a pseudo-arclength continuation of time-periodic solutions
of Eq. (3.3) with respect to the amplitude y0 and the drive frequency fixed to fd = 75.2 Hz (other
parameter values are given in Table 1). However, no region of bistability is found, suggesting a slight
mistuning of our system parameter values. To investigate this further, a pseudo-arclength continuation
with respect to the drive frequency fd was performed for Eq. (3.3) with the base excitation amplitude
fixed to y0 = 7µm, see Figure 5 (left). Note the pseudo-arclength continuation allows us to follow
theoretically not only the stable branches (solid blue lines) of the bistable response, but also the unstable
ones in between (red dashed lines). It is clear from Figure 5 (left) that the region of bistability is
for drive frequencies larger than fd = 75.2 Hz. For this reason, we revisited the drive amplitude
continuation, but for frequencies slightly larger than 75.2 Hz. In particular, we conducted a pseudo-
arclength continuation of time-periodic solutions of Eq. (3.3) with respect to the amplitude y0 and the
drive frequency fixed to fd = 75.5 Hz and fd = 75.6 Hz (see the curves of Figure 5 (right)). Notice that
the fd = 75.6 Hz continuation matches the forward sweep and the fd = 75.5 Hz continuation matches
the backward sweep. Ideally, both the forward and backward sweeps in the experiments should match
a continuation for a single frequency. Thus, while the qualitative behavior is captured overall, in our
model it is only possible to (quantitatively) fit one direction.

6. Numerical exploration of the system

Since we demonstrated in the previous section that Eq. (3.3) is a good model for the array of
cantilevers decorated with magnets, we will proceed to carry out a more detailed numerical
exploration of the system. In the subsequent section, comparisons of boundary and base excitation
will be made. In Section 6.2 breather solutions of a lattice with a defect are explored.

6.1. Comparing boundary and base excitation

To draw comparisons to systems that are typically driven on the boundary, such as the granular
chain, we will now conduct numerical continuations with Fext = uN+1 = 0 and u0 = α cos(2π fdt). The
parameter values for the subsequent comparison of boundary and base excitation are shown in Table 2.
We chose different parameter values than in Section 5 to demonstrate how the solutions of the base
excitation problem can vary with a different parameter set.

A linear analysis of the resonant peaks will reveal that the most dominant mode in the base
excitation problem corresponds to in-phase motion (associated with the lowest frequency response
peak), as expected. The modal contributions in the boundary excitation problem are more distributed.
This is also reflected in the resonant peaks of the nonlinear system which were found by performing a
pseudo-arclength continuation in the drive frequency fd, see Figure 6. For the base excitation, the
amplitude is fixed to Fext = 0.028 N (recall that Fext = −y0(2π fd)2m). To make a comparison of the
same magnitude in the boundary excitation problem, the amplitude is fixed to α = 46.368 µm, which
corresponds to an approximate maximum force contribution of pA(d0)p−1α ≈ 0.022 N. In addition to
how the magnitude of the resonant peaks differs between the two excitation problems, the boundary
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Figure 6. Top: Nonlinear resonances for the base excitation problem. The maximum velocity
of node 4 (over one period Td = 1/ fd), i.e., v4 = maxt∈[0,Td] u̇4(t), is shown as a function of the
driving frequency fd for the fixed driving amplitude of Fext = 0.028 N. The blue solid lines
correspond to stable regions, where as the red dashed lines indicate a real instability. The
vertical dashed-dotted black lines correspond to the linear resonances. The lowest frequency
peak corresponds to in-phase motion. Bottom: Same as the top panel, but for the boundary
excitation problem. v4 is shown as a function of the driving frequency fd for the fixed driving
amplitude of α = 46.368µm. The green dash-dotted line corresponds to regions with an
oscillatory instability. In the simulations shown here, there are N = 8 nodes.

Table 2. Parameter values used for comparing the base and boundary excitation problem.

Parameter Value
p −3.834
N 8
A 1.05534668 × 10−8 N/mp

γ 1.0105 × 10−2 Ns/m
κ 696.1 N/m
m 3.59 g
d 8.13 mm
β 0

Mathematics in Engineering Volume 1, Issue 3, 489–507.



499

excitation problem differs in its stability properties. In the base excitation problem, no regions of
oscillatory instability were identified (as seen in Figure 6 (top), but also in other similar computations
we have made). This is in contrast to the boundary excitation problem, where oscillatory instabilities
appear generically (as seen in Figure 6 (bottom), but also in other similar computations we have
made). Another important difference is that the instability regions invade (some of) the higher
amplitude branches of the resonant peaks in the boundary excitation problem (in Figure 6 (bottom)
oscillatory instabilities are present for higher frequency peaks). Thus, while the distribution of the
modes in the boundary excitation problem is potentially more appealing from a potential application
perspective (for example in the energy harvesting context [22]), this problem is more unstable than
the base excitation problem. This latter aspect is even more apparent when inspecting the bifurcation
diagram for the amplitude continuation (with fd fixed), see Figure 7. In the base excitation problem
the higher amplitude branch is stable, whereas in the boundary excitation problem the higher
amplitude branch becomes unstable (via an oscillatory instability) at some critical amplitude (in the
case of the right panel of Figure 7 at α ≈ 60) and does not regain stability. Example solution profiles
(corresponding to the letter labels of Figure 7) and their Floquet multiplier spectra for the base and
boundary excitation problems are given in Figures 8 and 9, respectively.
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Figure 7. The left panel presents the maximal velocity of the 4th bead v4 (over one period
of motion) as a function of the amplitude of the base drive Fext for fd = 93.3 Hz. Note that
the vertical dashed-dotted black line corresponds to the value of Fext = 0.028 N, see the top
panel of Figure 6. The right panel presents the velocity of the 4th bead v4 (over one period
of motion) as a function of the amplitude of the boundary drive α for fd = 126.3 Hz. Note
that the vertical dashed-dotted black line corresponds to the value of α = 46.368 µm, see the
bottom panel of Figure 6. The letter labels in both panels correspond to the solution profiles
shown in Figures 8 and 9. In the simulations shown here, there are N = 8 nodes.

6.2. Breathers in a defect lattice

We will now turn our attention to breather solutions of this system, namely ones that are time-
periodic and localized in space. To introduce a localized mode into the system, a light mass defect
is added to the center of the chain. In particular, the effective mass of all the particles is the same as
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Figure 8. (Color online) Velocity profiles and corresponding Floquet multipliers of time-
periodic solutions obtained at a driving frequency of fd = 93.3 Hz and for various values
of the excitation amplitude of (a) Fext = 2 × 10−5 m and (b)–(d) Fext = 0.028 m. Note that
the results presented herein are associated with the left panel of Figure 7. In the simulations
shown here, there are N = 8 nodes.

before (namely the effective mass is 3.59 g) however the center particle has an effective mass of 1.795 g.
Since the breather solutions we are seeking will be a result of this mass defect, the breathers can also be
thought of as nonlinear localized modes [24]. By the term “breathers”, we will refer to exponentially
localized in space, periodic in time solutions more generally, without necessitating that the underlying
lattice system be homogeneous in space. While breathers that are the result of modulation instability
(MI) of plane waves from the bottom of the spectral band are possible in the Hamiltonian system (also
called intrinsic localized modes), our system is highly damped, and thus obtaining breathers through
MI was not possible. Other than this mass defect, and the lattice size which we take to be N = 21 in
this section, all parameters are the same as those in Table 2 and we only consider base excitation. The
nonlinear resonant peaks of this system are shown in Figure 10. Similar to the top panel of Figure 6,
the peak corresponding to the in-phase mode is fairly dominant. However, there is now a resonant
peak in the gap, which corresponds to the localized defect mode. A zoom of the defect mode resonant
peak is shown in the left panel of Figure 11. With the drive frequency fixed to fd = 174 Hz (see the
dashed line in the left panel of Figure 11) an amplitude continuation is also performed, see the right
panel of Figure 11. Note, in [25] a similar situation was explored in the context of a granular chain
with a single light mass defect that is driven on one boundary. There the higher amplitude solutions
in the drive amplitude continuation are unstable (similar to the right panel of Figure 7). At the drive
amplitudes where the breathers are oscillatorily unstable, quasi-periodic solutions are approached. In
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Figure 9. (Color online) Same as Figure 8 but for the case with left boundary excitation.
Velocity profiles and corresponding Floquet multipliers of time-periodic solutions obtained at
a driving frequency of fd = 126.3 Hz and for various values of the excitation amplitude of (a)–
(c) α = 45 µm and (d) α = 72 µm. The solution in panel (d) features an oscillatory instability.
Note that the results presented herein are associated with the right panel of Figure 7. In the
simulations shown here, there are N = 8 nodes.

our base excited system, the high amplitude breathers are stable, and thus, the system is not driven
to quasi-periodicity. Example breather profiles (corresponding to the letter labels of the right panel
of Figure 11) and their Floquet multiplier spectra are given in Figure 12. Note the asymmetry of the
spatial profiles of the solutions shown in Figure 12. This is a consequence of the asymmetric nature of
the interaction potential. This can be seen through a Taylor expansion of the magnetic force, leading
to both quadratic and cubic force terms. In nonlinear lattices with cubic terms only, the potential is
symmetric, and hence the profiles are also symmetric [26].

The final numerical experiment considers non-zero values of the onsite nonlinear force coefficient β.
Bistability of the defect breather is possible for zero, negative, and positive values of β, see Figure 13.
Example breather profiles (corresponding to the letter labels of Figure 13) and their Floquet multiplier
spectra are given in Figure 14. Note the bifurcation values (i.e., the turning points in Figure 13) occur
for very large values of β. This is due to the fact that the beam deflections are somewhat small, and
hence a large value of β is required for the nonlinear term to have an effect on the system. A more
physically realistic scenario where the beam nonlinearity would be observed is in the case of large
deflections. This would require the equilibrium distance d0 to be larger (in order to allow “room” for
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Figure 10. Nonlinear resonant peaks of the base excitation problem with a single light mass
defect at node n = 11. The drive amplitude is fixed to Fext = 0.023184 N. The maximum
velocity of bead 11 is shown as a function of the driving frequency fd. The black vertical
dashed lines correspond to the linear resonances. Notice the somewhat dominant resonant
peak in the stop-band, which corresponds to the (defect induced) breather. In the simulations
shown here, there are N = 21 nodes.
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Figure 11. The left panel is a zoom in of the defect resonant peak shown in Figure 10
where the vertical dashed-dotted black line corresponds to a value of the driving frequency
of fd = 174 Hz. The right panel presents the velocity of the 11th bead v11 (over one period
of motion) as a function of the amplitude of the external drive Fext for fd = 174 Hz. Note
that the vertical dashed-dotted black line corresponds to a value of Fext of 0.035 m. In the
simulations shown here, there are N = 21 nodes.
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Figure 12. (Color online) Velocity profiles and corresponding Floquet multipliers of
breathers in the base excitation problem with a single light mass defect. The driving
frequency is fixed to fd = 174 Hz and various values of the excitation amplitude are shown:
(a) Fext = 2 × 10−5 m and (b)–(d) Fext = 0.035 m. Note that the results presented herein are
associated with the right panel of Figure 11. In the simulations shown here, there are N = 21
nodes.
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Figure 13. The bifurcation diagram corresponding to the maximum velocity of bead 11 (over
one period T = 1/ f ) as a function of the parameter β with fd = 174 Hz and Fext = 0.035 m.
In the simulations shown here, there are N = 21 nodes.
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Figure 14. (Color online) Velocity profiles and corresponding Floquet multipliers of
breathers obtained at a driving amplitude and frequency of Fext = 0.035 m and fd = 174 Hz,
respectively and for various values of β: (a) and (d) β = 6 × 107 and (b)–(e) β = 0. Note that
the results presented herein are associated with Figure 13. In the simulations shown here,
there are N = 21 nodes.
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the beams to have large deflections). If we rescale the problem via

t → ηt, un → d0un, η =

√
Adp−1

0

m
(6.1)

then A/m = d0 = 1 and β → β
d2

0
ξ2 . Here we see that if we increase the dimensional d0 by, e.g., a factor

15, then according to the above, the coefficient for the onsite cubic nonlinearity is 8 orders of magnitude
larger (note the amplitude of the external force increases about 4 orders of magnitude). Thus, while
the bifurcation values in Figure 13 seem very large, they have a reasonable physical interpretation, if
e.g., considering large deflections. Although such large deflections may be hard to realize with the
cantilevers considered in our experiment, other similar systems, such as the one the studied in [27],
would allow such large deflections.

7. Conclusion

We have introduced a system consisting of an array of cantilevers that are coupled via magnetic
links and demonstrated that the damped-driven mixed FPTU-KG model provides a reasonably good
description of the dynamics observed in the experiments. This article focused on the topic of time-
periodic solutions (and their breather variants), both for the case of base and boundary excitation, and
also in the presence of a light mass defect. The bistable response of the system and the possibility of
hysteresis were featured both in our numerical and in our experimental results, in qualitative agreement
between the two.

Nevertheless, there are many other avenues for future research that this system inspires. One
includes revisiting the Hamiltonian variant of the problem to study how the stability of Hamiltonian
breathers is affected as the strength of the nonlinear parameter β varies and contrast this to the case
where the intersite nonlinearity is a polynomial (as in [20]) as opposed to a power-law, as in our
paper. Higher dimensional analogs of this system, in e.g., hexagonal or square configurations, would
also be worth exploring. Finally, the robustness of this system for the purposes of applications, such
as energy harvesting, would be another important research direction.
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