Mathematics in Engineering, 1(1): 147-173
DOI:10.3934/Mine.2018.1.147
Received: 16 July 2018
Accepted: 22 October 2018
http://www.aimspress.com/journal/mine

Research article

Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources

Sandro Salsa ${ }^{1}$, Francesco Tulone ${ }^{2}$ and Gianmaria Verzini ${ }^{1, *}$
${ }^{1}$ Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy
${ }^{2}$ Dipartimento di Matematica ed Informatica, Università di Palermo via Archirafi 34, 90123 Palermo, Italy
* Correspondence: Email: gianmaria.verzini@polimi.it.

Abstract

In this paper we construct a viscosity solution of a two-phase free boundary problem for a class of fully nonlinear equation with distributed sources, via an adaptation of the Perron method. Our results extend those in [Caffarelli, 1988], [Wang, 2003] for the homogeneous case, and of [De Silva, Ferrari, Salsa, 2015] for divergence form operators with right hand side.

Keywords: Perron method; two-phase free boundary problems; fully nonlinear elliptic equations

1. Introduction

In the last years the regularity theory for two phase problems governed by uniformly elliptic equations with distributed sources has reached a considerable level of completeness (see for instance the survey paper [10]) extending the results in the seminal papers [2, 4] (for the Laplace operator) and in $[17,18]$ (for concave fully non linear operators) to the inhomogeneous case, through a different approach first introduced in [7].

In particular the papers [15] and [8] provides optimal Lipschitz regularity for viscosity solutions and their free boundary for a large class of fully nonlinear equations.

Existence of a continuous viscosity solution through a Perron method has been established for linear operators in divergence form in [3] (homogeneous case) and in [9] (inhomogeneous case), and for a class of concave operators in [19]. The main aim of this paper is to adapt the Perron method to extend the results of [19] to the inhomogeneous case. Although we are largely inspired by the papers [3] and [9], the presence of a right hand side and the nonlinearity of the governing equation presents several delicate points, significantly in Section 6, which require new arguments.

We now introduce our class of free boundary problems and their weak (or viscosity) solutions.

Let Sym_{n} denote the space of $n \times n$ symmetric matrices and let $F: \operatorname{Sym}_{n} \rightarrow \mathbb{R}$ denote a positively homogeneous map of degree one, smooth except at the origin, concave and uniformly elliptic, i.e. such that there exist constants $0<\lambda \leq \Lambda$ with

$$
\lambda\|N\| \leq F(M+N)-F(M) \leq \Lambda\|N\| \quad \text { for every } M, N \in \operatorname{Sym}_{n} \text { with } N \geq 0,
$$

where $\|M\|=\max _{|x|=1}|M x|$ denotes the $\left(L^{2}, L^{2}\right)$-norm of the matrix M.
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain and $f_{1}, f_{2} \in C(\Omega) \cap L^{\infty}(\Omega)$. We consider the following two-phase inhomogeneous free boundary problem (f.b.p. in the sequel).

$$
\begin{cases}F\left(D^{2} u^{+}\right)=f_{1} & \text { in } \Omega^{+}(u):=\{u>0\} \tag{1.1}\\ F\left(D^{2} u^{-}\right)=f_{2} \chi_{\{u<0\}} & \text { in } \Omega^{-}(u)=\{u \leq 0\}^{\circ} \\ u_{v}^{+}(x)=G\left(u_{v}^{-}, x, v\right) & \text { along } \mathcal{F}(u):=\partial\{u>0\} \cap \Omega\end{cases}
$$

Here $v=v(x)$ denotes the unit normal to the free boundary $\mathcal{F}=\mathcal{F}(u)$ at the point x, pointing toward Ω^{+}, while the function $G(\beta, x, v)$ is Lipschitz continuous, strictly increasing in β, and

$$
\begin{equation*}
\inf _{x \in \Omega,|v|=1} G(0, x, v)>0 . \tag{1.2}
\end{equation*}
$$

Moreover, u_{v}^{+}and u_{v}^{-}denote the normal derivatives in the inward direction to $\Omega^{+}(u)$ and $\Omega^{-}(u)$ respectively.

As we said, the main aim of this paper is to adapt Perron's method in order to prove the existence of a weak (viscosity) solution of the above f.b.p., with assigned Dirichlet boundary conditions

For any u continuous in Ω we say that a point $x_{0} \in \mathcal{F}(u)$ is regular from the right (resp. left) if there exists a ball $B \subset \Omega^{+}(u)$ (resp. $\left.B \subset \Omega^{-}(u)\right)$ such that $\bar{B} \cap \mathcal{F}(u)=x_{0}$. In both cases, we denote with $v=v\left(x_{0}\right)$ the unit normal to ∂B at x_{0}, pointing toward $\Omega^{+}(u)$.

Definition 1.1. A weak (or viscosity) solution of the free boundary problem (1.1) is a continuous function u which satisfies the first two equality of (1.1) in viscosity sense (see Appendix A), and such that the free boundary condition is satisfied in the following viscosity sense:
(i) (supersolution condition) if $x_{0} \in \mathcal{F}$ is regular from the right with touching ball B, then, near x_{0},

$$
u^{+}(x) \geq \alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B, \text { with } \alpha \geq 0
$$

and

$$
u^{-}(x) \leq \beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B^{c}, \text { with } \beta \geq 0,
$$

with equality along every non-tangential direction, and

$$
\alpha \leq G\left(\beta, x_{0}, v\left(x_{0}\right)\right) ;
$$

(ii) (subsolution condition) if $x_{0} \in \mathcal{F}$ is regular from the left with touching ball B, then, near x_{0},

$$
u^{+}(x) \leq \alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B^{c}, \text { with } \alpha \geq 0
$$

and

$$
u^{-}(x) \geq \beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B, \text { with } \beta \geq 0,
$$

with equality along every non-tangential direction, and

$$
\alpha \geq G\left(\beta, x_{0}, v\left(x_{0}\right)\right) ;
$$

We will construct our solution via Perron's method, by taking the infimum over the following class of admissible supersolutions \mathcal{S}.

Definition 1.2. A locally Lipschitz continuous function $w \in C(\bar{\Omega})$ is in the class \mathcal{S} if
(a) w is a solution in viscosity sense to

$$
\begin{cases}F\left(D^{2} w^{+}\right) \leq f_{1} & \text { in } \Omega^{+}(w) \\ F\left(D^{2} w^{-}\right) \geq f_{2 \chi} \chi_{\{u<0\}} & \text { in } \Omega^{-}(w) ;\end{cases}
$$

(b) if $x_{0} \in \mathcal{F}(w)$ is regular from the left, with touching ball B, then

$$
w^{+}(x) \leq \alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B^{c}, \text { with } \alpha \geq 0
$$

and

$$
w^{-}(x) \geq \beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B, \text { with } \beta \geq 0,
$$

with

$$
\alpha \leq G\left(\beta, x_{0}, v\left(x_{0}\right)\right) ;
$$

(c) if $x_{0} \in \mathcal{F}(w)$ is not regular from the left then

$$
w(x)=o\left(\left|x-x_{0}\right|\right) .
$$

The last ingredient we need is that of minorant subsolution.
Definition 1.3. A locally Lipschitz continuous function $\underline{u} \in C(\bar{\Omega})$ is a strict minorant if
(a) \underline{u} is a solution in viscosity sense to

$$
\begin{cases}F\left(D^{2} \underline{u}^{+}\right) \geq f_{1} & \text { in } \Omega^{+}(\underline{u}) \\ F\left(D^{2} \underline{u}^{-}\right) \leq f_{2} X_{\{\underline{u}<0\}} & \text { in } \Omega^{-}(\underline{u})\end{cases}
$$

(b) every $x_{0} \in \mathcal{F}(\underline{u})$ is regular from the right, with touching ball B, and near x_{0}

$$
\underline{u}^{+}(x) \geq \alpha\left\langle x-x_{0}, v\right\rangle^{+}+\omega\left(\left|x-x_{0}\right|\right)\left|x-x_{0}\right| \quad \text { in } B, \text { with } \alpha>0,
$$

where $\omega(r) \rightarrow 0$ as $r \rightarrow 0^{+}$, and

$$
\underline{u}^{-}(x) \leq \beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right) \quad \text { in } B^{c}, \text { with } \beta \geq 0,
$$

with

$$
\alpha>G\left(\beta, x_{0}, v\left(x_{0}\right)\right) .
$$

Our main result is the following.
Theorem 1.4. Let g be a continuous function on $\partial \Omega$. If
(a) there exists a strict minorant \underline{u} with $\underline{u}=g$ on $\partial \Omega$ and
(b) the $\operatorname{set}\{w \in \mathcal{S}: w \geq \underline{u}, w=g$ on $\partial \Omega\}$ is not empty, then

$$
u=\inf \{w: w \in \mathcal{S}, w \geq \underline{u}\}
$$

is a weak solution of (1.1) such that $u=g$ on $\partial \Omega$.
Once existence of a solution is established, we turn to the analysis of the regularity of the free boundary.

Theorem 1.5. The free boundary $\mathcal{F}(u)$ has finite ($n-1$)-dimensional Hausdorff measure. More precisely, there exists a universal constant $r_{0}>0$ such that for every $r<r_{0}$, for every $x_{0} \in \mathcal{F}(u)$,

$$
\mathcal{H}^{n-1}\left(\mathcal{F}(u) \cap B_{r}\left(x_{0}\right)\right) \leq r^{n-1} .
$$

Moreover, the reduced boundary $\mathcal{F}^{*}(u)$ of $\Omega^{+}(u)$ has positive density in \mathcal{H}^{n-1} measure at any point of $F(u)$, i.e. for $r<r_{0}, r_{0}$ universal

$$
\mathcal{H}^{n-1}\left(\mathcal{F}^{*}(u) \cap B_{r}(x)\right) \geq c r^{n-1},
$$

for every $x \in \mathcal{F}(u)$. In particular

$$
\mathcal{H}^{n-1}\left(\mathcal{F}(u) \backslash \mathcal{F}^{*}(u)\right)=0 .
$$

Using the results in [8] we deduce the following regularity result.
Corollary 1.6. $\mathcal{F}(u)$ is a $C^{1, \gamma}$ surface in a neighborhood of \mathcal{H}^{n-1} a.e. point $x_{0} \in \mathcal{F}(u)$.
Notation. Constants c, C and so on will be termed "universal" if they only depend on $\lambda, \Lambda, n, \Omega$, $\left\|f_{i}\right\|_{\infty}$ and g.

2. Asymptotic developments

In this section we show that positive solutions of $F\left(D^{2} u\right)=f$ (with f continuous up to the boundary) have asymptotically linear behavior at any boundary point which admits a touching ball, either from inside or from outside the domain. We need the following preliminary result.

Lemma 2.1. Let $r>0, \delta>0, \sigma>0, B_{1}^{+}:=B_{1} \cap\left\{x_{1}>0\right\}$ and let $E \subset \partial B_{1}^{+} \cap\left\{x_{1}>0\right\}$ be any subset such that there exists $\bar{x} \in E$ with

$$
E \supset \partial B_{1}^{+} \cap\left\{x_{1}>0\right\} \cap B_{\sigma}(\bar{x}) .
$$

Let u be the solution to

$$
\begin{cases}F\left(D^{2} u\right)=r & \text { in } B_{1}^{+} \tag{2.1}\\ u=\delta g_{E} & \text { on } \partial B_{1}^{+},\end{cases}
$$

where g_{E} is a cut-off function, $g_{E}=1$ on E. If r is sufficiently small then there exists a positive constant $C=C(\delta, \sigma)$ such that

$$
u(x) \geq C x_{1} \quad \text { in } B_{1 / 2}^{+} .
$$

Proof. We write

$$
F\left(D^{2} u\right)=\sum_{i, j=1}^{n} a_{i j}(x) u_{x_{i} x_{j}} \equiv L_{u} u,
$$

with $(F=F(M))$

$$
a_{i j}=\int_{0}^{1} \frac{\partial F}{\partial M_{i j}}\left(t D^{2} u\right) d t .
$$

We have

$$
\lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}
$$

Denote $u=v+w$ with $L_{u} v=0, v=\delta \chi_{E}$ on ∂B_{1}^{+}and $L_{u} w=r, w=0$ on ∂B_{1}^{+}. By [11] we have that $v\left(e_{1} / 2\right) \geq C \delta$, for some constant $C=C(n, \lambda, \Lambda, \sigma)$, and by the Boundary Harnack principle applied to v and $u_{1}(x)=x_{1}$ we get that, in $B_{1 / 2}^{+}$, for some positive constants c_{0} and c_{1},

$$
c_{0} \delta x_{1} \leq v \leq c_{1} \delta x_{1}
$$

Put $z(x)=\frac{1}{2 \min a_{11}}\left(x_{1}-x_{1}^{2}\right) r$. The function z is positive in B_{1}^{+}and

$$
L_{u} z=-\frac{a_{11}}{\min a_{11}} r \leq-r .
$$

Therefore $L_{u}(w+z) \leq 0$ in B_{1}^{+}and $w+z \geq 0$ on ∂B_{1}^{+}. By the maximum principle $w \geq-c_{2} r x_{1}$ in B_{1}^{+}, where $c_{2}=\frac{a_{11}}{\min a_{11}}>0$.

Summing up we get, in $B_{1 / 2}^{+}$,

$$
u=v+w \geq\left(c_{0} \delta-c_{2} r\right) x_{1} \geq c_{3} x_{1}
$$

for r small enough, having $c_{3}>0$.
Lemma 2.2. Let Ω_{1} be a bounded domain with $0 \in \partial \Omega_{1}$ and

$$
B_{1}^{+}:=B_{1} \cap\left\{x_{1}>0\right\} \subset \Omega_{1} .
$$

Let u be non-negative and Lipschitz in $\bar{\Omega}_{1} \cap B_{2}$, such that $F\left(D^{2} u\right)=f$ in $\Omega_{1} \cap B_{2}$ and that $u=0$ in $\partial \Omega_{1} \cap B_{2}$. Then there exists $\alpha \geq 0$ such that

$$
u(x)=\alpha x_{1}^{+}+o(|x|) \quad \text { as } x \rightarrow 0, x_{1}>0 .
$$

Proof. Let $\alpha_{k}=\sup \left\{\beta: u(x) \geq \beta x_{1}\right.$ in $\left.B_{1 / k}^{+}\right\}$for $k \geq 1$. Then the sequence $\left\{\alpha_{k}\right\}_{k}$ is increasing and $\alpha_{k} \leq L$ for any k, where L is the Lipschitz constant of u. Let $\alpha=\lim _{k} \alpha_{k}$. By definition, $u(x) \geq \alpha x_{1}+o(|x|)$ in B_{1}^{+}, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Suppose by contradiction that $u(x) \neq \alpha x_{1}+o(|x|)$ in B_{1}^{+}. Then there exist a constant $\delta_{0}>0$ and a sequence $\left\{x_{k}\right\}_{k}=\left\{\left(x_{1, k}, x_{2, k}, \ldots, x_{n, k}\right)\right\}_{k} \subset B_{1}^{+}$, with $\left|x_{k}\right|=r_{k} \rightarrow 0$, such that

$$
u\left(x_{k}\right) \geq \alpha x_{1, k}+\delta_{0} r_{k} .
$$

Since u is Lipschitz, a simple computation implies that

$$
u(x) \geq \alpha x_{1}+\frac{\delta_{0}}{2} r_{k} \geq \alpha_{k} x_{1}+\frac{\delta_{0}}{2} r_{k} \quad \text { in }\left\{x:|x|=r_{k},\left|x-x_{k}\right| \leq \frac{\delta_{0} r_{k}}{4 L}\right\} .
$$

Let

$$
u_{k}(x)=\frac{u\left(r_{k} x\right)}{r_{k}}-\alpha_{k} x_{1} .
$$

The functions u_{k} are defined in B_{1}^{+}and, by assumption of homogeneity on F, we have

$$
F\left(D^{2} u_{k}(x)\right)=F\left(r_{k} D^{2} u\left(r_{k} x\right)\right)=r_{k} F\left(D^{2} u\left(r_{k} x\right)\right)=r_{k} f\left(r_{k} x\right) \leq r_{k}\|f\|_{\infty}
$$

Moreover $u_{k}(x) \geq 0$ on ∂B_{1}^{+}and $u_{k} \geq \delta_{0} / 2$ in $E_{k}=\left\{x: x \in \partial B_{1}^{+}, x_{1}>0,\left|x-x_{k}\right| \leq \frac{\delta_{0}}{4 L}\right\}$. We deduce that u_{k} is a supersolution of (2.1). By comparison and Lemma 2.1, there exists $C>0$, not depending on k, such that

$$
u_{k}(x)=\frac{1}{r_{k}} u\left(r_{k} x\right)-\alpha_{k} x_{1} \geq C x_{1} \quad \text { in } B_{1 / 2}^{+} .
$$

Writing $z=r_{k} x$ we obtain $u(z) \geq\left(\alpha_{k}+C\right) z_{1}$ in $B_{r_{k} / 2}^{+}$. Choosing k, k^{\prime} in such a way that $\alpha_{k}+C>\alpha$ and $k^{\prime}>2 / r_{k}$ we obtain

$$
\alpha_{k^{\prime}}>\alpha,
$$

a contradiction.
Lemma 2.3. Let Ω_{1} be a bounded domain such that, writing $B_{1}^{-}:=B_{1} \cap\left\{x_{1}<0\right\}$,

$$
\overline{B_{1}^{-}} \cap \bar{\Omega}_{1}=\{0\} .
$$

Let u be non-negative and Lipschitz in $\bar{\Omega}_{1} \cap B_{2}(0)$, such that $F\left(D^{2} u\right)=f$ in $\Omega_{1} \cap B_{2}(0)$ and that $u=0$ in $\partial \Omega_{1} \cap B_{2}(0)$. Then there exists $\alpha \geq 0$ such that

$$
u(x)=\alpha x_{1}^{+}+o(|x|) \quad \text { as } x \rightarrow 0, x \in \Omega_{1} .
$$

Proof. By assumption, we have that

$$
\Omega_{1} \cap B_{1} \subset B_{1}^{+} .
$$

Then we can extend u as the zero function on $B_{1}^{+} \backslash \Omega_{1}$ so that it is a Lipschitz, non-negative solution to

$$
F\left(D^{2} u\right) \geq-\|f\|_{\infty} \quad \text { in } B_{1}^{+}
$$

Reasoning in a similar way as in Lemma 2.2, we define $\alpha_{k}=\inf \left\{\beta: u(x) \leq \beta x_{1}\right.$ in $\left.B_{1 / k}\right\}, k \geq 1$. Then $0 \leq \alpha_{k}<+\infty$ (u is Lipschitz), and $\alpha_{k} \searrow \alpha \geq 0$, with $u(x) \leq \alpha x_{1}+o(|x|)$ in B_{1}^{+}. Again, let us suppose by contradiction that

$$
u\left(x_{k}\right) \leq \alpha x_{1, k}-\delta_{0} r_{k} .
$$

where $\delta_{0}>0$ and $\left\{x_{k}\right\}_{k}=\left\{\left(x_{1, k}, x_{2, k}, \ldots, x_{n, k}\right)\right\}_{k} \subset B_{1}^{+}$, is such that $\left|x_{k}\right|=r_{k} \rightarrow 0$. As before, such inequality propagates by Lipschitz continuity:

$$
u(x) \leq \alpha x_{1}-\frac{\delta_{0}}{2} r_{k} \leq \alpha_{k} x_{1}-\frac{\delta_{0}}{2} r_{k} \quad \text { in }\left\{x:|x|=r_{k},\left|x-x_{k}\right| \leq \frac{\delta_{0} r_{k}}{4 L}\right\} .
$$

Defining the elliptic, homogeneous operator $F^{*}(M)=-F(-M)$, we have that the functions

$$
u_{k}(x)=\alpha_{k} x_{1}-\frac{u\left(r_{k} x\right)}{r_{k}}
$$

solve

$$
F^{*}\left(D^{2} u_{k}(x)\right) \leq r_{k}\|f\|_{\infty} \quad \text { in } B_{1}^{+},
$$

with $u_{k}(x) \geq 0$ on ∂B_{1}^{+}and $u_{k} \geq \delta_{0} / 2$ in $E_{k}=\left\{x: x \in \partial B_{1}^{+}, x_{1}>0,\left|x-x_{k}\right| \leq \frac{\delta_{0}}{4 L}\right\}$. As a consequence, a contradiction can be obtained by reasoning as in Lemma 2.2.

Lemma 2.4. Let Ω_{1} be bounded domain with $0 \in \partial \Omega_{1}$ and

$$
\text { either } B_{1}\left(e_{1}\right) \subset \Omega_{1} \quad \text { or } \bar{B}_{1}\left(-e_{1}\right) \cap \bar{\Omega}_{1}=\{0\} \text {. }
$$

Let u be non-negative and Lipschitz in $\bar{\Omega}_{1} \cap B_{2}(0)$, such that $F\left(D^{2} u\right)=f$ in $\Omega_{1} \cap B_{2}(0)$ and that $u=0$ in $\partial \Omega_{1} \cap B_{2}(0)$. Then there exists $\alpha \geq 0$ such that

$$
u(x)=\alpha x_{1}+o(|x|)
$$

as $x \rightarrow 0$ and either $x \in B_{1}\left(e_{1}\right)$ or $x \in \Omega$.
Proof. In both cases, we use the smooth change of variable

$$
\left\{\begin{array}{l}
y_{1}=x_{1}-\psi\left(x^{\prime}\right) \\
y^{\prime}=x^{\prime}
\end{array}\right.
$$

where $\psi\left(x^{\prime}\right)$ is smooth, with $\psi\left(x^{\prime}\right)=1-\sqrt{1-\left|x^{\prime}\right|^{2}}$ for $\left|x^{\prime}\right|$ small. Then, by direct calculations, the function $\tilde{u}(y)=u\left(y_{1}+\psi\left(y^{\prime}\right), y^{\prime}\right)$ satisfies

$$
\tilde{F}\left(D^{2} \tilde{u}, \nabla \tilde{u}, y^{\prime}\right)=F\left(D^{2} u\right)
$$

where \tilde{F} is still a uniformly elliptic operator. As a consequence the lemma follows by arguing as in the proofs of Lemmas 2.2, 2.3, with minor changes.

We conclude this section by providing a uniform estimate from below of the development coefficient α, in case the touching ball is inside the domain.

Lemma 2.5. Let $u \in C\left(\overline{B_{r}\left(r e_{1}\right)}\right), r \leq 1$, be such that

$$
\left\{\begin{array}{l}
F\left(D^{2} u\right)=f \quad \text { in } B_{r}\left(r e_{1}\right) \\
u \geq 0 \\
u(0)=0
\end{array}\right.
$$

Moreover, assume that $u\left(r e_{1}\right) \geq C r$, for some $C>0$. Then

$$
u(x) \geq \alpha x_{1}+o(|x|), \quad \text { where } \alpha \geq c_{1} \frac{u\left(r e_{1}\right)}{r}-c_{2} r\|f\|_{\infty}
$$

as $x \rightarrow 0$, for $r \leq \bar{r}$, where c_{1}, c_{2} and \bar{r} only depend on λ, Λ, n.
Proof. Let

$$
u_{r}(x)=\frac{u\left(r\left(e_{1}+x\right)\right)}{r}, \quad x \in B_{1}(0)
$$

Then

$$
\left\{\begin{array}{l}
F\left(D^{2} u_{r}\right)=r f \quad \text { in } B_{1} \\
u_{r} \geq 0 \\
u_{r}\left(-e_{1}\right)=0
\end{array}\right.
$$

By Harnack's inequality [5, Theorem 4.3] we have that

$$
\inf _{\partial B_{1 / 2}} u_{r} \geq c\left(u_{r}(0)-r\|f\|_{\infty}\right)=: a,
$$

where c only depends on λ, Λ, n. We are in a position to apply Lemma A.2, which provides

$$
u_{r}(x) \geq \alpha\left(x_{1}+1\right)+o\left(\left|x+e_{1}\right|\right), \quad \text { with } \alpha \geq c_{1} a-c_{2} r\|f\|_{\infty}=c_{1}^{\prime} u_{r}(0)-c_{2}^{\prime} r\|f\|_{\infty}
$$

as $x \rightarrow-e_{1}$, and the lemma follows.
Remark 2.6. Notice that the above results can be applied both to $F\left(D^{2} u^{+}\right)=f_{1}$ in $\Omega^{+}(u)$ and to $F\left(D^{2} u^{-}\right)=f_{2} \chi_{\{u<0\}}$ in $\Omega^{-}(w)$.

3. The function u^{+}is Lipschitz continuous

In this section we adapt the strategy developed in [3], in order to show that u^{+}is locally Lipschitz. To this aim we need to use the following almost-monotonicity formula, provided in [6, 14].

Proposition 3.1. Let $u_{i}, i=1,2$ be continuous, non-negative functions in B_{1}, satisfying $\Delta u_{i} \geq-1$, $u_{1} \cdot u_{2}=0$ in B_{1}. Then there exist universal constants C_{0} and r_{0}, such that the functional

$$
\Phi(r):=\frac{1}{r^{4}} \int_{B_{r}} \frac{\left|\nabla u_{1}\right|^{2}}{r^{n-2}} \int_{B_{r}} \frac{\left|\nabla u_{2}\right|^{2}}{r^{n-2}}
$$

satisfies, for $0<r \leq r_{0}$,

$$
\Phi(r) \leq C_{0}\left(1+\left\|u_{1}\right\|_{L^{2}\left(B_{1}\right)}^{2}+\left\|u_{2}\right\|_{L^{2}\left(B_{1}\right)}^{2}\right)^{2}
$$

Lemma 3.2. Let $w \in \mathcal{S}$. There exists $\tilde{w} \in \mathcal{S}$ such that

1. $F\left(D^{2} \tilde{w}\right)=f_{1}$ in $\Omega^{+}(\tilde{w})$,
2. $\tilde{w} \leq w, \tilde{w}^{-}=w^{-}$, and
3. $\tilde{w} \geq \underline{u}$ in Ω.

Proof. Let $w \in \mathcal{S}$ and $\Omega^{+}=\Omega^{+}(w)$. We define

$$
\mathcal{V}:=\left\{v \in C\left(\overline{\Omega^{+}}\right): F\left(D^{2} v\right) \geq f_{1} \chi_{\{v>0\}} \text { in } \Omega^{+}, v \geq 0 \text { in } \Omega^{+}, v=w \text { on } \partial \Omega^{+}\right\}
$$

and

$$
\tilde{w}(x):= \begin{cases}\sup \{v(x): v \in \mathcal{V}\} & x \in \Omega^{+} \\ w(x) & \text { elsewhere }\end{cases}
$$

Since $\underline{u}^{+} \in \mathcal{V}$ we obtain that \mathcal{V} is not empty and that $\underline{u} \leq \tilde{w} \leq w$. Moreover \tilde{w} is a solution of the obstacle problem (see [13])

$$
\begin{cases}F\left(D^{2} \tilde{w}\right)=f_{1} & \text { in }\{\tilde{w}>0\} \\ \tilde{w} \geq 0 & \text { in } \Omega^{+} \\ \tilde{w}=w & \text { on } \partial \Omega^{+} .\end{cases}
$$

In particular, regularity results for the obstacle problem for fully nonlinear equations imply that \tilde{w} is $C^{1,1}$ in Ω^{+}(see [13]). To conclude that $\tilde{w} \in \mathcal{S}$, we need to show that the free boundary conditions in Definition 1.2 hold true. Let $x_{0} \in \mathcal{F}(\tilde{w})$: if $x_{0} \in \mathcal{F}(w)$ too, then the free boundary condition follows from the fact that $\tilde{w} \leq w$; otherwise, $x_{0} \in \Omega^{+}$is an interior zero of \tilde{w}, and the free boundary condition follows by the $C^{1,1}$ regularity of \tilde{w}.

Lemma 3.3. Let $w \in \mathcal{S}$ with $F\left(D^{2} w\right)=f_{1}$ in $\Omega^{+}(w)$, and let $x_{0} \in \mathcal{F}(w)$ be regular from the right. Then u admits developments

$$
\begin{aligned}
& w^{+}(x)=\alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right), \\
& w^{-}(x) \geq \beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right),
\end{aligned}
$$

with $0 \leq \alpha \leq G\left(\beta, x_{0}, v\left(x_{0}\right)\right)$, and

$$
\alpha \beta \leq C_{0}\left(1+\left\|u_{1}\right\|_{2}^{2}+\left\|u_{2}\right\|_{2}^{2}\right) .
$$

Proof. If x_{0} is not regular from the left, then by definition of \mathcal{S} the asymptotic developments hold with $\alpha=\beta=0$ and there is nothing to prove. On the other hand, if x_{0} is also regular from the left, then the asymptotic developments and the free boundary condition hold true by definition of \mathcal{S} and by Lemma 2.4. Also in this case, if $\alpha=0$ then there is nothing else to prove, thus we are left to deal with the case $\alpha>0$.

Reasoning as in [3, Lemma 3], see also [19, Lemma 4.3], one can show that

$$
\begin{equation*}
\Phi(r) \geq C(n)(\alpha+o(1))^{2}(\beta+o(1))^{2} \tag{3.1}
\end{equation*}
$$

(recall that $\Phi(r)$ is defined in Proposition 3.1). On the other hand, since F is concave,

$$
\Delta w^{ \pm} \geq-c\|f\|_{\infty}
$$

The conclusion follows by combining Proposition 3.1 with (3.1).
Proposition 3.4. For every $D \subset \subset \Omega$ there exists a constant L_{D}, depending only on D, G, \underline{u} and \mathcal{S}, such that

$$
\frac{\left|w^{+}(x)-w^{+}(y)\right|}{|x-y|} \leq L_{D}
$$

for every $x, y \in D, x \neq y$, and for every $w \in \mathcal{S}$ with $F\left(D^{2} w\right)=f_{1}$ in $\Omega^{+}(w)$.
Proof. Let $x_{0} \in \Omega^{+}(w) \cap D$ such that

$$
r:=\operatorname{dist}\left(x_{0}, \mathcal{F}(w)\right)<\frac{1}{2} \operatorname{dist}(\bar{D}, \partial \Omega) .
$$

We will show that there exists $M>0$, not depending on w, such that

$$
\frac{w\left(x_{0}\right)}{r} \leq M,
$$

and the lemma will follow by Schauder estimates and Harnack inequality. By contradiction, let M large to be fixed and let as assume that

$$
\frac{w\left(x_{0}\right)}{r}>M .
$$

Then Lemma 2.5 applies and we obtain

$$
w(x) \geq \alpha_{M}\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right),
$$

where $\alpha_{M}=c_{1} M-c_{2} r\|f\|_{\infty}>0$ for M sufficiently large. Then x_{0} is regular from the right and Lemma 3.3 applies, with $\alpha_{M} \leq \alpha \leq G\left(\beta, x_{0}, v\left(x_{0}\right)\right)$, providing

$$
\alpha_{M} G^{-1}\left(\alpha_{M}\right) \leq C_{0}\left(1+\left\|u_{1}\right\|_{2}^{2}+\left\|u_{2}\right\|_{2}^{2}\right),
$$

where $G^{-1}(\alpha):=\inf _{x, v} G^{-1}(\alpha, x, v)$. This provides a contradiction for M sufficiently large.
Corollary 3.5. u^{+}is locally Lipschitz and satisfies $F\left(D^{2} u\right)=f_{1}$ in $\Omega^{+}(u)$.

4. The function u is Lipschitz continuous

Now we turn to the Lipschitz continuity of u.
Lemma 4.1. If $w_{1}, w_{2} \in \mathcal{S}$ then $\min \left\{w_{1}, w_{2}\right\} \in \mathcal{S}$.
Proof. This follows by standard arguments, see e.g. [9, Lemma 4.1].
To prove that u is Lipschitz continuous we use the double replacement technique introduced in [9].
Let $w \in \mathcal{S}$ with $w\left(x_{0}\right)<0$ and

$$
B:=B_{R}\left(x_{0}\right), \quad \Omega_{1}:=\Omega^{+}(w) \backslash \bar{B} .
$$

Working on Ω_{1}, we define

$$
\mathcal{V}_{1}:=\left\{v: F\left(D^{2} v\right) \geq f_{1} \mathcal{X}_{\{v>0\}} \text { in } \Omega_{1}, v \geq 0 \text { in } \Omega_{1}, v=w \text { on } \partial \Omega_{1} \backslash \partial B, v=0 \text { on } \partial B\right\}
$$

(which is non empty, for R sufficiently small, as $\underline{u}^{+} \in \mathcal{V}_{1}$). Then

$$
w_{1}:=\sup \mathcal{V}_{1}
$$

solves the obstacle problem (see [13])

$$
\begin{equation*}
F\left(D^{2} w_{1}\right) \geq f_{1} \text { in }\left\{w_{1}>0\right\}, \quad w_{1} \geq 0 \text { in } \Omega_{1} . \tag{4.1}
\end{equation*}
$$

On the other hand, working on B, let

$$
\mathcal{V}_{2}:=\left\{v: F\left(D^{2} v\right) \geq f_{2} \chi_{\{v>0\}} \text { in } B, v \geq 0 \text { in } B, v=w^{-} \text {on } \partial B\right\}
$$

(which is non empty, as $w^{-} \in \mathcal{V}_{2}$). Again,

$$
w_{2}:=\sup \mathcal{V}_{2}
$$

solves the obstacle problem

$$
\begin{equation*}
F\left(D^{2} w_{2}\right) \geq f_{1} \text { in }\left\{w_{2}>0\right\}, \quad w_{2} \geq 0 \text { in } B . \tag{4.2}
\end{equation*}
$$

Under the above notation, the double replacement \tilde{w} of w, relative to B, is defined as

$$
\tilde{w}:= \begin{cases}w_{1} & \text { in } \Omega_{1} \\ -w_{2} & \text { in } B \\ w & \text { otherwise } .\end{cases}
$$

Lemma 4.2. Let $w \in \mathcal{S}$ with $w\left(x_{0}\right)=-h<0$. There exists $>_{\varepsilon} 0$ (depending on $\operatorname{dist}\left(x_{0}, \partial \Omega\right)$ and \underline{u}) such that:

1. the double replacement \tilde{w} of w, relative to $B_{h_{\varepsilon}}\left(x_{0}\right)$, satisfies $\underline{u} \leq \tilde{w} \leq w$ in Ω;
2. $\tilde{w}<0$ and $F\left(D^{2} \tilde{w}\right)=f_{2}$ in $B_{h_{\varepsilon}}\left(x_{0}\right)$, with

$$
|\nabla \tilde{w}| \leq \frac{C}{\varepsilon}+C_{\varepsilon}\left\|f_{2}\right\|_{\infty} \quad \text { in } B_{h_{\varepsilon} / 2}\left(x_{0}\right) ;
$$

3. $\tilde{w} \in \mathcal{S}$.

Proof. The inequality $w_{1} \leq w$ in Ω_{1} follows by the maximum principle, while $w_{2} \geq-w$ in B because $w^{-} \in \mathcal{V}_{2}$. On the other hand, provided ε is sufficiently small (depending on the Lipschitz constant of \underline{u}), we have that $\underline{u}<0$ in $B:=B_{h_{s}}\left(x_{0}\right)$ and $u^{*} \in \mathcal{V}_{1}$, so that $w_{1} \geq \underline{u}$; finally, by the maximum principle in $\left\{w_{2}>0\right\}$, also $-w_{2} \geq \underline{u}$, and part 1. follows.

Turning to part 2 ., assume by contradiction that $\partial\left\{w_{2}>0\right\} \cap B_{h_{\varepsilon}}\left(x_{0}\right) \neq \emptyset$. Then, by the regularity properties of the obstacle problem (4.2) (see [13]), we obtain that

$$
w_{2}\left(x_{0}\right) \leq C\left(h_{\varepsilon}\right)^{2} .
$$

Since $-w_{2}\left(x_{0}\right) \leq w\left(x_{0}\right)=-h$, we obtain a contradiction for ε sufficiently small. Then $w_{2}>0$ in $B_{h_{\varepsilon}}\left(x_{0}\right)$, w_{2} solves the equation by (4.2), and the remaining part of 2. follows by standard Schauder estimates and Harnack inequality.

Coming to part 3., the fact that \tilde{w} satisfies (a) in Definition 1.2 follows by equations (4.1), (4.2) and by part 2 . above, and we are left to check the free boundary conditions. For $\bar{x} \in \mathcal{F}(\tilde{w})$, three possibilities may occur. If $\bar{x} \in \mathcal{F}(w)$ then, since $\tilde{w} \leq w$, then \tilde{w} has the correct asymptotic behavior both when \bar{x} is regular and when it is not (recall that $G(0, \cdot, \cdot)>0$. If $\bar{x} \in \partial\left\{w_{1}>0\right\} \cap \Omega_{1}$, then we can use again the regularity of the obstacle problem (4.1) to obtain the correct asymptotic behavior. We are left to the final case, when $\bar{x} \in \partial B \cap \Omega^{+}(w)$. By Proposition 3.4, let us denote with L the Lipschitz constant of w in $B_{\text {dist }\left(x_{0}, \partial \Omega\right) / 2}\left(x_{0}\right)$. Then

$$
\tilde{w} \leq w^{+} \leq L h_{\varepsilon} \quad \text { in } B_{2 h_{\varepsilon}}\left(x_{0}\right) .
$$

Defining

$$
\tilde{w}_{\varepsilon}(x):=\frac{\tilde{w}\left(x_{0}+\varepsilon h x\right)}{\varepsilon h}
$$

we have that

$$
\begin{cases}F\left(D^{2} \tilde{w}_{\varepsilon}^{+}\right)=\varepsilon h f_{1} & \text { in }\left(B_{2} \backslash \bar{B}_{1}\right) \cap \Omega^{+}\left(w_{\varepsilon}\right) \\ \tilde{w}_{\varepsilon}^{+} \leq L & \text { on } \partial B_{2} \\ \tilde{w}_{\varepsilon}^{+} \leq 0 & \text { on } \partial B_{1} \cap \partial \Omega^{+}\left(w_{\varepsilon}\right) .\end{cases}
$$

Then Lemma A. 1 applies, yielding

$$
\tilde{w}_{\varepsilon}^{+} \leq \alpha\left\langle x-\bar{x}_{\varepsilon}, v\left(\bar{x}_{\varepsilon}\right)\right\rangle^{+}+o\left(\left|x-\bar{x}_{\varepsilon}\right|\right),
$$

where

$$
\alpha \leq c_{1} L+c_{2} \varepsilon h\left\|f_{1}\right\|_{\infty}, \quad \bar{x}_{\varepsilon}:=\frac{\bar{x}-x_{0}}{\varepsilon h}
$$

for universal c_{1}, c_{2}. Going back to \tilde{w} we obtain

$$
\begin{equation*}
\tilde{w}^{+} \leq \alpha\langle x-\bar{x}, v\rangle^{+}+o(|x-\bar{x}|), \quad \alpha \leq \bar{L} \tag{4.3}
\end{equation*}
$$

where $v=\left(\bar{x}-x_{0}\right) /\left|\bar{x}-x_{0}\right|$.
On the other hand, we can apply Lemma 2.5 to $\left(-w_{2}\right)_{\varepsilon}$, obtaining

$$
\tilde{w}_{\varepsilon}^{-}=-\left(w_{2}\right)_{\varepsilon} \geq \beta\left\langle x-\bar{x}_{\varepsilon}, v\left(\bar{x}_{\varepsilon}\right)\right\rangle^{+}+o\left(\left|x-\bar{x}_{\varepsilon}\right|\right),
$$

where

$$
\beta \geq \frac{c_{1}^{\prime}}{\varepsilon}-c_{2}^{\prime} \varepsilon h\left\|f_{1}\right\|_{\infty}
$$

for universal $c_{1}^{\prime}, c_{2}^{\prime}$, and thus

$$
\begin{equation*}
\tilde{w}^{-} \geq \beta\langle x-\bar{x}, v\rangle^{-}+o(|x-\bar{x}|), \quad \beta \geq \frac{\bar{c}}{\varepsilon} . \tag{4.4}
\end{equation*}
$$

Comparing (4.3) and (4.4) we have that, choosing ε small so that

$$
\bar{L}<\inf _{x, v} G(\bar{c} / \varepsilon, x, v),
$$

the free boundary condition holds true.
Corollary 4.3. Let $u\left(x_{0}\right)=-h<0$. There exist an non-increasing sequence $\left\{\tilde{w}_{k}\right\} \subset \mathcal{S}, \tilde{w}_{k} \geq \underline{u}$, and $\varepsilon>0$, depending on $\operatorname{dist}\left(x_{0}, \partial \Omega\right)$ and \underline{u}, such that the following hold:

1. $\tilde{w}_{k}\left(x_{0}\right) \searrow u\left(x_{0}\right)$;
2. $\tilde{w}_{k}<0$ and $F\left(D^{2} \tilde{w}_{k}^{-}\right)=f_{2}$ in $B_{\varepsilon h}\left(x_{0}\right)$;
3. the sequence $\left\{\tilde{w}_{k}\right\}$ is uniformly Lipschitz in $B_{\varepsilon h / 2}\left(x_{0}\right)$, with Lipschitz constant L_{0} depending on $\operatorname{dist}\left(x_{0}, \partial \Omega\right)$.
4. $\tilde{w}_{k} \searrow$ u uniformly on $B_{h \in / 4}$

Proof. Let $u\left(x_{0}\right)=-h<0,\left\{w_{k}\right\} \subset \mathcal{S}$ be such that $w_{k} \searrow u$ in some neighborhood of x_{0} and $\left\{\tilde{w}_{k}\right\} \subset$ \mathcal{S} be the corresponding double replacements, as in Lemma 4.2. Then first three points are direct consequence of the lemma above, and we are left to prove that $\tilde{w}_{k} \searrow u$ uniformly on $B_{h \in / 4}$. By equicontinuity, $\tilde{w}_{k} \rightarrow \tilde{w}$ in $B_{\epsilon h / 2}\left(x_{0}\right)$, and suppose by contradiction that $\tilde{w}\left(x_{1}\right)>u\left(x_{1}\right)$ for some $x_{1} \in$ $B_{\epsilon h / 4}\left(x_{0}\right)$. Then consider a new sequence $\left\{v_{k}\right\}_{k}$ converging to u at x_{1} and define $\left\{\tilde{u}_{k}\right\}_{k}$ as the double replacement of $\left\{\min \left\{\tilde{v}_{k}, \tilde{w}_{k}\right\}\right\}_{k}$ in $B_{\epsilon h / 2}\left(x_{0}\right)$. Then $\tilde{u}_{k} \rightarrow \tilde{u}, \tilde{u} \leq \tilde{w}$ in $B_{\epsilon h / 2}\left(x_{0}\right), \tilde{u}\left(x_{0}\right)=\tilde{w}\left(x_{0}\right)$ and $\tilde{u}\left(x_{1}\right)<\tilde{w}\left(x_{1}\right)$. Since $F\left(D^{2} \tilde{w}\right)=F\left(D^{2} \tilde{u}\right)=f_{2}$ in $B_{\epsilon h / 2}\left(x_{0}\right)$, this contradicts the strong maximum principle.
Corollary 4.4. For any $\bar{D} \subset \Omega$ there exists $\left\{w_{k}\right\}_{k} \subset \mathcal{S}$ such that $w_{k} \searrow u$ uniformly in \bar{D}. Furthermore, if $\bar{D} \subset \Omega^{-}(u)$, then each w_{k} may be taken non-positive in \bar{D}.

Proof. The first part follows from the previous corollary. By compactness, it is enough to prove the second part for balls $\bar{B}_{\varepsilon}\left(x_{0}\right) \subset \Omega^{-}(u)$, with ε small. Let $w_{k} \searrow u$ uniformly in $\bar{B}_{2 \varepsilon}\left(x_{0}\right) \subset \Omega^{-}(u)$, and let

$$
w_{k}^{\varepsilon}(x)=\frac{w_{k}\left(x_{0}+\varepsilon x\right)}{\varepsilon} \searrow u_{\varepsilon} \quad \text { in } B_{2} .
$$

Let ϕ be such that

$$
\begin{cases}\Delta \phi=-c\left\|_{\varepsilon} f\right\|_{\infty} & \text { in } B_{2} \backslash \bar{B}_{1} \\ \phi=a & \text { on } \partial B_{2} \\ \phi=0 & \text { on } \partial B_{1},\end{cases}
$$

with a and ε positive and sufficiently small so that

$$
\nabla \phi\left(e_{1}\right) \cdot e_{1}<\inf _{x, v} G(0, x, v)
$$

(this is possible by explicit calculations, see for instance Lemma A.1); notice that this condition insure that ϕ, extended to zero in B_{1}, is a supersolution in B_{2} (when c universal is suitably chosen). Since $u_{\varepsilon} \leq 0$ in \bar{B}_{2}, for k sufficiently large $w_{k} \leq a / 2$ in \bar{B}_{2}. Let us define

$$
\bar{w}_{k}^{\varepsilon}= \begin{cases}\min \left\{w_{k}^{\varepsilon}, \phi\right\} & \text { in } \bar{B}_{2} \\ w^{\varepsilon} & \text { otherwise }\end{cases}
$$

Then, by Lemma 4.1, the function

$$
\bar{w}_{k}(x)=\varepsilon \bar{w}_{k}^{\varepsilon}\left(\frac{x-x_{0}}{\varepsilon}\right)
$$

satisfies $\bar{w}_{k} \in \mathcal{S}, \bar{w}_{k} \leq 0$ in $\bar{B}_{\varepsilon}\left(x_{0}\right)$ and $\bar{w}_{k} \searrow u$ in $\bar{B}_{\varepsilon}\left(x_{0}\right)$, as required.
Corollary 4.5. u is locally Lipschitz in Ω, continuous in $\bar{\Omega}, u=g$ on $\partial \Omega$. Moreover u solves

$$
\mathcal{L} u=f_{2} X_{\{u<0\}}, \quad \text { in } \Omega^{-}(u) .
$$

5. The function u^{+}is non-degenerate

In this section we will show that u^{+}is non-degenerate, in the sense of the following result.
Lemma 5.1. Let $x_{0} \in \mathcal{F}(u)$ and let A be a connected component of $\Omega^{+}(u) \cap\left(B_{r}\left(x_{0}\right) \backslash \bar{B}_{r / 2}\left(x_{0}\right)\right)$ satisfying

$$
\bar{A} \cap \partial B_{r / 2}\left(x_{0}\right) \neq \emptyset, \quad \bar{A} \cap \partial B_{r}\left(x_{0}\right) \neq \emptyset,
$$

for $r \leq r_{0}$ universal. Then

$$
\sup _{A} u \geq C r .
$$

Moreover

$$
\frac{\left|A \cap B_{r}\left(x_{0}\right)\right|}{\left|B_{r}\left(x_{0}\right)\right|} \geq C>0
$$

where all the constants C depend on $d(x, \partial \Omega)$ and on \underline{u}.
Corollary 5.2. $\mathcal{F}\left(w_{k}\right) \rightarrow \mathcal{F}(u)$ locally in Hausdorff distance and $\chi_{\left\{w_{k}>0\right\}} \rightarrow \chi_{\{u>0\}}$ in $L_{\text {loc }}^{1}$.
The proof of the above result will follow by the two following lemmas.
Lemma 5.3. Let u be a Lipschitz function in $\bar{\Omega} \cap B_{1}(0)$, with $0 \in \partial \Omega$, satisfying

$$
\begin{cases}F\left(D^{2} u\right)=f & \text { in } \Omega \cap B_{1} \\ u=0 & \text { on } \partial \Omega \cap B_{1}\end{cases}
$$

If there exists $c>0$ such that

$$
\begin{equation*}
u(x) \geq c \operatorname{dist}(x, \partial \Omega) \quad \text { for every } x \in \Omega \cap B_{1 / 2} \tag{5.1}
\end{equation*}
$$

then there exists a constant $C>0$ such that

$$
\sup _{B_{r}(0)} u \geq C r,
$$

for all $r \leq r_{0}$ universal.
Proof. Let $x_{0} \in \Omega \cap B_{1}, \varepsilon=\operatorname{dist}\left(x_{0}, \partial \Omega\right)$, and let L denote the Lipschitz constant of u. Then

$$
c \varepsilon \leq u\left(x_{0}\right) \leq L \varepsilon .
$$

We will show that, for $\delta>0$ to be fixed, there exists $x_{1} \in B_{\varepsilon}\left(x_{0}\right)$ such that

$$
\begin{equation*}
u\left(x_{1}\right) \geq(1+\delta) u\left(x_{0}\right) . \tag{5.2}
\end{equation*}
$$

Then, iterating the procedure, one can conclude as in [9, Lemma 5.1].
Assume by contradiction that (5.2) does not hold. Then, defining the elliptic, homogeneous operator $F^{*}(M)=-F(-M)$, we infer that

$$
v(x):=(1+\delta) u\left(x_{0}\right)-u(x)>0 \quad \text { in } B_{\varepsilon}\left(x_{0}\right) \quad \text { satisfies } F^{*}\left(D^{2} v\right)=-f .
$$

Let $r(L)=1-c /(4 L)$; using the Harnack inequality we have that there exists $C(L)$ such that

$$
v \leq C(L)\left(\delta u\left(x_{0}\right)+\varepsilon^{2}\|f\|_{\infty}\right) \leq \frac{1}{2} u\left(x_{0}\right) \quad \text { in } \bar{B}_{r(L) \varepsilon}\left(x_{0}\right),
$$

provided both δ and ε are sufficiently small (depending on c, L and $\|f\|_{\infty}$). In terms of u, the previous inequality writes as

$$
u \geq \frac{c \varepsilon}{2} \quad \text { in } \bar{B}_{r(L) \varepsilon}\left(x_{0}\right) .
$$

On the other hand, there exists $y_{0} \in \partial B_{r(L) \varepsilon}\left(x_{0}\right)$ such that $\operatorname{dist}\left(y_{0}, \partial \Omega\right)=(1-r(L)) \varepsilon$ and hence

$$
\min _{\bar{B}_{r L L)}\left(x_{0}\right)} u \leq u\left(y_{0}\right) \leq L \operatorname{dist}\left(y_{0}, \partial \Omega\right)=\frac{c \varepsilon}{4} .
$$

This is a contradiction, therefore (5.2) holds true.
Lemma 5.4. There exist universal constants \bar{r}, \bar{C} such that

$$
u\left(x_{0}\right) \geq \bar{C} \operatorname{dist}\left(x_{0}, \mathcal{F}(u)\right) \quad \text { for every } x_{0} \in\left\{x \in \Omega^{+}(u): \operatorname{dist}(x, \mathcal{F}(u)) \leq \bar{r}\right\} .
$$

Proof. Let $x_{0} \in\left\{x \in \Omega^{+}(u): \operatorname{dist}(x, \mathcal{F}(u)) \leq \bar{r}\right\}$, with \bar{r} universal to be specified later, and let $r:=$ $\operatorname{dist}\left(x_{0}, \mathcal{F}(u)\right)$. We distinguish two cases.

First let us assume that

$$
\operatorname{dist}\left(x_{0}, \Omega^{+}(\underline{u})\right) \leq \frac{r}{2} .
$$

In this case, for any $x \in \mathcal{F}(\underline{u})$ we define

$$
\rho(x):=\max \left\{r>0: \text { for some } z, x \in \partial B_{r}(z) \text { and } B_{r}(z) \subset \Omega^{+}(\underline{u})\right\} .
$$

Notice that $\rho(x)>0$ for every x, since any point in $\mathcal{F}(\underline{u})$ is regular from the right by assumption. Thus, recalling that \underline{u}^{+}has linear growth bounded below by $\inf _{x, v} G(0, x, v)$, and noticing that $B_{3 r / 4}\left(x_{0}\right) \cap \Omega^{+}(\underline{u})$ contains a ball of radius comparable with r (at least for a suitable choice of \bar{r}):

$$
\sup _{B_{3 r / 4}\left(x_{0}\right)} u^{+} \geq \sup _{B_{3 r / 4}\left(x_{0}\right)} u^{+} \geq \bar{C} r,
$$

where \bar{C} only depends on \underline{u}.
On the other hand, in case

$$
\operatorname{dist}\left(x_{0}, \Omega^{+}(\underline{u})\right) \geq \frac{r}{2}
$$

we have $\underline{u} \leq 0$ in $B_{r / 2}\left(x_{0}\right)$. By Corollary 4.4 we can find $\left\{w_{k}\right\}_{k} \subset \mathcal{S}$ converging uniformly to u on some $D \supset B_{r}\left(x_{0}\right)$. By scaling

$$
u_{r}(x)=\frac{u\left(x_{0}+r x\right)}{r}, \quad w_{k}^{r}(x)=\frac{w_{k}\left(x_{0}+r x\right)}{r}
$$

we need to find \bar{C} universal such that $u_{r}(0) \geq \bar{C}$. Let us assume by contradiction that

$$
u_{r}(0)<\bar{C} .
$$

Then by Harnack inequality

$$
u_{r} \leq C\left(\bar{C}+r\left\|f_{1}\right\|_{\infty}\right) \quad \text { in } B_{1 / 2}
$$

and, for k sufficiently large,

$$
w_{k}^{r} \leq C^{\prime}\left(\bar{C}+r\left\|f_{1}\right\|_{\infty}\right) \quad \text { in } B_{1 / 2} .
$$

Now, reasoning as in the proof of Corollary 4.4 , let ϕ be such that

$$
\begin{cases}\Delta \phi=-c r\|f\|_{\infty} & \text { in } B_{1 / 2} \backslash \bar{B}_{1 / 4} \\ \phi=a & \text { on } \partial B_{1 / 2} \\ \phi=0 & \text { on } \partial B_{1 / 4}\end{cases}
$$

with a and r positive and sufficiently small so that $\nabla \phi\left(e_{1} / 4\right) \cdot e_{1}<\inf _{x, v} G(0, x, v)$, in such a way that ϕ, extended to zero in $B_{1 / 4}$, is a supersolution in $B_{1 / 2}$. Then, choosing $\bar{C}<\left(a-r\left\|f_{1}\right\|_{\infty}\right) / C^{\prime}$ we obtain that $w_{k}^{r}<\phi$ on $\partial B_{1 / 2}$ and then the functions

$$
\bar{w}_{k}^{r}= \begin{cases}0 & \text { in } \bar{B}_{1 / 4}, \\ \min \left\{w_{k}^{r}, \phi\right\} & \text { in } \bar{B}_{1 / 2} \backslash B_{1 / 4}, \\ w_{k}^{r} & \text { otherwise }\end{cases}
$$

are continuous, while

$$
\bar{w}_{k}(x)=r \bar{w}_{k}^{r}\left(\frac{x-x_{0}}{r}\right)
$$

satisfy $\bar{w}_{k} \in \mathcal{S}, \bar{w}_{k} \equiv 0$ in $\bar{B}_{r / 4}\left(x_{0}\right)$. This is in contradiction with the fact that $u\left(x_{0}\right)>0$, and the lemma follows.

6. The function u is a supersolution

This section is devoted to the proof that u satisfies the supersolution condition (i) in Definition 1.1. Thanks to Lemma 2.4 we only need to prove that, whenever u admits asymptotic developments at $x_{0} \in \mathcal{F}(u)$, with coefficients α and β, then $\alpha \leq G\left(\beta, x_{0}, v_{x_{0}}\right)$. To do that, we need to distinguish the two cases $\beta>0$ and $\beta=0$.

Lemma 6.1. Let $x_{0} \in \mathcal{F}(u)$, and

$$
\begin{aligned}
& u^{+}(x)=\alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right), \\
& u^{-}(x)=\beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right),
\end{aligned}
$$

with

$$
\beta>0 .
$$

Then $\alpha \leq G\left(\beta, x_{0}, \nu_{x_{0}}\right)$.
Proof. Since $\beta>0$, then $\mathcal{F}(u)$ is tangent at x_{0} to the hyperplane

$$
\pi:\left\langle x-x_{0}, v\right\rangle=0
$$

in the following sense: for any point $x \in \mathcal{F}(u), \operatorname{dist}(x, \mathcal{F}(u))=o\left(\left|x-x_{0}\right|\right)$. Otherwise we get a contradiction to the asymptotic development of u.

Let $\left\{w_{k}\right\}_{k} \subset \mathcal{S}$ be uniformly decreasing to u, as in Corollary 4.4. By the non-degeneracy of u^{+} we have that, for k large, w_{k} can not remain strictly positive near x_{0}. Let $d_{k}=d_{H}\left(\mathcal{F}\left(w_{k}\right), \mathcal{F}(u)\right)$ be the Hausdorff distance between the two free boundaries. In the ball $B_{2 \sqrt{d_{k}}}\left(x_{0}\right), \mathcal{F}(u)$ is contained in a strip parallel to π of width $o\left(\sqrt{d_{k}}\right)$ and, since $d_{k} \rightarrow 0, \mathcal{F}\left(w_{k}\right)$ is contained in a strip S_{k} of width $d_{k}+o\left(\sqrt{d_{k}}\right)=o\left(\sqrt{d_{k}}\right)$.

Consider now the points $x_{k}=x_{0}-\sqrt{d_{k}} v$ and let $B_{k}=B_{r_{k}}\left(x_{k}\right)$ be the largest ball contained in $\Omega^{-}\left(w_{k}\right)$ with touching point $z_{k} \in \mathcal{F}\left(w_{k}\right)$. Then $z_{k} \in S_{k}$ and, since $w_{k} \geq u$, from the asymptotic developments of w_{k} and u we have

$$
\beta \sqrt{d_{k}}+o\left(\sqrt{d_{k}}\right)=u^{-}\left(x_{k}\right) \geq w^{-}\left(x_{k}\right)=\beta_{k} r_{k}+o\left(r_{k}\right),
$$

since

$$
\sqrt{d_{k}}+o\left(\sqrt{d_{k}}\right) \leq r_{k} \leq \sqrt{d_{k}}
$$

Passing to the limit we infer

$$
\lim \sup \beta_{k} \leq \beta
$$

Reasoning in the same way on the other side th the points $y_{k}=x_{0}+\sqrt{d_{k}}$ (and the same z_{k}, which are regular from the left), we get

$$
\alpha \leq \liminf \alpha_{k} .
$$

From $\alpha_{k} \leq G\left(\beta_{k}, z_{k}, v_{k}\right)$, where $v_{k}=\left(x_{k}-z_{k}\right) /\left|x_{k}-z_{k}\right|$, we get $\alpha \leq G\left(\beta, x_{0}, v_{x_{0}}\right)$.
To treat the case $\beta=0$ we need the following preliminary lemma.

Lemma 6.2. Let $v \geq 0$ continous in $B_{1}\left(x_{0}\right)$ be such that $\Delta v \geq-M$. Let

$$
\Psi_{r}\left(x_{0}, v\right)=\frac{1}{r^{2}} \int_{B_{r}\left(x_{0}\right)} \frac{|\nabla v|^{2}}{\left|x-x_{0}\right|^{n-2}} d x
$$

Then, for r small,

$$
\begin{equation*}
\Psi_{r}\left(x_{0}, v\right) \leq c(n)\left\{\sup _{B_{2 r}\left(x_{0}\right)}\left(\frac{v}{r}\right)^{2}+M \sup _{B_{2 r}\left(x_{0}\right)} v\right\} . \tag{6.1}
\end{equation*}
$$

Proof. We may assume $x_{0}=0$ and write $\Psi_{r}(0, v)=\Psi_{r}(v)$. Rescale setting $v_{r}(x)=v(r x) / r$; we have $\Delta v_{r} \geq-r M$ and

$$
\Psi_{r}(v)=\Psi_{1}\left(v_{r}\right) .
$$

Let $\eta \in C_{0}^{\infty}\left(B_{2}\right), \eta=1$ in B_{1}. Since $2\left|\nabla v_{r}\right|^{2} \leq 2 r M v_{r}+\Delta v_{r}^{2}$, we have:

$$
\begin{aligned}
\Psi_{1}\left(v_{r}\right) & \leq C \int_{B_{2}} \eta \frac{\left|\nabla v_{r}\right|^{2}}{|x|^{n-2}} \leq C \int_{B_{2}} \eta \frac{2 M v_{r}+\Delta v_{r}^{2}}{|x|^{n-2}} \\
& =C \int_{B_{2}}\left[\frac{2 M v_{r}}{|x|^{n-2}}+v_{r}^{2} \Delta\left(\frac{\eta}{|x|^{n-2}}\right)\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
\Psi_{r}(v) & =\Psi_{1}\left(v_{r}\right) \leq c(n)\left(\left|v_{r}\right|_{L^{\infty}\left(B_{2}\right)}^{2}+r M\left|v_{r}\right|_{L^{\infty}\left(B_{2}\right)}\right) \\
& =c(n)\left\{\sup _{B_{2 r}}\left(\frac{v}{r}\right)^{2}+M \sup _{B_{2 r}} v\right\},
\end{aligned}
$$

which is (6.1).
Lemma 6.3. Let $x_{0} \in \mathcal{F}(u)$, and

$$
\begin{aligned}
& u^{+}(x)=\alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right), \\
& u^{-}(x)=o\left(\left|x-x_{0}\right|\right) .
\end{aligned}
$$

Then $\alpha \leq G\left(\beta, x_{0}, \nu_{x_{0}}\right)$.
Proof. As before, let $\left\{w_{k}\right\}_{k} \subset \mathcal{S}$ be uniformly decreasing to u, with w_{k} that is not strictly positive near x_{0}, for k large. The first part of the proof is exactly as in Lemma 6.3 of [9], until equation (6.2) below. For the reader's convenience, we recall such argument here.

For each k we denote with

$$
B_{m, k}=B_{\lambda_{m, k}}\left(x_{0}+\frac{1}{m} v\right)
$$

the largest ball centered at $x_{0}+v / m$ contained in $\Omega^{+}\left(w_{k}\right)$, touching $\mathcal{F}\left(w_{k}\right)$ at $x_{m, k}$ where $v_{m, k}$ is the unit inward normal of $\mathcal{F}\left(w_{k}\right)$ at $x_{m, k}$. Then up to proper subsequences we deduce that

$$
\lambda_{m, k} \rightarrow \lambda_{m}, \quad x_{m, k} \rightarrow x_{m}, \quad v_{m, k} \rightarrow v_{m}
$$

and $B_{\lambda_{m}}\left(x_{0}+v / m\right)$ touches $\mathcal{F}(u)$ at x_{m}, with unit inward normal v_{m}. From the behavior of u^{+}, we get that

$$
\left|x_{m}-x_{0}\right|=o\left(\frac{1}{m}\right)
$$

$$
\frac{1}{m}+o\left(\frac{1}{m}\right) \leq \lambda_{m} \leq \frac{1}{m}
$$

and

$$
\left|v_{m}-v\right|=o(1) .
$$

Now since $w_{k} \in \mathcal{F}$, near $x_{m, k}$ in $B_{m, k}$:

$$
w_{k}^{+} \leq \alpha_{m, k}\left\langle x-x_{m, k}, v_{m, k}\right\rangle^{+}+o\left(\left|x-x_{m, k}\right|\right)
$$

and in $\Omega \backslash B_{m, k}$

$$
w_{k}^{-} \geq \beta_{m, k}\left\langle x-x_{m, k}, v_{m, k}\right\rangle^{-}+o\left(\left|x-x_{m, k}\right|\right)
$$

with

$$
0 \leq \alpha_{m, k} \leq G\left(\beta_{m, k}, x_{m, k}, v_{m, k}\right),
$$

(by Lemma 2.5 the touching occurs at a regular point, for m, k large.) We know that

$$
w_{k}^{+} \geq u^{+} \geq \alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right),
$$

hence

$$
\underline{\alpha}_{m}=\liminf _{k \rightarrow \infty} \alpha_{m, k} \geq \alpha-\epsilon_{m}
$$

and $\epsilon_{m} \rightarrow 0$, as $m \rightarrow \infty$. We have to show that

$$
\underline{\beta}=\liminf _{m, k \rightarrow+\infty} \beta_{m, k}=0 .
$$

We assume by contradiction that $\bar{\beta}>0$. Acting as in [9, Lemma 6.3] we obtain, for r small,

$$
\begin{equation*}
(1+\omega(r)) \Phi_{r}\left(x_{m, k}, w_{k}\right)+C \omega(r) \geq c_{n} \alpha_{m, k}^{2} \beta_{m, k}^{2} \tag{6.2}
\end{equation*}
$$

where

$$
\Phi_{r}\left(x_{m, k}, w_{k}\right)=\Psi_{r}\left(x_{m, k}, w_{k}^{+}\right) \Psi_{r}\left(x_{m, k}, w_{k}^{-}\right) .
$$

By concavity we have that $\Delta w_{k}^{ \pm} \geq-M$ where $M=c \min \left(\left\|f_{1}\right\|_{\infty},\left\|f_{2}\right\|_{\infty}\right)$. Lemma 6.2 implies

$$
\begin{aligned}
c_{n} \alpha_{m, k}^{2} \beta_{m, k}^{2} \leq & (1+\omega(r)) \Psi_{r}\left(x_{m, k}, w_{k}^{+}\right) \Psi_{r}\left(x_{m, k}, w_{k}^{-}\right)+C \omega(r) \\
\leq & c^{2}(n)(1+\omega(r))\left\{\sup _{B_{2 r}\left(x_{m, k}\right)}\left(\frac{w_{k}^{+}}{r}\right)^{2}+M \sup _{B_{2 r}\left(x_{m, k}\right)} w_{k}^{+}\right\} \times \\
& \times\left\{\sup _{B_{2 r}\left(x_{m, k}\right)}\left(\frac{w_{k}^{-}}{r}\right)^{2}+M \sup _{B_{2 r}\left(x_{m, k}\right)} w_{k}^{-}\right\}+C \omega(r) \\
\leq & \left.C_{1}(n, M, L)\right)\left\{\sup _{B_{2 r}\left(x_{m, k}\right)}\left(\frac{w_{k}^{-}}{r}\right)^{2}+M \sup _{B_{2 r}\left(x_{m, k}\right)} w_{k}^{-}\right\}+C \omega(r),
\end{aligned}
$$

where L is the uniform Lipschitz constant of $\left\{w_{k}^{+}\right\}_{k}$ (recall Lemma 3.4). Taking the lim inf as $m, k \rightarrow \infty$ and using the uniform convergence of w_{k} to u we infer

$$
0<c_{n} \alpha^{2} \bar{\beta}^{2} \leq C_{1}(n, M, L)\left\{\sup _{B_{2 r}\left(x_{0}\right)}\left(\frac{u^{-}}{r}\right)^{2}+M \sup _{B_{2 r}\left(x_{0}\right)} u^{-}\right\}+C \omega(r) .
$$

Recalling that, by assumption, $u^{-}(x)=o\left(\left|x-x_{0}\right|\right)$ as $x \rightarrow x_{0}$, we have

$$
\sup _{B_{2 r}(0)}\left(\frac{u^{-}}{r}\right)^{2}=o(1) \quad \text { as } r \rightarrow 0
$$

and we get a contradiction.

7. The function u is a subsolution

In this section we want to show that u is a subsolution according to Definition 1.1. Note that, if $x_{0} \in \mathcal{F}(u)$ is a regular point from the left with touching ball $B \subset \Omega^{-}(u)$, then near to x_{0}

$$
u^{-}(x)=\beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right), \quad \beta \geq 0,
$$

in B, and

$$
u^{+}(x)=\alpha\left\langle x-x_{0}, v\right\rangle^{+}+o\left(\left|x-x_{0}\right|\right), \quad \alpha \geq 0
$$

in $\Omega \backslash B$. Indeed, even if $\beta=0$, then $\Omega^{+}(u)$ and $\Omega^{-}(u)$ are tangent to $\left\{\left\langle x-x_{0}, v\right\rangle=0\right\}$ at x_{0} since u^{+}is non-degenerate. Thus u has a full asymptotic development as in the next lemma. We want to show that $\alpha \geq G\left(\beta, x_{0}, v\right)$. We follow closely [3] and [9].

Lemma 7.1. Assume that near $x_{0} \in \mathcal{F}(u)$,

$$
u(x)=\alpha\left\langle x-x_{0}, v\right\rangle^{+}-\beta\left\langle x-x_{0}, v\right\rangle^{-}+o\left(\left|x-x_{0}\right|\right),
$$

with $\alpha>0, \beta \geq 0$. Then

$$
\alpha \geq G\left(\beta, x_{0}, v\right)
$$

Proof. Assume by contradiction that $\alpha<G\left(\beta, x_{0}, v\right)$. We construct a supersolution $w \in \mathcal{S}$ which is strictly smaller than u at some point, contradicting the minimality of u. Let u_{0} be the two-plane solution, i.e.

$$
u_{0}(x):=\lim _{r \rightarrow 0} \frac{u\left(x_{0}+r x\right)}{r}=\alpha\langle x, v\rangle^{+}-\beta\langle x, v\rangle^{-} .
$$

Suppose that $\alpha \leq G\left(\beta, x_{0}, v\right)-\delta_{0}$ with $\delta_{0}>0$. Fix $\zeta=\zeta\left(\delta_{0}\right)$, to be chosen later. By Corollary 4.4, we can find $w_{k} \in F \searrow u$ locally uniformly and, for r small, k large, the rescaling $w_{k, r}$ satisfies the following conditions:
if $\beta>0$, then

$$
w_{k, r}(x) \leq u_{0}+\zeta \min \{\alpha, \beta\} \text { on } \partial B_{1}
$$

if $\beta=0$, then

$$
w_{k, r}(x) \leq u_{0}+\alpha \zeta \text { on } \partial B_{1}
$$

and

$$
w_{k, r}(x) \leq 0, \quad \text { in }\{\langle x, v\rangle<-\zeta\} \cap \bar{B}_{1} .
$$

In particular,

$$
w_{k, r}(x) \leq u_{0}(x+\zeta v) \quad \text { on } \partial B_{1} .
$$

If $\beta>0$, let v satisfy

$$
\begin{cases}F\left(D^{2} v\right)=r f_{1}^{r}, & \text { in }\{\langle x, v\rangle>-\zeta+\epsilon \phi(x)\} \tag{7.1}\\ F\left(D^{2} v^{-}\right)=r f_{2}^{r}, & \text { in }\{\langle x, v\rangle<-\zeta+\epsilon \phi(x)\} \\ v(x)=0, & \text { on }\{\langle x, v\rangle=-\zeta+\epsilon \phi(x)\} \\ v(x)=u_{0}(x+\zeta v), & \text { on } \partial B_{1},\end{cases}
$$

where $\phi \geq 0$ is a cut-off function, $\phi \equiv 0$ outside $B_{1 / 2}, \phi \equiv 1$ inside $B_{1 / 4}$.
For $\beta=0$, replace the second equation with $v=0$.
Along the new free boundary, $\mathcal{F}(v)=\{\langle x, v\rangle=-\zeta+\epsilon \phi(x)\}$ we have the following estimates:

$$
\left|v_{v}^{+}-\alpha\right| \leq c(\varepsilon+\zeta)+C r, \quad\left|v_{v}^{-}-\beta\right| \leq c(\varepsilon+\zeta)+C r,
$$

with c, C universal.
Indeed,

$$
v^{+}-\alpha\langle x, v\rangle^{+}
$$

is a solution of

$$
F\left(D^{2}\left(v-\alpha\langle x, v\rangle^{+}\right)\right)=r f_{1}^{r} .
$$

Thus, by standard $C^{1, \gamma}$ regularity estimates (see [16, Theorem 1.1])

$$
\left|v_{v}^{+}-\alpha\right| \leq C\left(\left\|v-\alpha\langle x, v\rangle^{+}\right\|_{\infty}+[-\zeta+\epsilon \phi]_{1, \gamma}+r\left\|f_{1}\right\|_{\infty}\right),
$$

which gives the desired bound. Similarly, one gets the bound for v_{v}^{-}.
Hence, since $\alpha \leq G\left(\beta, x_{0}, v\left(x_{0}\right)\right)-\delta_{0}$, say for $\varepsilon=2 \zeta$ and ζ, r small depending on δ_{0}

$$
v_{v}^{+}<G\left(v_{v}^{-}, x_{0}, v\right),
$$

and the function,

$$
\bar{w}_{k}=\left\{\begin{array}{l}
\min \left\{w_{k}, \lambda v\left(\frac{x-x_{0}}{\lambda}\right)\right\} \quad \text { in } B_{\lambda}\left(x_{0}\right), \\
w_{k} \text { in } \Omega \backslash B_{\lambda}\left(x_{0}\right),
\end{array}\right.
$$

is still in \mathcal{S}. However, the set

$$
\{\langle x, v\rangle \leq-\zeta+\epsilon \phi\}
$$

contains a neighborhood of the origin, hence rescaling back $x_{0} \in \Omega^{-}\left(\bar{w}_{k}\right)$. We get a contradiction since $x_{0} \in F(u)$ and $\Omega^{+}(u) \subseteq \Omega^{+}\left(\bar{w}_{k}\right)$.

8. Properties of the free boundary

In this section we prove the weak regularity properties of the free boundary. Both statements and proofs are by now rather standard and follows the papers [3] and [9] for problems governed by homogeneous and inhomogeneous divergence equations, respectively. Thus we limit ourselves to the few points in which differences from the previous cases emerge. Denote by $\mathcal{N}_{\varepsilon}(A)$ an ε-neighborhood of the set A. The following lemma provides a control of the \mathcal{H}^{n-1} measure of $\mathcal{F}(u)$ and implies that $\Omega^{+}(u)$ is a set of finite perimeter.

Lemma 8.1. Let u be our Perron solution. Let $x_{0} \in \mathcal{F}(u) \cap B_{1}$. There exists a positive universal $\delta_{0}<1$ such that, for every $0<\varepsilon<\delta \leq \delta_{0}$, the following quantities are comparable:

1. $\frac{1}{\varepsilon}\left|\{0<u<\varepsilon\} \cap B_{\delta}\left(x_{0}\right)\right|$,
2. $\frac{1}{\varepsilon}\left|\mathcal{N}_{\varepsilon}(\mathcal{F}(u)) \cap B_{\delta}\left(x_{0}\right)\right|$,
3. $N \varepsilon^{n-1}$, where N is the number of any family of balls of radius ε, with finite overlapping, covering $\mathcal{F}(u) \cap B_{\delta}\left(x_{0}\right)$,
4. $\mathcal{H}^{n-1}\left(\mathcal{F}(u) \cap B_{\delta}\left(x_{0}\right)\right)$.

Proof. From [3], it is sufficient to prove the following two equivalences:

$$
\begin{equation*}
c_{1} \varepsilon^{n} \leq \int_{B_{\varepsilon}\left(x_{0}\right)}|\nabla u|^{2} \leq C_{1} \varepsilon^{n} \tag{8.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{3} \varepsilon \delta^{n-1} \leq \int_{\left\{0<u<\varepsilon \cap \cap B_{\delta}\left(x_{0}\right)\right.}|\nabla u|^{2} \leq C_{2} \varepsilon \delta^{n-1} \tag{8.2}
\end{equation*}
$$

with universal constants $c_{1}, c_{2}, C_{1}, C_{2}$.
Since $F\left(D^{2} u\right)=\inf _{\alpha} L_{\alpha} u$ where L_{α} is a uniformly elliptic operator with constant coefficients and ellipticity constant λ, Λ, we have $L_{\alpha} u^{+} \geq f_{1}$ in $\Omega^{+}(u)$. Fix $\alpha=\alpha_{0}$ and set

$$
L_{\alpha_{0}}=L=\sum_{i, j=1}^{n} a_{i j} \partial_{i j}, \quad A=\left(a_{i j}\right) .
$$

The upper bound in (8.1) follows by the Lipschitz continuity of u. The lower bound follows from $\sup _{B_{\varepsilon}\left(x_{0}\right)} u^{+} \geq c \varepsilon, c$ universal, $\inf _{B_{\varepsilon}\left(x_{0}\right)} u^{+}=0$, the Lipschitz continuity of u, and the Poincaré inequality (see [1, Lemma 1.15]).

To prove (8.2), rescale by setting

$$
u_{\delta}(x)=\frac{u\left(x_{0}+\delta x\right)}{\delta}, f_{1}^{\delta}(x)=f_{1}\left(x_{0}+\delta x\right) \quad x \in B_{1}=B_{1}(0)
$$

Then $L u_{\delta} \geq \delta f_{1}^{\delta}$ in $\Omega^{+}\left(u^{\delta}\right) \cap B_{1}$. For $0<\varepsilon<\delta$, let

$$
u_{\delta, s, \varepsilon}=u_{s, \varepsilon}:=\max \left\{s / \delta, \min \left\{u_{\delta}, \varepsilon / \delta\right\}\right\}
$$

We have:

$$
\begin{aligned}
& -\delta \int_{B_{1}} f_{1}^{\delta} u_{\varepsilon, s}=-\int_{B_{1}} u_{\varepsilon, s} L u_{\delta}^{+} \\
& =\int_{B_{1}}\left\langle A \nabla u_{\delta}^{+}, \nabla u_{\varepsilon, s}^{+}\right\rangle d x-\int_{\partial B_{1}}\left\langle A \nabla u_{\delta}^{+}, v\right\rangle u_{\varepsilon, s} d \mathcal{H}^{n-1} \\
& =\int_{B_{1} \cap\left\{0<s / \delta<u_{\delta}<\varepsilon / \delta\right\}}\left\langle A \nabla u_{\delta}, \nabla u_{\delta}\right\rangle d x-\int_{\partial B_{1}}\left\langle A \nabla u_{\delta}^{+}, v\right\rangle u_{\varepsilon, s} d \mathcal{H}^{n-1}
\end{aligned}
$$

since $\nabla u_{\varepsilon, s}=\nabla u_{\delta} \cdot \chi_{\left\{s / \delta<u_{\delta}<\varepsilon / \delta\right\}}$.

By uniform ellipticity, since u^{+}is Lipschitz and f_{1} is bounded, we get $(\delta<1$)

$$
\int_{B_{1} \cap\left\{0<s / \delta<u_{\delta}<\varepsilon / \delta\right\}}\left|\nabla u_{\delta}\right|^{2} d x \leq C \frac{\varepsilon}{\delta},
$$

with C universal. Letting $s \rightarrow 0$ and rescaling back, we obtain the upper bound in (8.2).
For the lower bound, let V be the solution to

$$
\left\{\begin{array}{ll}
L V=-\frac{\chi B_{\sigma}}{\left|B_{\sigma}\right|}, & \text { in } B_{1} \tag{8.3}\\
V=0, & \text { on }
\end{array} \quad \partial B_{1}\right.
$$

with σ to be chosen later. By standard estimates, see for example [12], $V \leq C \sigma^{2-n}$ and $-\langle A \nabla V, v\rangle \sim C^{*}$ on ∂B_{1}, with C^{*} independent of σ. By Green's formula

$$
\begin{equation*}
\int_{B_{1}}(L V) \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon}-\left(L \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon}\right) V=\int_{\partial B_{1}} \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1} \tag{8.4}
\end{equation*}
$$

since $V=0$ on ∂B_{1}. We estimate

$$
\begin{equation*}
\delta\left|\int_{B_{1}}(L V) \frac{u_{\delta}^{+} u_{\varepsilon}}{\varepsilon} d x\right|=\frac{\delta}{\left|B_{\sigma}\right|}\left|\int_{B_{\sigma}} \frac{u_{\delta}^{+} u_{\varepsilon}}{\varepsilon} d x\right| \leq \bar{C} \sigma \tag{8.5}
\end{equation*}
$$

since u is Lipschitz and $0 \leq u_{\varepsilon, 0} \leq \varepsilon / \delta$. From (8.4) and (8.5) and the fact that $\left\langle A_{\delta} \nabla V, v\right\rangle \sim-C^{*}$ on ∂B_{1} we deduce that

$$
\begin{aligned}
\delta \int_{B_{1}}\left(L \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon}\right) V d x & \geq-\bar{C} \sigma-\delta \int_{\partial B_{1}} \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1} \\
& \geq-\bar{C} \sigma+C^{*} \delta \int_{\partial B_{1}} \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon} d \mathcal{H}^{n-1}
\end{aligned}
$$

Thus using that u^{+}is non-degenerate and choosing σ small enough (universal) we get that ($\delta>\varepsilon$)

$$
\begin{equation*}
\delta \int_{B_{1}}\left(L \frac{u_{\delta}^{+} u_{\varepsilon, 0}}{\varepsilon}\right) V d x \geq \tilde{C} . \tag{8.6}
\end{equation*}
$$

On the other hand in $\left\{0<u_{\delta}^{+}<\varepsilon / \delta\right\} \cap B_{1}$,

$$
\begin{equation*}
L u_{\delta}^{+} u_{\varepsilon, 0}=2 \delta u_{\varepsilon} f_{1}^{\delta}+\left\langle A \nabla u_{\delta}, \nabla u_{\delta}\right\rangle . \tag{8.7}
\end{equation*}
$$

Combining (8.6), (8.7) and using the ellipticity of A we get that

$$
\frac{2 \delta^{2}}{\varepsilon} \int_{B_{1}} u_{\varepsilon} f_{1}^{\delta} V+\frac{\delta \Lambda}{\varepsilon} \int_{B_{1}}\left|\nabla u_{\delta}\right|^{2} V \geq \bar{C} .
$$

From the estimate on V we obtain that for δ small enough

$$
\frac{\delta}{\varepsilon} \int_{B_{1}}\left|\nabla u_{\delta}\right|^{2} \geq C
$$

for some C universal. Rescaling, we obtain the desired lower bound.

Lemma 8.1 implies that $\Omega^{+}(u) \cap B_{r}(x), x \in \mathcal{F}(u)$, is a set of finite perimeter. Next we show that in fact this perimeter is of order r^{n-1}.

Theorem 8.2. Let u be our Perron solution. Then, the reduced boundary of $\Omega^{+}(u)$ has positive density in \mathcal{H}^{n-1}-measure at any point of $\mathcal{F}(u)$, i.e. for $r<r_{0}, r_{0}$ universal,

$$
\mathcal{H}^{n-1}\left(\mathcal{F}^{*}(u) \cap B_{r}(x)\right) \geq c r^{n-1}
$$

for every $x \in \mathcal{F}(u)$.
Proof. The proof follows the lines of Corollary 4 in [3] and Theorem 8.2 in [9]. Let $w_{k} \in \mathcal{S}, w_{k} \searrow u$ in \bar{B}_{1} and L as in Lemma 8.1. Then $\Omega^{+}(u) \subset \subset \Omega^{+}\left(w_{k}\right)$ and $L w_{k} \geq F\left(D^{2} w_{k}\right)=f_{1}$ in $\Omega^{+}(u)$. Let $x_{0} \in \mathcal{F}(u)$. We rescale by setting

$$
u_{r}(x)=\frac{u\left(x_{0}+r x\right)}{r}, \quad w_{k, r}=\frac{w_{k}\left(x_{0}+r x\right)}{r} \quad x \in B_{1} .
$$

Let V be the solution to (8.3). Since $\nabla w_{k, r}$ is a continuous vector field in $\overline{\Omega_{r}^{+}\left(u_{r}\right) \cap B_{1}}$, we can use it to test for perimeter. We get

$$
\begin{align*}
& \int_{B_{1} \cap \Omega_{r}^{+}\left(u_{r}\right)}\left(V r f_{1}^{r}-w_{k, r} L V\right) \leq \int_{B_{1} \cap \Omega_{r}^{+}\left(u_{r}\right)}\left(V L w_{k r}-w_{k, r} L V\right) \\
& =\int_{\mathcal{F}^{*}\left(u_{r}\right) \cap B_{1}}\left(V\left\langle A \nabla w_{k, r}, v\right\rangle-w_{k r}\langle A \nabla V, v\rangle\right) d \mathcal{H}^{n-1}-\int_{\partial B_{1} \cap \Omega_{r}^{+}\left(u_{r}\right)} w_{k r}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1} . \tag{8.8}
\end{align*}
$$

Using the estimates for V and the fact that the w_{k} are uniformly Lipschitz, we get that

$$
\begin{equation*}
\left|\int_{\mathcal{F}^{*}\left(u_{r}\right) \cap B_{1}} V\left\langle A \nabla w_{k, r}, v\right\rangle d \mathcal{H}^{n-1}\right| \leq C(\sigma) \mathcal{H}^{n-1}\left(\mathcal{F}^{*}\left(u_{r}\right) \cap B_{1}\right) \tag{8.9}
\end{equation*}
$$

As in [3] we have, as $k \rightarrow \infty$,

$$
\begin{gathered}
\int_{\mathcal{F}^{*}\left(u_{r}\right) \cap B_{1}} w_{k, r}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1} \rightarrow 0, \\
\int_{\partial B_{1} \cap \Omega_{r}^{+}\left(u_{r}\right)} w_{k r}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1} \rightarrow \int_{\partial B_{1}} u_{r}^{+}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1}
\end{gathered}
$$

and

$$
-\int_{B_{1} \cap \Omega_{r}^{+}\left(u_{r}\right)} w_{k, r} L V \rightarrow f_{B_{\sigma}} u_{r}^{+} .
$$

Passing to the limit in (8.8) and using all of the above we get

$$
\begin{align*}
& \left|r \int_{B_{1} \cap \Omega^{+}\left(u_{r}\right)} V f_{1}^{r}+f_{B_{\sigma}} u_{r}^{+}+\int_{\partial B_{1}} u_{r}^{+}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1}\right| \tag{8.10}\\
& \leq C(\sigma) \mathcal{H}^{n-1}\left(\mathcal{F}^{*}\left(u_{r}\right) \cap B_{1}\right) .
\end{align*}
$$

Since u is Lipschitz and non-degenerate, for σ small

$$
\frac{1}{\left|B_{\sigma}\right|} \int_{B_{\sigma}} u_{r}^{+} \leq \bar{C} \sigma,
$$

and using the estimate for $\langle A \nabla V, v\rangle$

$$
-\int_{\partial B_{1}} u_{r}^{+}\langle A \nabla V, v\rangle d \mathcal{H}^{n-1} \geq \bar{c}>0 .
$$

Also, since f_{1}^{r} is bounded,

$$
\int_{B_{1} \cap \Omega_{r}^{+}\left(u_{r}\right)} V f_{1}^{r} \leq \bar{C}(\sigma) .
$$

Hence choosing first σ and then r sufficiently small we get that

$$
\mathcal{H}^{n-1}\left(\mathcal{F}^{*}\left(u_{r}\right) \cap B_{1}\right) \geq \tilde{C},
$$

\tilde{C} universal.

A. Some explicit barrier functions

For the reader's convenience we collect here some explicit barrier functions which arise frequently in our arguments. Their proof is based on comparison arguments, together with the well known chain of inequalities

$$
\begin{equation*}
\mathcal{P}_{\lambda / n, \Lambda}^{-} u \leq F\left(D^{2} u\right) \leq c \Delta u, \tag{A.1}
\end{equation*}
$$

where $\mathcal{P}_{\lambda / n, \Lambda}^{-}$denotes the lower Pucci operator, and $c=c(\lambda, \Lambda, n)>0$ since F is concave (see [5] for further details).

Lemma A. 1 (Barrier for subsolutions). Let u satisfy

$$
\begin{cases}F\left(D^{2} u\right) \geq f & \text { in } B_{2}(0) \backslash \bar{B}_{1}(0) \\ u \leq a & \text { on } \partial B_{2}(0) \\ u \leq 0 & \text { on } \partial B_{1}(0) .\end{cases}
$$

Then

$$
u(x) \leq \alpha\left(x_{1}-1\right)+o\left(\left|x-e_{1}\right|\right) \quad \text { where } \alpha \leq c_{1} a+c_{2}\|f\|_{\infty},
$$

as $x \rightarrow e_{1}$, where the positive constants c_{1}, c_{2} only depend on λ, Λ, n.
Proof. By comparison and (A.1) we infer that $u \geq \phi$ in $B_{2} \backslash \bar{B}_{1}$, where ϕ solves

$$
\begin{cases}\Delta \phi=-c\|f\|_{\infty} & \text { in } B_{2} \backslash \bar{B}_{1} \\ \phi=a & \text { on } \partial B_{2} \\ \phi=0 & \text { on } \partial B_{1},\end{cases}
$$

for a universal c. Then direct calculations show that, for $n \geq 3$,

$$
\phi(x)=A\left(|x|^{2}-1\right)+B\left(|x|^{-n+2}-1\right),
$$

where

$$
A=-\frac{c}{2 n}\|f\|_{\infty}, \quad B=\frac{3}{1-2^{-n+2}} A-\frac{1}{1-2^{-n+2}} a .
$$

Then the Lemma follows by choosing

$$
\alpha:=\nabla \phi\left(e_{1}\right) \cdot e_{1}=2 A-(n-2) B .
$$

The proof in dimension $n=2$ is analogous.
Lemma A. 2 (Barrier for supersolutions). Let u satisfy

$$
\begin{cases}F\left(D^{2} u\right) \leq r f & \text { in } B_{2}(0) \backslash B_{1}(0) \\ u \geq 0 & \text { on } \partial B_{2}(0) \\ u \geq a>0 & \text { on } \partial B_{1}(0)\end{cases}
$$

Then

$$
u(x) \geq \alpha\left(x_{1}+2\right)+o\left(\left|x+2 e_{1}\right|\right) \quad \text { where } \alpha \geq c_{1} a-c_{2} r\|f\|_{\infty}
$$

as $x \rightarrow-2 e_{1}$, whenever $r \leq \bar{r}$, where the positive constants c_{1}, c_{2} and \bar{r} only depend on λ, Λ, n.
Proof. By comparison and (A.1) we infer that $u \geq \phi$ in $B_{2} \backslash \bar{B}_{1}$, where ϕ solves

$$
\begin{cases}\mathcal{P}_{\lambda / n, \Lambda}^{-} \phi=r\|f\|_{\infty} & \text { in } B_{2} \backslash \bar{B}_{1} \\ \phi=0 & \text { on } \partial B_{2} \\ \phi=a & \text { on } \partial B_{1} .\end{cases}
$$

Then direct calculations show that

$$
\phi(x)=A\left(|x|^{2}-4\right)+B\left(|x|^{-\gamma}-2^{-\gamma}\right), \quad \text { where } \gamma=\frac{\Lambda n(n-1)}{\lambda}-1 \geq 1
$$

and

$$
A=\frac{n}{2(\gamma+2) \lambda} r\|f\|_{\infty}>0, \quad B=\frac{1}{1-2^{-\gamma}} a+\frac{3}{1-2^{-\gamma}} A>0 .
$$

To check this, one needs to choose $r \leq \bar{r}=\bar{r}(\gamma)$, in such a way that $D^{2} \phi(x)$ has exactly one positive eigenvalue, for $1 \leq|x| \leq 2$. Then the Lemma follows by choosing

$$
\alpha:=\nabla \phi\left(-2 e_{1}\right) \cdot e_{1}=-4 A+\gamma 2^{-\gamma-1} B .
$$

Acknowledgments

Work partially supported by the INDAM-GNAMPA group. G. Verzini is partially supported by the project ERC Advanced Grant 2013 n. 339958: "Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT" and by the PRIN-2015KB9WPT Grant: "Variational methods, with applications to problems in mathematical physics and geometry".

Conflict of interest

The authors declare no conflict of interest.

References

1. Caffarelli L, Salsa S (2005) A geometric approach to free boundary problems (Volume 68). American Mathematical Soc.
2. Caffarelli LA (1987) A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $C^{1, \alpha}$. Rev Math Iberoam 3: 139-162.
3. Caffarelli LA (1988) A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness, and dependence on X. Ann Scuola Norm-Sci 15: 583-602.
4. Caffarelli LA (1989) A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz. Comm Pure Appl Math 42: 55-78.
5. Caffarelli LA Cabré X (1995) Fully nonlinear elliptic equations (Volume 43). American Mathematical Soc.
6. Caffarelli LA, Jerison D, Kenig CE (2002) Some new monotonicity theorems with applications to free boundary problems. Ann Math 155: 369-404.
7. De Silva D (2011) Free boundary regularity for a problem with right hand side. Interface Free Bound 13: 223-238.
8. De Silva D, Ferrari F, Salsa S (2015) Free boundary regularity for fully nonlinear nonhomogeneous two-phase problems. J Math Pure Appl 103: 658-694.
9. De Silva D, Ferrari F, Salsa S (2015) Perron's solutions for two-phase free boundary problems with distributed sources. Nonlinear Anal 121: 382-402.
10. De Silva D, Ferrari F, Salsa S (2017) Two-phase free boundary problems: from existence to smoothness. Adv Nonlinear Stud 17: 369-385.
11. Fabes E, Garofalo N, Marín-Malave S, et al. (1988) Fatou theorems for some nonlinear elliptic equations. Rev Math Iberoam 4: 227-251.
12. Gilbarg D, Trudinger NS (1983) Elliptic partial differential equations of second order. second edition, Springer-Verlag, Berlin.
13. Lee KA (1998) Obstacle problems for the fully nonlinear elliptic operators. PhD thesis, Courant Institute, New York University.
14. Matevosyan N, Petrosyan A (2011) Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients. Comm Pure Appl Math 64: 271-311.
15. Silva DD, Savin O (2017) Lipschitz regularity of solutions to two-phase free boundary problems. Int Math Res Notices.
16. Silvestre L, Sirakov B (2014) Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Commun Part Diff Equ 39: 1694-1717.
17. Wang PY (2000) Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. I. Lipschitz free boundaries are $C^{1, \alpha}$. Comm Pure Appl Math 53: 799810.
18. Wang PY (2002) Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz. Commun Part Diff Eq 27: 14971514.
19. Wang PY (2003) Existence of solutions of two-phase free boundary problems for fully nonlinear elliptic equations of second order. J Geom Anal 13: 715-738.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
