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Abstract: The high density of commercial aviation operations in Europe makes significant 

contributions to the emission of noise, greenhouse gases, and air pollutants. A key source of 

information which can be used in efforts to quantify these contributions is the OpenSky Network 

(OSN), which publishes automatic dependent surveillance - broadcast (ADS-B) data at time 

resolutions of up to one data point per second. This data can be used to reconstruct ground tracks and 

flight profiles, which can, in turn, be used to estimate local noise exposure, exhaust emissions, and 

local air quality. The use of such data in the reconstruction of departure flight paths is limited, however, 

by the lack of thrust settings and take-off weights. For this reason, a mixed analysis-synthesis approach 

was developed, in previous research, to reconstruct flight profiles by optimizing published departure 

procedures parameterized in terms of aircraft thrust settings and take-off weight, and departure 

procedure parameters. The approach can be used to reconstruct large numbers of flight profiles, 

throughout significant time windows, from open-source ADS-B data. Errors in the estimations of the 

parameters can lead to errors in the flight profile calculation which will propagate through to follow-

on noise, fuel flow, and emissions calculations. In this paper, a global variance-based sensitivity 

analysis is presented, which evaluated the sensitivity of departure flight profile altitude to mixed 

analysis-synthesis flight profile parameters. The purpose was to improve understanding of the 

dominant sources of error and uncertainty in the flight profile reconstruction, and the influence of 

aspects of departure flight operations on resulting flight profiles. Analyses were presented for three 

different airports, Amsterdam Schiphol (EHAM), Dublin (EIDW) and Stockholm (ESSA) airports, 

considering departures of aircraft corresponding to the 737–800 and A320-211 aircraft classes. 
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1 Introduction 

European commercial air traffic is forecast to reach pre-COVID-19 levels by 2025 and achieve 

an annual growth of 1.5% until 2029 [1]. With these expected volumes and growth comes associated 

emission of noise [2], greenhouse gases and air pollutants [3]. The aerospace, aviation and research 

sectors devote much time and effort to reducing emissions at aircraft technical and air traffic 

management levels. To understand the real-world impact of such efforts, noise exposure, exhaust 

emission, and local air quality modeling tools are under continual development and improvement.  

A key aspect, well documented in the context of noise exposure modeling, which has been the 

subject of a number of publications in recent years, is flight path calculation [4,5,6,7]. The flight path 

of an aircraft is represented by 1) the ground track, which is the projection of the three-dimensional 

flight path onto the ground, typically expressed in terms of latitude and longitude, and 2) the flight 

profile, which is the altitude and speed of the aircraft along the ground track [4,5]. The 4th Edition of 

the European Civil Aviation Conference (ECAC) Doc 29 report on the standard method of calculating 

noise contours around civil airports provides extensive, detailed guidance on standardized and best-

practice methods for noise exposure modeling [4,5]. The documented approach is to construct real, 

calculated, or default flight paths using data from airports, flight data recorder (FDR), radar, simulation, 

customized or default procedures, or other sources [4,5]. Ground tracks should consist of straight and 

circular arc sections and flight profiles of straight sections [4,5]. Noise exposure can then be calculated 

using data from aircraft databases and aircraft sound emission and propagation modeling techniques 

[4,5]. This enables calculation of past, hypothetical, and future projected noise exposure levels [4,5]. 

Noise exposure calculation tools have been developed, based on the ECAC Doc 29 methods and the 

aircraft noise and performance (ANP) database [8], which provides information on departure 

procedural step profiles such as ‘DEFAULT’ and ‘ICAO A’ and noise power distance data for numerous 

aircraft. Examples of such tools are the EUROCONTROL IMPACT platform [9], the Federal Aviation 

Administration (FAA) Aviation Environmental Design Tool (AEDT) [10], and the Civil Aviation 

Authority (CAA) aircraft noise contour (ANCON) tool [11]. 

Until recently, obtaining high quality air traffic data was challenging [7]. However, the advent of 

automatic dependent surveillance – broadcast (ADS-B) in Europe [12] and subsequent advances in the 

gathering and publishing of ADS-B data has enabled methodology to be developed to reconstruct the 

ground tracks and flight profiles of large numbers of flights throughout significant time windows, with 

considerable accuracy, for subsequent noise exposure calculations [6,7,13]. Gagliardi et al. [14] used 
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ADS-B data to analyze the take-off ground run distances of 164 departures from Pisa airport. De 

Gennaro et al. [13] demonstrated the use of ADS-B data from websites such as Flightradar24 [15], 

FlightAware [16], and Plane Finder [17], in conjunction with the ANP database [8] and the aircraft 

model database Airfleets [18] to reconstruct a large number of flights, 34,818, having considered 2,300 

airports in EUROCONTROL territory, for noise contour calculation. Pretto et al. used ADS-B data to 

reconstruct and calculate the near airport noise contours for 10,752 flights [19] and then later used 

similar methods to forecast future scenarios for airport noise [20]. All three works used published 

procedural steps to estimate the flight profile [13,19,20]. While researchers have been exploring the 

use of ABS-B data for reconstruction and analysis of large numbers of flights, methods have been 

under development and made available, with a prominent example being the development of the 

Python library ‘traffic’ [21,22], which provide bespoke implementations of ADS-B data acquisition, 

preprocessing, analysis, and visualization methods.  

While the modeling of noise and other emissions can be carried out on hypothetical flight paths, 

future scenarios, and statistical dispersions [23], in this paper, the topic is real-world modeling, i.e., 

reconstruction of single flights, potentially in large numbers. In two recent papers, Pretto et al. 

developed a mixed analysis-synthesis approach to flight path modeling, whereby published ANP 

procedures are parameterized and optimized to fit more closely the ADS-B data [6,7]. The method 

makes use of the ADS-B data provided by the OpenSky Network (OSN) [24] at time resolutions of up 

to one data point per second. The flight profile reconstruction is still hampered by the joint lack of 

thrust setting and weight data, which likely leads to errors in the flight profiles that will propagate 

through to follow-on local noise and fuel flow calculations. For departures, the mixed analysis-

synthesis method aims to address this by estimating the thrust levels and the aircraft take-off weight, 

in addition to three flight profile parameters, which aim to allow realistic flexibility for real-world 

variation in departure operations [7]. ECAC-based arrival modeling is much more constrained by ANP, 

which assumes only a DEFAULT procedure flown at fixed landing weight, and the mixed approach 

can currently account only for kinematic variations. Arrival and departure modeling can, therefore, be 

considered distinct problems. Accordingly, the departure flight profile is the sole subject of the 

following analysis. 

In this paper, the results of a global variance-based sensitivity analysis are presented, focusing on 

the sensitivity of departure flight profile altitude to mixed analysis-synthesis aircraft and departure 

procedure parameters, with the aim of better understanding the dominant sources of error and 

uncertainty in altitude reconstruction, and which aspects of departure flight operations are most 

influential on this key aspect of the flight profile. While the departure flight profiles also exhibit other 

dependencies, for example, on atmospheric and wind conditions, the aim here is to focus on the 

parameters which are at present estimated via optimization. Analyses are carried out using open-source 

ADS-B data covering a time window of a week, for three different airports, Amsterdam Schiphol 

(EHAM), Dublin (EIDW), and Stockholm (ESSA) airports, two aircraft classes, represented by the 

737–800 and A320-211 ANP proxy models, and two different departure procedures, DEFAULT and 

ICAO A. The mixed analysis-synthesis flight profile reconstruction method and global variance-based 

analysis methodology employed are recalled in some detail in Section 2 ‘Methodology’. Flight profile 

reconstructions spanning a full week of departure operations for each airport-proxy-profile 

combination, corresponding parameter ranges, and corresponding calculated first order Sobol 

sensitivity indices are presented in Section 3 ‘Results and analysis’. Finally, discussion of the 

conclusions drawn from the sensitivity indices are provided in Section 4 ‘Conclusions’. 
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2 Methodology 

2.1 Flight profile reconstruction 

The departure flight profile reconstruction method has already been described in detail in 

references [6], [25], and [7]. The method can be described in terms of two stages: preprocessing and 

processing. In the first of the three articles, a substantial preprocessing stage is described. In the second 

article, however, the use of higher time resolution OSN ADS-B data is reported to allow simplification 

of the preprocessing. The third article focuses on modifications to the flight profile reconstruction 

method which is based on optimization. The overall procedure is illustrated as a flow diagram in Figure 1.  

 

Figure 1. Flow diagram outlining the overall procedure to go from ADS-B and supporting 

input data via mixed analysis-synthesis approach to segmented flight paths and follow-on 

noise or other calculations. 

The preprocessing stage begins with high time resolution ADS-B and Mode S data provided by 

OSN, containing information including: ICAO24 code, timestamp, latitude, longitude, groundspeed, 

track, vertical speed, call sign, altitude, geometric altitude, heading, and indicated air speed (IAS) for 

each individual flight operation. Runway layout and terrain data are used to augment the dataset with 

the runway used and runway gradient, by matching the ADS-B data with runway layout and terrain 
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data. The ICAO24 code is matched to an aircraft registration using aircraft data provided by OSN. 

Registration is matched to airframe-engine type using Airlinerlist [26]. Airframe-engine type is 

matched to an ANP aircraft proxy model using the ANP database [27]. Lastly, meteorological 

aerodrome reports (METAR) are used with interpolation to calculate atmospheric and wind conditions 

for the flight. In addition to this, the positional data is smoothed to remove anomalies and reduce noise, 

and any duplicate flights are removed.  

In the processing stage, the ground track is segmented into straight and circular arc sections, 

maintaining heading and positional continuity, and the straight segment-form flight profiles are 

calculated using the mixed analysis-synthesis approach [7]. Details on the ground track segmentation 

are provided in reference [25] and are omitted here as the focus is on flight profile calculation. The 

mixed analysis-synthesis approach applied to departure operations consists of two main steps: first, 

several optimization variables (shown in Table 1) are introduced to increase the flexibility of ANP 

procedural steps so that the resulting synthetic flight profile can better follow the ADS-B data [7]. 

Second, an objective function, based on the root mean square errors of the altitude and velocity 

between the analytic, straight segment profile and the ADS-B data is introduced [7]. Lastly, a basin 

hopping gradient-based optimization routine is used with the aim of minimizing the difference between 

the analytic and ADS-B flight profiles via objective function minimization [7]. An example of the 

application of the flight profile reconstruction algorithm to a departure operation is presented in Figure 

2, which shows, on the left, the altitude progressions before and after optimization against the guiding 

ADS-B data and, for context on the right, the reconstructed ground track using only straight segments 

and circular arcs. The set of parameters, used in conjunction with the atmospheric condition and aircraft 

proxy data to determine the lengths and gradients of flight profile sections, is shown in Table 1. 

Table 1. List of parameters which are optimized to match aircraft departure flight profile 

to ADS-B data. 

Parameter Symbol Purpose 

Procedure type 𝑃𝑡𝑦𝑝𝑒 Procedural flexibility 
Take-off thrust reduction 𝐾𝑇 Variable take-off thrust 
Climb thrust reduction 𝐾𝐶 Variable climb thrust 
Weight fraction 𝐾𝑀𝑇𝑂𝑊 Variable weight 
Initial climb height ∆ℎ𝐿 Flexible initial climb section 
Mid-climb height ∆ℎ𝑀 Flexible mid-climb section(s) 

Energy share fraction 𝑓𝑒 Flexible acceleration step(s) 

The procedure has been shown in [7] to segment flight profiles in a way suitable for aircraft 

performance reconstruction and airport noise estimation with reasonable matching to ADS-B data in 

well over 90% of the flight operations, with some limitations only in cases where the ANP flight 

procedures are not up to date with modern airport traffic management practices. 
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Figure 2. Sample DEFAULT departure flight profile with ground track for EHAM. The 

unoptimized, optimized and ADS-B raw data flight profiles are shown. 

2.2 Sensitivity analysis 

The methodology employed is the well-established method of global variance-based sensitivity 

analysis developed by Sobol [28,29,30]. The method is recalled here for completeness. Letting the 

flight profile altitude or ground speed be denoted by 𝑌, let 𝑌 = 𝑓(𝑋) denote the model where 𝑌 is a 

function of 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6), which are the parameters in Table 1 excluding procedure type. 

Assume 𝑋 is a vector of random variables with known distributions. The law of total variance states: 

𝑉𝑎𝑟(𝑌) = 𝐸[(𝑌 − 𝐸[𝑌])2] = 𝐸[𝑉𝑎𝑟( 𝑌 ∣ 𝑋 )] + 𝑉𝑎𝑟[𝐸( 𝑌 ∣ 𝑋 )], 

where 𝐸[𝑉𝑎𝑟(𝑌 ∣ 𝑋)] represents the variance within subgroups defined by different levels of 𝑋, and 

𝑉𝑎𝑟[𝐸(𝑌 ∣ 𝑋)] represents the variance due to differences in the expected values of 𝑌 across different 

levels of 𝑋. For a model with independent inputs, the variance of the output can be decomposed additively: 

𝑉𝑎𝑟(𝑌) = ∑ 𝑉𝑎𝑟(𝑌𝑋𝑖)

6

𝑖=1

+ ∑ 𝐶𝑜𝑣(𝑌𝑋𝑖, 𝑌𝑋𝑗)

𝑖≠𝑗

+ ⋯ + 𝐶𝑜𝑣(𝑌𝑋1, … , 𝑌𝑋6), 

where 𝑌𝑋𝑖 is the model output due to the input 𝑋𝑖, and the covariances capture interactions between 

different inputs. Sobol sensitivity indices extend variance decomposition to measure the contributions 

of individual inputs and their interactions. First-order Sobol indices 𝑆𝑖, given by 

𝑆𝑖 =
𝑉𝑎𝑟[𝐸[𝑌 ∣ 𝑋𝑖]]

𝑉𝑎𝑟(𝑌)
, 

are the proportion of variance in 𝑌  directly attributable to the input 𝑋𝑖 , while accounting for 

interactions with other inputs. Total Sobol indices 𝑆𝑇𝑖, given by 
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𝑆𝑇𝑖 = 1 −
𝑉𝑎𝑟[𝐸[ 𝑌 ∣∣ 𝑋−𝑖 ]]

𝑉𝑎𝑟(𝑌)
, 

express the total effect of 𝑋𝑖, including interactions with all other input variables 𝑋−𝑖. 

Sobol indices can be estimated via Monte Carlo simulations and polynomial chaos expansions, 

or via sampling of the parameter space. For this initial investigation, all mixed analysis-synthesis 

departure flight profiles were calculated for a week’s worth of OSN ADS-B data for each airport-proxy 

combination on the runway with the greatest number of relevant flights. The ranges of the flight profile 

parameters were then extracted from the data. Although the time window of a week provided for 

considerable numbers of departures, no calculations of the probability distributions were carried out. 

This was reserved for when larger datasets are considered. Therefore, Saltelli sampling [29,30] of the 

unit hypercube on the uniform distribution, was used to generate parameter samples for variance 

decomposition. The first and total order Sobol indices were then calculated. Sample sizes of 64,000 

were created to give error margins which were small with respect to the variations between the indices. 

Due to the similarity of the first and total order indices, only the first order indices are presented. 

The data obtained for the analysis is summarized here. ADS-B and Mode-S data for aircraft 

movements at EHAM, EIDW, and ESSA from 2nd March to 8th March inclusive, was downloaded from 

OSN. The data associated with each movement includes one entry for each transmission, delivered at 

a time resolution of up to one per second, with each containing the following fields: timestamp, 

ICAO24 code, latitude, longitude, groundspeed, track, vertical speed, call sign, altitude, geometric 

altitude, heading, IAS, Mach number, selected mode control panel (MCP), roll angle, rate of change 

of track, true airspeed (TAS), and flight ID. Airport atmospheric temperature and pressure as well as 

wind direction and wind speed data were extracted from METARs, obtained using Traffic. For each 

flight the data was linearly interpolated between the two METARs for the relevant airport just before 

and just after the first and last ADS-B timestamps associated with the movement. Airport runway data 

was provided by a database obtained from OurAirports [31] and taxiway layout data from 

OpenStreetMap [32]. Aircraft registration data linked to ICAO24 data was provided by the aircraft 

database downloaded from OSN. Airframe and engine data linked to aircraft registrations was provided 

by Airlinerlist [26], while the ANP proxy model data was provided by the ANP database [27].  

3 Results and analysis 

Flight profiles from 2nd March to 8th March, inclusive, were reconstructed for each of EHAM, 

EIDW, and ESSA airports, using the mixed analysis-synthesis approach briefly described in Section 

2.1. The ranges of each of the six parameters were extracted from the data for the aircraft represented 

by the proxies A320-200 and 737–800 at each airport separately. The ranges were used to bound the 

sampling for global sensitivity analyses for each aircraft proxy – airport combination.  
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Figure 3. Calculated flight profiles for 737–800 proxy-related departure operations using 

the DEFAULT (left) and ICAO A (right) flight profiles, on runway 36L at EHAM over 

seven days from 2nd March 2023 to 8th March 2023. 

Figure 3 to Figure 5 show the range of calculated flight profiles of 737–800 proxy represented 

aircraft departing from EHAM runway 36L, EIDW runway 28L and ESSA runway 01L, respectively. 

The results reveal significant ranges of altitudes achieved by the aircraft over the week at ground 

track distances of 10,000’ (1.6 nm), 20,000’ (3.3 nm), 40,000’ (6.6 nm), 60,000’ (9.9 nm), and 80,000’ 

(13.2 nm). Both the DEFAULT and ICAO A departure profiles are shown. The mixed analysis-

synthesis parameter ranges for the departure events at the same locations for the 737–800 proxy-

represented aircraft using the DEFAULT and ICAO A profiles in the timeframe are shown in Table 2 

and Table 3, respectively. 

  

Figure 4. Calculated flight profiles for 737–800 proxy-related departure operations using 

the DEFAULT (left) and ICAO A (right) flight profiles, on runway 28L at EIDW over 

seven days from 2nd March 2023 to 8th March 2023. 
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Figure 5. Calculated flight profiles for 737–800 proxy-related departure operations using 

the DEFAULT (left) and ICAO A (right) flight profiles, on runway 01L at ESSA over seven 

days from 2nd March 2023 to 8th March 2023. 

Table 2. Mixed analysis-synthesis parameter ranges for the 737–800 proxy-represented 

aircraft using the DEFAULT profile for EHAM, EIDW, and ESSA airports. 

 𝐾𝑇 𝐾𝑀𝑇𝑂𝑊 ∆ℎ𝐿 𝑓𝑒 ∆ℎ𝑀 𝐾𝐶 

 Min Max Min Max Min Max Min Max Min Max Min Max 

EHAM 0.75 1.0 128472  174200 −200 750 0.7 1.4 0 3000 0.8 1.0 

EIDW 0.75 1.0 124403 169750 −200 750 0.7 1.4 -500 5000 0.8 1.0 

ESSA 0.75 1.0 112823 174200 −200 750 0.7 1.4 -500 5000 0.8 1.0 

Table 3. Mixed analysis-synthesis parameter ranges for the 737–800 proxy-represented 

aircraft using the ICAO A profile for EHAM, EIDW, and ESSA airports. 

 𝐾𝑇 𝐾𝑀𝑇𝑂𝑊 ∆ℎ𝐿 𝑓𝑒 ∆ℎ𝑀 𝐾𝐶 

 Min Max Min Max Min Max Min Max Min Max Min Max 

EHAM 0.75 1.0 133241 174200 −2000 121 0.55 1.4 0 3000 0.8 1.0 

EIDW 0.75 1.0 124325 158842 −2000 143 0.55 1.4 −500 5000 0.8 1.0 

ESSA 0.75 1.0 114355 174012 −2000 750 0.55 1.4 −500 5000 0.8 1.0 
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Figure 6. First order Sobol indices for the flight profile parameters at each specified 

surface distance along the departure flight profile at three different airports for 737–800 

proxy-represented aircraft using the DEFAULT flight profile. 

Figure 6 to Figure 7 show the first order Sobol indices for each of the parameters at 1.6 nm, 3.3 

nm, 6.6 nm, 9.9 nm, and 13.2 nm for the 737–800 and A320-211 proxy represented aircraft departing 

EHAM, EIDW, and ESSA using the DEFAULT flight profile. The overall patterns are similar between 

the two aircraft and airports. The results for the 737–800 in Figure 6 show that KMTOW is consistently 

the greatest contributor to altitude variance across the three airports, throughout the range of surface 

distances. However, there are some notable contributions from other parameters which vary with the 

surface distance. At 1.6 nm, the take-off thrust reduction parameter, 𝐾𝑇, variance makes a sizeable 

contribution to the altitude variance. This is unsurprising as the remaining parameters have little 

connection to the flight profile mathematically at this distance. At 3.3 nm, 𝐾𝑇  makes a similar 

contribution. Here the ∆ℎL and 𝑓𝑒 parameters make a small noticeable contribution and their greatest 

contribution for this proxy and profile. At 6.6 nm, 𝐾𝑇 maintains minor influence and ∆ℎM emerges as 

a moderately contributing parameter. Here KMTOW is at its minimum due to the contributions of the 

aforementioned parameters. At 9.9 nm, 𝐾𝑇  and ∆ℎM  maintain minor shares of the variance 

contribution and 𝐾𝐶 gains a small contribution. At 13.2 nm, the 𝐾𝑇 and ∆ℎM shares of the contribution 

are moderately smaller and the 𝐾𝐶 contribution has increased. The 𝑓𝑒 and ∆ℎL contributions remain 

small throughout. The results for the A320-211 in Figure 7 show some differences to those of the 737–

800. Most notably, the 𝑓𝑒 and ∆ℎL contributions are of comparable size to that of 𝐾𝑇 and correspond 

to a noticeably reduced contribution from KMTOW particularly at EIDW. At 9.9 nm and 13.2 nm, 𝐾𝑇 and 

∆ℎM each make much less of a contribution share. 
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Figure 7. First order Sobol indices for the flight profile parameters at each specified 

surface distance along the departure flight profile at three different airports for A320-211 

proxy-represented aircraft using the DEFAULT flight profile. 

Figure 8 and Figure 9 show the first order Sobol indices for each of the parameters at 1.6 nm, 3.3 

nm, 6.6 nm, 9.9 nm, and 13.2 nm for the 737–800 and A320-211 proxy represented aircraft departing 

EHAM, EIDW, and ESSA using the ICAO A flight profile. Similarly to the DEFAULT profile results, 

the 737–800 indices in Figure 8 show that KMTOW is consistently high throughout. However, the 

contribution share of 𝐾𝑇 tails off at 3.3 nm and above, while ∆ℎL has a significant share of the variance 

contribution at 3.3 nm, particularly for EIDW and EHAM airports. At 6.6 nm and above, 𝐾𝐶 makes a 

noticeable contribution, increasing with surface distance and becoming comparable to that of KMTOW 

at 13.2 nm. The A320-211 proxy results in Figure 9 show a similar pattern to those of the 737–800 for 

this profile. However, at 3.3 nm, the share of ∆ℎL is noticeably greater, at the expense of and reaching 

approximately the same magnitude as KMTOW for the three airports. At 6.6 nm, the contribution of ∆ℎL 

persists but is reduced, while that of KMTOW is again increased. The extent of this is only slight for 

EIDW, but greater for ESSA and greater still for EHAM. At 9.9 and 13.2 nm, the pattern is similar to 

that of the 737–800, with the major contribution coming from KMTOW and a minor contribution from 

𝐾𝐶 as with all the previous results. 
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Figure 8. First order Sobol indices for the flight profile parameters at each specified 

surface distance along the departure flight profile at three different airports for 737–800 

proxy-represented aircraft using the ICAO A flight profile. 

 

Figure 9. First order Sobol indices for the flight profile parameters at each specified 

surface distance along the departure flight profile at three different airports for A320-211 

proxy-represented aircraft using the ICAO A flight profile. 
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4 Conclusions 

In this paper, a global, variance-based sensitivity analysis of the mixed analysis-synthesis 

approach for flight profile reconstruction and segmentation [7] has been introduced and presented. The 

adopted flight profile reconstruction method has been recalled in Section 2.1 and the methodology for 

sensitivity analysis has been laid out in Section 2.2. The results have been described in detail in Section 

3 and are discussed here.  

The analysis focused on assessing the contributions of the six mixed analysis-synthesis [7] 

parameters 𝐾𝑇, KMTOW, 𝑓𝑒, ∆ℎL, ∆ℎL, and 𝐾𝐶 to altitude variance at specified surface distances along 

the ground track. Other factors, namely profile, runway, and weather specifics, were kept constant for 

each sensitivity calculation. The main observations across the considered airports, proxies and profiles 

can be summarized as follows: KMTOW variance is, by some margin, consistently the greatest contributor 

to altitude total variance throughout the considered ground track surface distance range; and 𝐾𝑇 and 

𝐾𝐶 variances make similar and next greatest contributions to total variance, with 𝐾𝑇 more influential 

at lower and 𝐾𝐶 at greater distances. Out of the total six, these three parameters represent take-off 

weight, take-off thrust reduction and climb thrust reduction respectively, which represent the aircraft 

performance. Thus, it can be concluded that, in this study on mixed analysis-synthesis departure flight 

profile reconstruction, aircraft performance is collectively the most important contributor to altitude 

total variance over the ground track range considered. The remaining three parameters 𝑓𝑒, ∆ℎL, and 

∆ℎM are those of the flight profile geometry. While collectively making a less significant contribution 

to altitude total variance, the flight profile parameters 𝑓𝑒 and ∆ℎL do make notable contributions at 

certain ground track distance subranges. At the intermediate surface distances (3.3–6.6 nm), there are 

particularly notable contributions with the specifics varying with flight profile and proxy. The 

parameter ∆ℎL contributes to altitude total variance at 3.3 nm with the ICAO A profile of comparable 

magnitude to that of KMTOW at the same point, to that of 𝐾𝐶 at any other point in this analysis, and, in 

excess of that of 𝐾𝑇, anywhere in this analysis.  

The implication of these observations is that calculated aircraft performance has greater potential 

to be a source of inaccuracy in departure flight profile calculation than flight profile geometry with the 

current mixed analysis-synthesis approach. Greater accuracy and robustness of the approach is, 

therefore, suggested to be sought by finding ways to access data on aircraft performance factors and 

improve methods of their deduction from available flight data. The parameterization of the flight 

profiles is, however, also a consideration, albeit of secondary priority. Follow-up research will address 

the questions of specific parameter probability distribution, local sensitivities of specific flight profiles 

and how flight profile sensitivity translates into calculated noise and local pollutant emission sensitivity. 

Beyond that, further analysis may be carried out including more aspects of flight profile calculation, 

such as weather conditions. Similar analyses may also be applied to arrivals, but it is possible that 

advancements in the ECAC- and ANP-based profile modeling are necessary beforehand to lower the 

level of constraint in the computations and unlock additional degrees of freedom. 
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