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Abstract: Decomposition of geophysical functions in ranks on degrees of components of a single 

position vector with coefficients in the form of the indexes of tensors, symmetric and traceless on any 

couple (symmetric and trace free [STF] tensors or deviators), is applied along with decomposition on 

surface harmonics (scalar, vector, and tensor). The article considers the problem of deviator 

decomposition of a function having the special form of a series of degrees of components of a unit 

radius vector. The algorithm evaluation of STF coefficients using known values of series coefficients 

is under consideration. Taking into account that often only the first several of these coefficients are 

used, the author created and presented a table with several coefficient formulas for reference and 

validation. The STF-formalism is mainly used for the representation of radiative gravity fields and 

gravitational waves in general relativity; however, it can also be applied in mathematical physics to 

represent spherical harmonics, including fluid dynamics in Earth’s outer core and seismic wave analysis. 
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1. Introduction  

Decomposition of geophysical functions in ranks on degrees of components of a single position 

vector with coefficients in the form of the indexes of tensors, symmetric and traceless on any couple 

(symmetric and trace free [STF] tensors or deviators), is applied along with decomposition on surface 

harmonics (scalar, vector, tensor). The term deviator comes from the elasticity theory [1]. From the 

point of view of group theory, the deviator part of a tensor is the first member of decomposition of 

tensor on irreducible representations of rotation group SO (dim). 
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In group theory, it has been proven that deviator decompositions are equivalent to decomposition 

on surface harmonics (scalar, vector, and tensor), which makes it possible to use such decompositions 

to solve mathematical physics equations. At the same time, in some cases (e.g., boundary conditions), 

there is a need to represent the sum of the inner products of symmetric tensors MF
~

  with multi 

components of a unit radial vector: 

MM

N

m

nFF
~

1


=

=                                   (1) 

in the form of the sum of the inner products of deviators 
MF̂ : 

MM

N

m

nFF ˆ

1


=

= ,                                 (2) 

where 
MiiM nnn ...

1
   is the multi component of a unit radial vector in Damour’s notation [2]. The 

multi index in Thorn notation: 
ll iiiI TT ...21

  [3, formulae (1.6a)] will be used in section 2.  

This task can be solved directly by evaluating the 
MF̂ coefficient with the integration of sum (1) 

multiplied by the STF-basis tensor of rank M by a unit sphere. In this paper, an easier route is considered. 

Let us consider, for example, case N=2: 

0

2

0

~~~~
FnFnnFnFF iijiij

m

MM ++==
=

. 

The Einstein summation notation is used whenever we have an expression with a repeated index 

(multi index). Thus, we implicitly know to sum over that index (indexes of multi index) from 1 to dim, 

where dim is notation of the dimension of the space. The dimension of space (dim) can be also written 

as 
dim

1 1 ... 1 dimkk = + + + = .    

One can obtain the following for STF part of tensor with rank 2: 
1ˆ

dim
ij ij ij kkF F F= +  . 

Substituting this into an expression for F and introducing similar ones, one can get: 

2

0 0

0

1ˆ ˆ ˆ ˆ
dim

M M ij ij kk i j i i ij i j i i

m

F F n F F n n Fn F F n n Fn F
=

 
= = + + + = + + 

 
 , 

where deviator coefficients are equal: 

1ˆ
dim

ij ij ij kkF F F= − , ˆ
k kF F= , 0 0

1ˆ
dim

kkF F F= + . 

In this simple case, formulas for finding deviator coefficients from symmetric coefficients are 

very easy, and it is not needed in some special evaluations. However, when the number of sum 

members N is growing, the difficulties increase because the fragments of the members of the senior 

ranks are “poured” into the members of the lower ranks and the more members there are in total, the 

more complex they are to enter there.  

The algorithm of estimation of coefficients ˆ
KF  of sum (2) using knowing values of symmetric 

coefficients 
JF  of sum (1) is under consideration. Taking into account that often only the first several 

of these coefficients are used, the author created and presented a table with several coefficient formulas 

for reference and validation.  
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2. The algebraic algorithm for cumulative STF coefficients  

The algebraic algorithm for cumulative STF coefficients estimation was proposed and proved by 

author in [4] and is represented here in Supplementary in the English translation. It can be formulated 

as the following theorem about cumulative STF coefficients.      

Theorem about cumulative STF coefficients. Sum (1) can be represented as exactly equal to its 

sum (2) with the deviator coefficients estimated according to formulas: 

( ) ( )
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





 −

=

++



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




=

 −−−−
−+=−=

2

1

1212

2

22

~
,12~ˆ        ,

~
,2~ˆ

N

js

KKJJ

N

js

KKJJ JSJSJSJS
FjssaFFjssaF ,      (3) 

where ( ),a n l are cumulative STF coefficients and calculated by values coefficients ),( lna of STF part 

of tensor by following the recurrent algorithm. 

1) for l=0,1,2 cumulative coefficients are evaluated by formulas: 

( ,0) 1a n = , ( ,1) ( ,1)a n a n= − , ( ) ( ) ( )( ,2) ,1 2,1 ,2a n a n a n a n= − − .         (4) 

2) for l >2: 

– evaluated ( )1,2, −lna  by formula:   

( ) ( ) ( ) ( )lnalnanalna ,1,21,1,2, −−−=−                     (5) 

– for k=1,…,l-2 evaluated: 

)1,(~)1),1(2(),1,()1,2,( +−−+−−−−=+−− knaklknakklnakklna        (6) 

Last coefficient ( ,0, 1)a n l −  is equal to ( , )a n l . 

Remark. At the same time, the coefficients )1,(~ +kna for k=1,…,l-2 have to be evaluated on 

previous steps.  

The formulae for the coefficients ),( lna  of STF part of tensor for 3-dimentional space one can 

be found in [1, formulae (2.2c)]. For multidimensional space, it can be found in [4, formulae (4)]. 

3. Results 

Taking into account that often only the first several of these coefficients are used, the algebraic 

algorithm for cumulative STF coefficients estimation was used by author for the evaluation the first several 

cumulative STF coefficients (see Supplementary). For reference, author prepared the following tables.  

4. Validation of Table 1 formulas  

The following procedure was used for the validation of formulas for cumulative STF coefficients 

presented at Table 1. At first, the STF coefficients of sum (2) must be expressed in terms of sum (1) 

for given sum limit N, according to formulae (3) with cumulative STF coefficient from Table 1. After 

that, these expressions must be inserted in sum (2) and similar ones have to be introduced. If the sum 

(1) will be obtained, then the validation is assumed to be successful. Validation for N=2 (see example 

in Introduction) obviously is successful.  

 



374 

Metascience in Aerospace  Volume 1, Issue 4, 371–378. 

Table 1. The cumulative STF coefficients ),(~ lna for n from 1 to 7. 

n L 

0 1 2 3 

0 1 – – – 

1 1 – – – 

2 1 1

dim
 

– – 

3 1 

( )
3

dim 2+
 

– – 

4 1 6

(4 dim)+
 

3

(2 dim)dim+
 

– 

5 1 10

(6 dim)+
 

15

(4 dim)(2 dim)+ +
 

– 

6 1 15

(8 dim)+
 

( )( )6 dim 4 dim

45

+ +
 

( )( ) m

15

4 2dim dim di+ +
 

7 1 21

(10 dim)+
 

105

(8 dim)(6 dim)+ +
 

( )( )( )m

1

d

05

dim i6 4 2m di+ + +
 

4.1. Validation formulas for N=3 

Formulas (3) for N=3 can be written as:  

( )0 0 0

1
2,ˆ

di
1

m
ss ssF F a F F F= + = + , ( )

( )
3ˆ 3,1

2 dim
i i iss i issF F a F F F= + = +

+
,

ˆ
di

1

m
ij ij ij ssij

F F F F= = − , 
( )

( )
3 1ˆ

2 dim 3
ijk ijk ij ssk ik ssj jk ssiijk

F F F F F F  = = − + +
+

. 

Now, inserting these in (2) and introducing similar ones, one can obtain: 

( )

( )
( )

0

0

1 3 1

dim 2 dim dim

3 1
.

2 dim 3

ss i i iss i ij i j i j ij ss ijk i j k

ij kss ik jss jk iss i j k i i ij i j ijk i j k

F F F Fn F n F n n n n F F n n n

F F F n n n F Fn F n n F n n n



  

    
= + + + + + − + +    

+    

 
+ − + + = + + + 

+ 

 

Thus, validation is successful. The shrinking members are enclosed in big curly and square brackets. 

4.2. Validation formulas for N=4 

Formulas (3) for N=4 can be written as:  

( ) ( )
( )0 0 0

1 3ˆ
i

2,1 4
2 dim

,2
d m

ss ssmm ss

k

ss

k

mmF F a F Fa F F F
 

=
  

+  
+ 

+ + = +


, 

( )
( )

3ˆ 3,1
2 dim

i i iss i issF F a F F F= + = +
+

,  
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( )
1 6 6 1ˆ 4,1

dim (4 dim) (4 dim) dim
ij ij ij ss ijss ij mmssij ij ss

F F a F F F F F 
  

= + = − + + −  + +  
, 

( )
( )

3 1ˆ
2 dim 3

ijk ijk ij ssk ik ssj jk ssiijk
F F F F F F  = = − + +

+
, 

( )
( )

( )( )
( )

6 1ˆ
4 dim 6

3 1

4 dim 2 dim 3

ijkl ijkl ij sskl ik ssjl il ssjk jk ssil jl ssik lk ssijijkl

ij kl ik jl il jk ssmm

F F F F F F F F F

F

     
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 
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+ 

  
+ + + 

+ +  

. 

As shown above, the members which not enclosed in big brackets, give us the first 4 members of 

sum (1), excluding one with coefficient 
ijklF . Thus, only the new members with coefficients enclosed 

in big brackets and 
ijklF  have to be checked. The members of sum (2) of these must give the result 

ijkl i j k kF n n n n  . After evaluating these members and introducing similar ones, one can obtain 

ijkl i j k kF n n n n . So, validation is successful.  

Remark. In paper [4], the example for N=4 has some mistakes because of a big rush before 

publication; however, all formulas here are correct.    

4.3. Validation formulas for N=5 

Similar to the previous case, it is enough to check only for new odd-ranked members: 

( ) ( )
( ) ( ) ( )
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3
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Other members are the same as in previous case. After inserting the coefficients in (2) and 

introducing similar ones, one can obtain 
ijklm i j k k mF n n n n n   for the sum members with coefficients 

enclosed in big brackets and 
ijklmF . So, validation is successful.   
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4.4. Validation formulas for N=6 

Similar to the previous case, it is enough to check only for new even-ranked members: 

( ) ( ) ( )
( )

( )( )

0 0 0
ˆ

15
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1 3
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Other members are the same as in previous case. The ellipsis denotes similar terms, the form of 

which is understandable from context. After inserting the coefficients in (2) and introducing the similar 

ones, one can obtain 
ijklmp i j k k m pF n n n n n n for sum of members with coefficients enclosed in big brackets 

and 
ijklmpF . So, validation is successful.   

4.5. Validation formulas for N=7 

Similar to the previous case, it is enough to check only for new odd-ranked members: 

( ) ( ) ( )
( ) ( )( )

( )( )( )

ˆ

105
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3 15
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i s kF F a F a F a F F F F
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  
+  
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+
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+
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( ) ( )
( )
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ijkss ij ssw

r

wk ik sswwj j s

ijks

k wws i

s r

F F a F a F F F F F

F F F F

F

  

  

= + +

 
+ − +

= − + + +
+

 
+ − + + +  +

+ + + 

+ 

+
( )

( )
1

,
dim 3

ij sswwrrk ik sswwrrj jk wwssrriF F F  
  

+ + 
+  

 

( )
( )

( )
( ) ( )

(

)
( ) ( ) ( )

( )

10 1 15 1
7,1 ...

6 dim 10 6 dim 4 di
ˆ

21 21 10 1

10 dim i
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.
6 d m 1
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
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    

 
= = + − ++ +  + 
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Other members are the same as in previous case. The ellipsis denotes similar terms, the form of 

which is understandable from context. After inserting coefficients in (2) and introducing similar ones, 

one can obtain 
ijklmps i j k k m p sF n n n n n n n for sum of members with coefficients enclosed in big brackets 

and 
ijklmpsF . So, validation is successful. 

5. Conclusions 

The cumulative STF coefficients formulas were obtained based on algebraic algorithm [4] for 

space with finite dimension. The formulas were checked analytically, and validation was successful. 

The formulas of Table 1 can be used for easier transition from sum in form (1) to sum in form (2) 

compared with directly using the theorem about cumulative STF coefficients algorithm. In conclusion, 

it should be noted that STF-formalism can be used for the solution of all mathematical physics tasks 

that include spherical harmonics. For example, it was used by author for calculating the added masses 

tensor in the solution of the Earth’s solid inner core motion [5].            
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