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Abstract: Predicting the performance of different electric vertical take-off and landing (eVTOL)
vehicle designs is paramount to vehicle manufacturers and hobbyists. These vehicles’ maximum flight
time (endurance) and maximum flight distance (range) depend on design and operational parameters
relating to their structure, propulsion system, payload, and mission profile. In recent years, sophisticated
physics-based models have been developed to estimate and optimize their aerodynamic, propulsion,
and electrical performance. Integrating and simulating those models can closely estimate a vehicle’s
endurance and range. However, this demands advanced knowledge of different subsystems utilized
and extensive computational resources limiting the wide-scale utilization of such models. This paper
showcases the development and implementation of a framework to train simpler machine learning-based
surrogates. The surrogate models are trained on a limited number of eVTOL performance estimates
generated by physics-based models and can mimic them accurately. Forty-seven thousand eVTOL
vehicle designs were simulated to generate the training data for various machine-learning models.
These include several decision tree models, K-nearest neighbor models, linear regression models, and a
multi-perceptron neural network model. Vehicle design and operational parameters such as propeller
size, payload mass, drag coefficient, velocity, and motor and battery parameters are used as features,
and vehicle endurance and range estimates are used as targets. Compared to the alternative approaches,
these surrogate models are computationally very efficient and easy to understand and use. Testing on
hold-out datasets shows excellent performance, with multiple models having a mean average percentage
error of less than 2% in estimating vehicle endurance and range.
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1. Introduction

The applications for electric aerial vehicles have grown significantly in the past decade. They include
military missions, search-and-rescue operations, real-time surveillance, package delivery, hazardous site
inspection, etc. [1]. These vehicles can be primarily classified based on their design and application [2].
Vehicles with electric propulsion systems are popular due to their simplicity, reliability, and high
efficiency. These include electric vertical take-off and landing (eVTOL) vehicles, which are promoted
for short-duration flights in locations with challenging topography for landing traditional aircraft.

eVTOL vehicles have multiple rotors and use propellers, electric motors, and batteries for
propulsion [3] as shown in Figure 1. In addition to other vehicle and operational parameters like
vehicle mass, aerodynamic drag, payload mass, and velocity, these components influence a vehicle’s
endurance and range. Vehicle endurance indicates the duration a vehicle can remain airborne, while
range gives the distance it can fly. Accurate estimations of these key metrics for different vehicle
designs and mission profiles can help manufacturers and hobbyists choose the best combination of
components that maximize performance and satisfy their missions. Several studies have explored the
performance modeling of these individual subsystems as well as assembled vehicles [4, 5, 6]. Extensive
knowledge of these systems, integration of high-fidelity physics-based models of these components, and
extensive computational resources are needed to estimate these metrics accurately and rapidly. These
factors limit the widespread utilization of prediction models and cause teams to explore experimental
methods [7, 8, 9] to support vehicle design decisions. These challenges and also real-time mission
replanning requirements during contingencies highlight the need for alternative approaches that can
provide designers and operators with accurate and efficient vehicle performance estimation models,
motivating the exploration of machine learning (ML)-based surrogates in this work.

Figure 1. A multi-rotor aerial vehicle depicting the various components that affect its
endurance and range performance.

Through this work, the authors aim to sidestep the high computational costs associated with physics-
based models using ML-based surrogates trained on simulation data. These surrogates offer not only
predictive accuracy but also significantly enhanced computational efficiency, making them ideal for
real-time applications and rapid design iterations. Such lightweight prediction tools could rapidly
provide valuable insights into component compatibility and facilitate the development of more efficient
vehicles. They could also benefit operations teams by providing in-time insights for real-time mission
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replanning, ensuring eVTOL vehicles can adapt to dynamic mission requirements, component failures,
and changing environmental conditions.

1.1. Literature review

The endurance and range prediction of aerial vehicles and analysis of design attributes are popular
research domains. Mathematical expressions to estimate the range and endurance for a battery-powered
aircraft were developed for steady-state flight in [10]. These performance metrics for a fixed-wing
micro aerial vehicle (MAV) were modeled using simpler equations that considered aerodynamic and
propulsive efficiency in [11]. In [12], even simpler analytical models were developed at the loss of
accuracy to evaluate the benefit of dumping used and empty batteries to increase vehicle endurance. In [13],
an electric rotorcraft endurance model based on momentum theory was developed and verified against
experimental tests on five vehicles.

In [4], a framework was developed to estimate electric multirotor vehicle performance and design
optimization while considering mission requirements. The authors highlight the challenges in making
informed decisions while designing these vehicles and inaccuracies in manufacturers’ data. They
attempted to parametrize vehicle structural and drive component (motors, electronic speed controllers,
and batteries) parameters based on available data. A single propeller airfoil shape, blade element
momentum theory (BEMT), and propulsion system electrical model were utilized to estimate vehicle
performance given some mission parameters. Validation of their models showed a mean absolute
percentage error between reported and estimated endurance values of 5.7%. In another similar effort, a
multirotor vehicle’s design attributes were studied [6], where equations for modeling a vehicle were
established, and MIT-developed tools XFOIL [14] and QPROP [15] were employed to estimate the
combined performance of motor-propeller pairs accurately. These works emphasize the complexity of
modeling the underlying physics of different vehicle components to achieve acceptable endurance and
range estimates. These estimates generated for a limited number of vehicle designs and the associated
data could serve to train the proposed surrogate machine-learning models. Shifting the focus to the
realm of machine learning, there are a few studies that delve into its application concerning electric
aerial vehicles.

Very little research has been done on machine learning techniques to predict or optimize all eVTOL
design parameters for enhanced endurance or range. Using existing fixed-wing unmanned aerial vehicle
(UAV) designs and performance data, surrogate machine learning models were utilized and compared to
empirical models to estimate UAV design parameters and performance in [16]. The machine learning-
based estimations were reported to be better than those from empirical correlations. For eVTOL vehicles,
surrogate regression and semi-analytic models were developed to estimate the weight of vehicles [17].
Several works have investigated surrogate models for estimating the aerodynamic flows around and
properties of aerial vehicles. In [18], a deep-learning-based surrogate model was developed to determine
the aerodynamic performance characteristics of unmanned aerial vehicles. Thousands of vehicle designs
were simulated to generate training data for the deep-learning models. In [19], the authors developed
a methodology to utilize surrogate machine learning models to predict steady turbulent aerodynamic
fields to overcome the computational limitations of physics-based aerodynamic simulations. In [20], the
noise and aerodynamic performance of eVTOL vehicles were predicted using deep-learning surrogates.
Additional surrogate modeling efforts in this space are related to airfoil design [21], aerodynamic
performance [22], control [23, 24], machine vision [25], and altitude determination [26]. Recently,
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surrogate models have also been utilized for eVTOL certification [27], trajectory planning [28], and
swarm formations [29].

A similar problem, although unrelated to aerial vehicles, was addressed in [30], where authors aimed
to predict the performance of computer system designs. In this study, linear regression models and
artificial neural networks (ANN) were tested, with two distinct training data types: simulated and
historical data. Interestingly, the prediction errors were minimal (3.4%) even when the training datasets
constituted only 1% of the total design space. In [31], the goal was to predict used car prices, given
features such as year, make, model, and cylinder volume. Various algorithms were employed, such
as multiple linear regression analysis, nearest neighbors method, and decision trees. Most of these
algorithms yielded comparable performance. This machine-learning application, although different,
shares a similar approach to what is achieved in this work to predict the endurance and range of eVTOL
vehicles. Due to the unavailability of sufficient real vehicular performance data generated under similar
test conditions to train the models, which can lead to a poor prediction performance [32], we choose to
generate and utilize simulated data as described in the next section.

2. Materials and methods

As discussed in previous sections, the physics-based modeling approach is very involved, and a flow
chart describing one such approach is shown in Figure 2. It shows the steps followed and inputs needed
to estimate the endurance, range, and other performance metrics, like the thrust-to-weight ratio of
eVTOL vehicles. This framework is utilized in this effort to generate the datasets to train the surrogate
ML models. This is implemented using the ’R’ programming language. The physics-based models
take in vehicle structural mass, payload mass, vehicle drag coefficient, motor parameters, propeller
parameters, and others as inputs. Using datasheets and MIT-developed tools XFOIL and QPROP, the
combined motor-propeller performance for different input voltages textcolorblackis determined. For
a vehicle to maintain steady state flight, the total thrust T generated by the nm number of motors of a
vehicle should equal the sum of the vehicle weight W and the drag force experienced by it, as given by
Eq. 2.1. Here, ρ represents air density, CD is the coefficient of drag of the vehicle, A is the vehicle’s
effective area, and V is the steady state velocity.

T = W +
1
2
ρCDAV2 (2.1)

Ultimately, a vehicle’s endurance, E, and range, R, for any selected throttle input, τ, are given by
Eqs. 2.2 and 2.3. In these equations, C represents battery capacity, Im is motor current, and T is the total
thrust generated by the motor-propeller systems.

E =
C

Im(τ) nm
(2.2)

R = EV =
C

Im(τ) nm

√
T (τ) −W

1
2ρACD

(2.3)
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Figure 2. Flow chart showing the steps and tools used to estimate the performance of
eVTOL vehicles using physics-based models. Data from these simulations is utilized to train
surrogate models.

More details about the physics-based modeling descriptions and equations utilized to generate the
datasets can be found in [6]. A sample design space exploration technique is utilized, and a small subset
of all the possible designs and operational regimes is selected and simulated to estimate endurance and
range values. The process adopted to train the ML models is illustrated in Figure 3. Different physics
models (aerodynamics, motor performance, propeller performance, and battery physics) are integrated
and used to generate target values. The input features and estimated values together make up the entire
dataset, which is split into a training and a test dataset. The training datasets are utilized to train the
models, while the test data is set aside and used to evaluate the performance and generalizability of the
trained models.

2.1. Physics-model simulation and data generation

The integrated physics-based model described in [6] is run several times by varying the inputs to
the model. The program runs through all the motors (69) and propellers (3) available in a database
and different battery configurations. Each program run generated one CSV sheet for each of the
motors for different propeller and battery-pack combinations and vehicle velocities (0 to 30 m/s). Some
combinations do not generate enough lift and are eliminated. The physics model estimates the endurance
and range of each feasible design and velocity. Hence, several endurance and range values are generated
for each vehicle configuration. Nearly 1000 CSV sheets were generated and combined to provide over
half a million instances for training and testing the ML models. Specifically, the dataset was comprised
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Figure 3. Flowchart showing the process utilized to generate eVTOL performance estimates
data and how it is used to train, test, and optimize surrogate ML models.

of 543,085 records, out of which 380,159 (70%) were used for training and 162,926 (30%) were used
for testing. The simulated data is free of outliers and erroneous or missing values. The outputs of these
simulations (i.e., range and endurance estimates) were utilized as targets for prediction models.

2.2. Features selection

Features are the inputs to the ML models needed to predict the target values. Feature selection is an
important step that affects the performance of the models. Here, using subject matter knowledge, some
of the parameters fed to the physics models are selected as features [6]. Several variables like propeller
pitch, number of cells, total battery system mass, and others are captured in other features and are
removed. These features may also be beneficial when using other training datasets, which provide
information that other features do not. For example, propellers (from T-motor) of three different
diameters are utilized in this dataset. However, there is no variability in the propeller pitch values given
a propeller diameter, making the propeller pitch values redundant. Such variables are removed, which
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resulted in twelve features as indicated in Table 1. The table also indicates the variable type, range of
values observed, and their units.

Table 1. Names, type, range, and units of the features selected as inputs to train the surrogate
ML models.

S.No Feature Type Range Units
1 Structural Mass Real 1, 2 kg
2 Payload Mass Real 0, 1, 2, 4 kg
3 Motor Mass Real 18–1650 g
4 Motor Kv Integer 50–2550 RPM/V
5 Motor Internal Resistance Real 0.05–0.5 Ohm
6 Motor No Load Current Real 0.05–0.5 A
7 Propeller Diameter Integer 13, 15, 28 in
8 Battery Voltage Real 10–58 V
9 Battery Capacity Integer 3–99 Ah

10 Vehicle Mass Real 2–25 kg
11 Drag Coefficient Integer 1, 2 -
12 Velocity Integer 0–29 m/s

2.3. Features distribution and visualization

The datasets are properly formatted to train the ML algorithms, and the different features can be
visualized to observe underlying distributions and correlations between them. The distributions of
values for the twelve selected features are shown in Figure 4 and can reveal any potential issues or
anomalies in the data, such as unexpected gaps. Some of the distributions observed are a direct result of
the selected inputs for the simulations, and others are derived from the inputs. Small eVTOL vehicle
designs with either 1 kg or 2 kg frame mass are simulated carrying either no payload or with a 1, 2, or
4 kg payload. Sample drag coefficient values of 1 or 2 derived from experimental results considering
vertical flight are utilized. Propeller measurements required for accurate simulations were available for
the three propeller designs and are utilized. Data for 69 different motors (sold by T-motor company) was
scraped from the web, and the motor parameters visualized correspond to the motors selected. Motor
parameters such as motor mass, motor Kv, internal resistance, and no-load current indicate lightweight
and efficient motor designs appropriate for aerial vehicles. The simulations were allowed to iterate over
0 m/s to 30 m/s velocities, and the distribution was automatically generated and indicative of the feasible
mission profiles for the simulated designs. Similarly, the battery capacity and vehicle mass distributions
result from iterating through different 18650 Lithium-ion battery pack combinations that resulted in
flight-capable designs. Battery pack voltages were increased by adding the number of cells in series
within the range suitable for the selected motors, and the number of parallel cells was increased until
the vehicle weight was too large for a safe flight. The vehicle mass also includes the mass of the motors
and propellers.

These visualizations also help guide the selection or extraction of features as well as the identification
of appropriate models to learn the selected features.

Metascience in Aerospace Volume 1, Issue 3, 246–267



253

Figure 4. Frequency distribution of the twelve variables selected as features to train the
surrogate ML models.

Similarly, distributions for the target variables (i.e., endurance and range) are also shown in Figure
5 and Figure 6. The endurance of the different designs ranges from about 10 minutes to a maximum
of about 120 minutes. It follows a normal distribution, with the mean being around 45 minutes. The
vehicle range values have a minimum of 0 Km observed during hovering flights that result in maximum
endurance. The maximum range observed is 25 Km.

Metascience in Aerospace Volume 1, Issue 3, 246–267



254

Figure 5. Frequency distribution of
vehicle endurance values generated by
the physics-based models in the complete
dataset.

Figure 6. Frequency distribution of
vehicle range values generated by the
physics-based models in the complete
dataset.

Figure 7 plots the maximum endurance of a vehicle (obtained for a hovering flight) against the
maximum range for a vehicle. Three specific motors are highlighted. The figure shows that good vehicle
designs result in both increased endurance and range estimates.

Figure 7. Maximum endurance versus maximum range values of different vehicle designs
as estimated by the physics-based models. Vehicle designs corresponding to three motors
are highlighted.
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Figure 8 shows the endurance of different vehicle designs for fixed motor throttle setpoints using a
scatter plot. In the figure, t2wr indicates the thrust-to-weight ratio of a vehicle design, which is another
key performance metric for vehicle designs with high values indicating improved maneuverability. The
marker colors indicate the Kv rating of the motors. Vehicles hover or move at lower velocities at lower
throttle setpoints. This results in higher endurance values, as shown in the figure. The figure also shows
the vast number of vehicle designs and missions simulated to train the surrogate models.

Figure 8. Physics-models’ estimated endurance values of different vehicle designs for different
simulated throttle set points. The color and size of the dots indicate the motor Kv rating and
the thrust-to-weight ratio, respectively.

A Pearson correlation heatmap, shown in Figure 9, illustrates the inter-variable relationships present
in the simulated data. It shows that vehicle range and endurance are negatively correlated. Vehicle
velocity, V , correlates the strongest with the target variables. It does so directly with range and inversely
with endurance, as expected. Other variables, such as battery capacity, propeller diameter, payload mass,
and motor mass, have notable correlations with the target variables. The ML algorithms are expected to
capture and utilize these correlations in estimating the target variables.

Metascience in Aerospace Volume 1, Issue 3, 246–267



256

Figure 9. Heatmap showing Pearson’s correlation coefficients between the 12 vehicle design
features and also the physics estimated endurance and range values.

2.4. Algorithms investigated

Several ML regression models were evaluated to predict vehicle endurance and range. These included
a variety of decision trees, a neural network model, and others, as indicated below. Each model exhibited
different performance and computational overheads based on its underlying learning methodology.

• Tree-based ensemble methods:

– Extra trees regressor (ET), random forest regressor (RF), gradient boosting regressor
(GB), extreme gradient boosting regressor (XGBoost), and light gradient boosting
machine (LightGBM): These algorithms construct multiple decision trees on random subsets
of the data and combine their predictions to improve accuracy and robustness. They can
capture non-linear relationships and are less prone to overfitting compared to individual
decision trees. However, they can be computationally expensive and may struggle with
high-dimensional or sparse data.

* ET: An ensemble learning method that utilizes ensemble learning by fitting randomized
decision trees to sub-samples of the dataset. It employs averaging to enhance predictive
accuracy and mitigate overfitting.

* RF: Another ensemble tree-based learning method that builds multiple decision trees and

Metascience in Aerospace Volume 1, Issue 3, 246–267



257

merges them to obtain a more accurate and stable prediction.

* GB: A machine learning technique for regression problems, which builds a predictive
model in a stage-wise fashion as other boosting methods do, and it generalizes them by
allowing optimization of an arbitrary differentiable loss function.

* XGBoost: An optimized distributed gradient boosting library designed to be highly
efficient, flexible, and portable, implementing machine learning algorithms under the
Gradient Boosting framework.

* LightGBM: A gradient boosting framework that uses tree-based learning algorithms and
is designed for distributed and efficient training, particularly on large datasets.

• Neural networks:

– Multilayer perceptron regressor (MLP): A feedforward artificial neural network (ANN)
that learns complex patterns through multiple layers of interconnected nodes. It can model
non-linear relationships and handle high-dimensional data but requires careful tuning and may
be prone to overfitting or getting stuck in local minima.

• Linear Models:

– K nearest neighbors regressor (KNN): A non-parametric method that predicts based on
the average of the nearest neighboring data points. It is simple and interpretable but can be
sensitive to irrelevant features and the choice of the number of neighbors.

– Linear regression (LR): A linear model that assumes a linear relationship between input
and output variables. It is computationally efficient and interpretable but may struggle with
non-linear relationships and high-dimensional data.

– Elastic net (EN): A regularized linear regression technique that combines L1 (Lasso) and L2
(Ridge) regularization. It can handle multicollinearity and perform feature selection but may
oversimplify non-linear relationships.

Performance metrics such as mean absolute error (MAE), root mean squared error (RMSE), R-
squared (R2), and mean absolute percentage error (MAPE) were utilized. The different ML models
listed above are evaluated using the test data, and the above metrics were generated by comparing the
ML predictions to the endurance and range values estimated by the physics-based models.

3. Results and discussion

This study investigated the effectiveness of ML-based surrogate models in predicting the performance
metrics of eVTOL vehicles, specifically focusing on endurance and range metrics. The surrogate models
are expected to offload the computational requirements and complexity of the physics-based models on
the end-user’s part. Python’s PyCaret library [33] is used for training and hyperparameter tuning of the
models. The results show that several ML models offer superior predictive performance, particularly the
ET models fine-tuned through hyperparameter optimization. The results below demonstrate the models’
potential as a reliable and rapid eVTOL performance evaluation and design optimization solution.
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3.1. Endurance prediction results

Results for the endurance prediction models are shown in Table 2. Results show that the optimized
ET model, with 100 estimators using 10-fold cross-validation and training time of 178 seconds, achieved
the best performance with a MAPE of 1.2% and an R2 value of 0.9991. The RF model placed second
with a MAPE value of 1.72 % and an R2 value of 0.9979, followed by the MLP model. In terms of
mean absolute error, the GB model, for example, had an MAE of 2.69 minutes, which may be within
acceptable error limits for a vehicle with greater than 30 minutes of flight time.

Figure 10 shows the predictions generated by the ET model on the test data compared to the target
values. The closer the predictions are to the identity line, the better they are. Figure 11 shows the
influence of different features utilized. This feature importance plot indicates that the endurance values
largely depend on the vehicle’s velocity in a simulation, with a variable importance score nearing 0.6.
The highest influence score matches the observation from the Pearson correlation heatmap in Figure 9.
The battery capacity and payload mass features hold second and third spots.

Table 2. Performance evaluation metrics for the different endurance prediction surrogate
models on the test dataset.

Model MAE RMSE R2 MAPE (%)
ET 0.31 0.49 0.999 1.20
RF 0.47 0.73 0.998 1.72
MLP 0.63 0.89 0.997 2.19
XGBoost 0.95 1.28 0.994 3.17
LightGBM 1.17 1.59 0.990 4.07
KNN 1.48 2.34 0.979 4.47
GB 2.70 3.88 0.941 8.69
LR 4.89 6.67 0.826 18.03
EN 6.02 8.42 0.722 21.26

Figure 10. ET surrogate model
predicted endurance values
compared to the target physics-
model estimated values.

Figure 11. Feature importance values of
the ET surrogate model to predict vehicle
endurance.
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Other tree-based models, such as the XGBoost and LightGBMs, exhibited a small increase in error
rates. Their performance was a balance between computational complexity and predictive accuracy.
The worst-performing models among those tested were the LR model and the EN model, which had
MAPE values of 18.03% and 21.26%, respectively.

3.2. Range prediction results

Results for the different eVTOL range prediction models are depicted in 3, which show similar trends
as the endurance models. The best model, the ET, with 100 estimators using 10-fold cross-validation
and a training time of 141 seconds, shows a high R2 score of 0.9995 and a MAPE value of 0.87%. This
model’s predictions are visually compared to the target values in Figure 12. The feature importance plot
is shown in Figure 13, and it also illustrates vehicle velocity (V) as the most important feature, with
a variable importance score exceeding 0.7. Again, the features, battery capacity, and vehicle payload
maintained their second and third positions.

Figure 12. ET surrogate
model predicted range values
compared to the target physics-
model estimated values.

Figure 13. Feature importance values of
the ET surrogate model to predict vehicle
range.

The RF followed closely, after the top performer, with a R2 score of 0.999. The K-Nearest Neighbors
Regressor Model ranked 6th out of the nine tested models and had an R2 score of 0.981 and a MAPE
value of 5.71%. The LR model ranked 8th with a MAPE value of 0.21, followed by the EN model.
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Table 3. Performance evaluation metrics for the different range prediction surrogate models
on the test dataset.

Model MAE RMSE R2 MAPE (%)
ET 0.07 0.12 0.999 0.87
RF 0.10 0.16 0.999 1.27
MLP 0.20 0.27 0.997 2.60
XGBoost 0.24 0.32 0.996 3.08
LightGBM 0.33 0.43 0.992 4.07
KNN 0.50 0.69 0.981 5.71
GB 0.74 0.98 0.963 8.38
LR 1.98 2.53 0.753 21.23
EN 2.20 2.77 0.702 24.43

Overall, the tree-based models, particularly the ET, demonstrated top performance with MAPE
values of 1.2% and 0.87% for endurance and range targets, respectively. The RF model followed closely,
with MAPE values of 1.72% and 1.27% for the two targets. The less than 2% MAPE error for endurance
and range prediction is well within acceptable error margins. The range and endurance EN models, for
example, have similar MAPE values but different MAE and RMSE values. This is due to the different
scales of the two target variables.

The ranking of the ML models was consistent across almost all metrics for both targets. Similarly,
the feature importance rankings, shown in Figure 11 and Figure 13, for both targets using the ET are
similar. In addition to the overall feature importance values, tools like Shapley values [34] or LIME
[35] can be utilized to explain each prediction. These tools allow for extracting the contribution of each
feature to a selected vehicle design’s predicted performance, facilitating the identification and iteration
of design features expected to yield the largest performance improvements.

The surrogate models offer not only predictive accuracy but also significantly enhanced computational
efficiency, making them ideal for real-time applications and rapid design iterations. These lightweight
models could be extremely beneficial during flight operations, especially during contingencies. They can
provide instantaneous feedback on performance metrics, enabling aircraft dispatchers or autonomous
controllers to make informed adjustments to flight parameters, dynamically optimizing endurance
and range.

The scalability of these models ensures adaptability to various eVTOL designs and operational
scenarios, making them versatile tools for a wide range of applications. These models also benefit
operations teams by facilitating in-time mission replanning during contingencies. This capability ensures
that eVTOL vehicles can adapt to changing mission requirements, system failures (like battery capacity
drops), and environmental conditions, thereby enhancing overall mission success rates.

Ultimately, integrating such surrogate models, following thorough verification and validation steps,
into eVTOL design and operational workflows promises to enhance both the development and
operational phases. This integration is expected to drive advancements in eVTOL technology, optimize
performance, and improve contingency management.
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4. Conclusions

The results underscore the ability of ML models to learn and mimic the equations carefully crafted
in physics-based models that estimate the performance of electric aerial vehicles. The ML training
framework and generated insights offer a data-driven pathway to refining eVTOL designs and
operational strategies.

Results generated in this work show that tree-based models like the ET and RF demonstrated
excellent eVTOL prediction performance. Most of the models tested showed sufficient accuracy for
viable utilization in predicting the range and endurance of these vehicles. Their MAPE values at less
than 2% are well within acceptable limits, and their simplicity makes them very appealing. From
the feature importance values extracted, it is clear that vehicle velocity, which depends on an eVTOL
mission, influences the endurance-range tradeoff the most. In addition, battery capacity and payload
mass are critical parameters affecting their performance.

In conclusion, the work has led to the successful development of simpler surrogates to physics-
based models to predict the endurance and range of eVTOL vehicles. The results demonstrate that an
ML model trained on a broader range of motor, propeller, vehicle, and battery parameters could be
immensely useful. The end-users of such a tool extend beyond vehicle designers and manufacturers to
include mission planners and operations teams seeking tools to support real-time mission replanning.
Including real-time vehicle health parameters as inputs to such models could also result in onboard
autonomy software that is key to their operation.
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A. Appendix: Model hyperparameters

The hyperparameters for the top models used in predicting range and endurance estimates, including
RF, MLP, and ET models, are provided below. Python code to recreate similar results and train ML
surrogate models is provided as a GitHub repository at https://github.com/snchimata/evtol performance.

A.1. Range models

• RF

’bootstrap’: True,

’ccp_alpha’: 0.0,

’criterion’: ’squared_error’,

’max_depth’: None,

’max_features’: 1.0,

’max_leaf_nodes’: None,

’max_samples’: None,

’min_impurity_decrease’: 0.0,

’min_samples_leaf’: 1,

’min_samples_split’: 2,

’min_weight_fraction_leaf’: 0.0,

’n_estimators’: 100,

’n_jobs’: -1,

’oob_score’: False,

’random_state’: 123,

’verbose’: 0,

’warm_start’: False

• MLP

’activation’: ’relu’,

’alpha’: 0.0001,

’batch_size’: ’auto’,

’beta_1’: 0.9,

’beta_2’: 0.999,

’early_stopping’: False,

’epsilon’: 1e-08,

’hidden_layer_sizes’: (100,),
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’learning_rate’: ’constant’,

’learning_rate_init’: 0.001,

’max_fun’: 15000,

’max_iter’: 500,

’momentum’: 0.9,

’n_iter_no_change’: 10,

’nesterovs_momentum’: True,

’power_t’: 0.5,

’random_state’: 123,

’shuffle’: True,

’solver’: ’adam’,

’tol’: 0.0001,

’validation_fraction’: 0.1,

’verbose’: False,

’warm_start’: False

• ET

’bootstrap’: False,

’ccp_alpha’: 0.0,

’criterion’: ’squared_error’,

’max_depth’: None,

’max_features’: 1.0,

’max_leaf_nodes’: None,

’max_samples’: None,

’min_impurity_decrease’: 0.0,

’min_samples_leaf’: 1,

’min_samples_split’: 2,

’min_weight_fraction_leaf’: 0.0,

’n_estimators’: 100,

’n_jobs’: -1,

’oob_score’: False,

’random_state’: 123,

’verbose’: 0,

’warm_start’: False

A.2. Endurance models

• RF

’bootstrap’: True,

’ccp_alpha’: 0.0,

’criterion’: ’squared_error’,

’max_depth’: None,
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’max_features’: 1.0,

’max_leaf_nodes’: None,

’max_samples’: None,

’min_impurity_decrease’: 0.0,

’min_samples_leaf’: 1,

’min_samples_split’: 2,

’min_weight_fraction_leaf’: 0.0,

’n_estimators’: 100,

’n_jobs’: -1,

’oob_score’: False,

’random_state’: 123,

’verbose’: 0,

’warm_start’: False

• MLP

’activation’: ’relu’,

’alpha’: 0.0001,

’batch_size’: ’auto’,

’beta_1’: 0.9,

’beta_2’: 0.999,

’early_stopping’: False,

’epsilon’: 1e-08,

’hidden_layer_sizes’: (100,),

’learning_rate’: ’constant’,

’learning_rate_init’: 0.001,

’max_fun’: 15000,

’max_iter’: 500,

’momentum’: 0.9,

’n_iter_no_change’: 10,

’nesterovs_momentum’: True,

’power_t’: 0.5,

’random_state’: 123,

’shuffle’: True,

’solver’: ’adam’,

’tol’: 0.0001,

’validation_fraction’: 0.1,

’verbose’: False,

’warm_start’: False

• ET

’bootstrap’: False,
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’ccp_alpha’: 0.0,

’criterion’: ’squared_error’,

’max_depth’: None,

’max_features’: 1.0,

’max_leaf_nodes’: None,

’max_samples’: None,

’min_impurity_decrease’: 0.0,

’min_samples_leaf’: 1,

’min_samples_split’: 2,

’min_weight_fraction_leaf’: 0.0,

’n_estimators’: 100,

’n_jobs’: -1,

’oob_score’: False,

’random_state’: 123,

’verbose’: 0,

’warm_start’: False
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