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Abstract: The automated detection of tumors using medical imaging data has garnered significant 

attention over the past decade due to the critical need for early and accurate diagnoses. This interest is 

fueled by advancements in computationally efficient modeling techniques and enhanced data storage 

capabilities. However, methodologies that account for the uncertainty of predictions remain relatively 

uncommon in medical imaging. Uncertainty quantification (UQ) is important as it helps decision-

makers gauge their confidence in predictions and consider variability in the model inputs. Numerous 

deterministic deep learning (DL) methods have been developed to serve as reliable medical imaging 

tools, with convolutional neural networks (CNNs) being the most widely used approach. In this paper, 

we introduce a low-complexity uncertainty-based CNN architecture for medical image classification, 

particularly focused on tumor and heart failure (HF) detection. The model’s predictive (aleatoric) 

uncertainty is quantified through a test-set augmentation technique, which generates multiple 

surrogates of each test image. This process enables the construction of empirical distributions for each 

image, which allows for the calculation of mean estimates and credible intervals. Importantly, this 

methodology not only provides UQ, but also significantly improves the model’s classification 

performance. This paper represents the first effort to demonstrate that test-set augmentation can 

significantly improve the classification performance of medical images. The proposed DL model was 

evaluated using three datasets: (a) brain magnetic resonance imaging (MRI), (b) lung computed 

tomography (CT) scans, and (c) cardiac MRI. The low-complexity design of the model enhances its 

robustness against overfitting, while it is also easily re-trainable in case out-of-distribution data is 

encountered, due to the reduced computational resources required by the introduced architecture. 
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1. Introduction  

The application of artificial intelligence (AI) in medicine is revolutionizing medical imaging and 

diagnostics, offering transformative capabilities for early disease detection and patient management [1]. 

Among various AI techniques [2,3], CNNs have emerged as a powerful tool for analyzing complex 

medical images [4]. These models excel in identifying patterns and features in high-dimensional data, 

enabling automated classification tasks that are critical in modern healthcare. 

Despite their success, a significant challenge in deploying CNNs for clinical use lies in addressing 

uncertainties inherent in medical data, which can significantly impact the classification performance 

and reliability [5]. Uncertainty in medical image classification arises from multiple sources and is a 

critical aspect of AI systems in clinical settings [6]. Aleatoric uncertainty reflects the inherent noise in 

data, such as poor image quality, variations in imaging protocols, or ambiguous features that make 

interpretation challenging. On the other hand, epistemic uncertainty arises from model limitations, 

such as insufficient training data, biases in the dataset, or overfitting to specific patterns. These 

uncertainties can hinder the reliability of predictions, particularly in high-stakes scenarios where 

clinical decisions directly affect the patient outcomes. Addressing these uncertainties is especially 

important for diagnosing life-threatening conditions such as tumors, cancers and HF, where early 

detection significantly improves the patient outcomes [6–10]. 

Over the years, various UQ techniques have been proposed. Bayesian Neural Networks (BNNs) 

offer a principled approach by incorporating prior distributions over the model parameters, facilitating 

robust uncertainty estimation [11,12]. On the other hand, Monte Carlo Dropout introduces stochasticity 

during inference by randomly dropping units, allowing for uncertainty estimation through multiple 

forward passes [13,14]. Additionally, ensemble models enhance the reliability by training multiple 

models and aggregating their predictions to capture the output variability [15,16], while Gaussian 

Mixture Models (GMMs) can be utilized to model the distribution of predictions, providing insights 

into the inherent uncertainty in the data [17,18]. Collectively, these techniques contribute to a deeper 

understanding of the model confidence and the reliability of predictions in medical imaging applications.  

However, these approaches share common limitations, including high computational costs, the 

need for large training datasets, and the complexity in implementation. These limitations are 

particularly challenging in medical imaging tasks, where the datasets are often small, annotated data 

is expensive to acquire, and real-time inference is essential. Consequently, there is a pressing need for 

computationally efficient and adaptable UQ techniques that can maintain a high performance and 

robustness without imposing significant resource demands. 

In this study, we introduce a novel low-complexity uncertainty convolutional neural network 

(UCNN), optimized for efficient medical image classification with robust UQ. Our approach leverages 

test-time augmentation, a computationally efficient technique for quantifying aleatoric uncertainty. 

This method generates surrogate images by applying augmentations to the test samples, thus creating 

an empirical distribution of predictions that reflects the variability in the data. By analyzing this 

distribution, our framework improves the classification performance and enhances the model 
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confidence, therefore addressing the limitations of traditional UQ methods. Importantly, the proposed 

approach is adaptable to various DL architectures, making it a versatile tool for medical imaging tasks. 

The effectiveness of the proposed methodology is demonstrated across three key diagnostic tasks: 

(i) brain tumor detection using MRI scans, focusing on identifying abnormal growths within the brain; 

(ii) lung cancer detection with CT imaging, aimed at classifying pulmonary nodules and early-stage 

malignancies; and (iii) HF classification via cardiac MRI, leveraging advanced imaging features to 

assess the heart function and tissue characteristics. 

A thorough analysis is conducted to determine the optimal number of augmented samples that 

enhance the DL model’s classification performance without significantly increasing the computational 

load from generating large numbers of augmented images. Additionally, the robustness of the approach 

is validated by the empirical distribution of the model’s predictions across the entire test set, 

demonstrating that the selected cut-off point does not affect the performance. In conclusion, the variety 

and diversity of datasets, along with the inclusion of both cancer and HF classification tasks, validate 

the reliability of the model’s detection capabilities, making it a dependable tool for modern 

oncology applications. 

It should be noted that in the field of medical imaging, test-time augmentation has primarily been 

used for segmentation tasks [10], where the focus is on enhancing the performance of existing 

segmentation algorithms, particularly in identifying abnormalities such as tumor regions. As a result, 

this paper aims to highlight the positive contribution of test-time augmentation in classification tasks. 

In the Results and Discussion section, it becomes evident that this UQ approach not only provides 

uncertainty representations that can be used by experts for more informative diagnoses, but also 

significantly improves the performance of even low-complexity CNN architectures. 

Compared to the aforementioned neural network (NN) UQ approaches, test-time augmentation 

presents notable advantages concerning the computational efficiency and simplicity of its operation. 

First of all, the idea of test-set augmentation is straightforward and its implementation is easily 

accessible, while it can be easily combined with any DL architecture. Moreover, in contrast to 

ensemble methods, test-time augmentation necessitates less memory consumption both during training 

and the inference phase. This is attributed to the fact that ensemble models require independent training 

of several models to reach satisfactory UQ, while test-time augmentation produces surrogates that are 

evaluated on a single DL model. Another advantage is that in contrast to Bayesian methods, the 

combination of test-time augmentation with transfer learning does not require any additional steps 

such as fine-tuning, making it more easily used [15]. Finally, both ensemble and Bayesian methods 

impose a notably higher computational burden during the training procedure.      

The novelty of the present analysis can be summarized as follows:  

• The presentation of a novel low-complexity UCNN for efficient tumor detection, 

leveraging aleatoric UQ via a generation of surrogates through test-set augmentation. 

• The first use of test-set augmentation to medical imaging classification tasks, aiming to 

enhance the DL models’ predictive performance. 

• The introduction of a computationally efficient CNN, ideal for small medical datasets, 

minimizing overfitting and offering flexibility for easy retraining when out-of-distribution 

data may occur. 

• The method’s validation on brain, cardiac MRI, and lung CT scan datasets, showing robust 

tumor detection capabilities across different medical imaging tasks, including cancer and 

HF detection. 
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The remainder of the article is structured as follows: Section 2 reviews related work on the use of 

CNNs and uncertainty neural networks (UNNs) in biomedical data applications; Section 3 introduces 

the CNN architecture used in this study, along with a detailed explanation of the test-set augmentation 

process; Section 4 examines the classification performance of the UCNN, analyzes the stochastic 

attributes introduced by augmentation, and identifies the optimal number of augmented samples with 

respect to the maximization of the method’s performance; Section 5 provides a discussion, concludes 

with a summary of the study’s key findings, and offers directions for future work in the field. 

2. Related work 

Various AI-based and machine learning (ML) algorithms have been proposed for medical imaging 

tasks. Notable approaches include artificial neural networks (ANN) [19], K-nearest neighbors (KNN) [20], 

and support vector machines (SVM) [21,22]. However, CNNs have emerged as the most effective tools 

for processing MRI and CT images due to their superior performance in classification tasks. Numerous 

studies have addressed both binary and multiclass classification problems using state-of-the-art CNN 

architectures, often beginning with image preprocessing steps, such as augmentation or segmentation, 

to optimize classification accuracy. 

Research efforts related to the binary classification of benign and malignant brain tumors 

frequently incorporate preprocessing and augmentation techniques alongside traditional CNN 

frameworks. For example, Seetha et al. [23], Babu et al. [24], Pathak et al. [25], and Kulkarni et al. [26] 

achieved classification accuracies ranging from 94.1% to 98% by combining CNNs with preprocessing 

steps such as image augmentation. Similarly, hybrid CNN-SVM models have been explored, as seen 

in [27–29], which achieved accuracies between 88.54% and 95.62%. Studies by Sert et al. [28] and Ӧzyurt 

et al. [29] utilized ResNet as the backbone for the CNN-SVM hybrid approach, incorporating 

techniques such as resolution enhancement and entropy-based segmentation to further refine the 

classification of benign and malignant tumors. Moreover, the authors of [30] compared the CNN-SVM 

model to a CNN-KNN approach on the same dataset, yielding an accuracy of 90.62%. 

The 95% accuracy of achieved by one of the three proposed CNNs was based on the ResNet50 

architecture, albeit with obvious overfitting issues, as noted by Saxena et al. [31]. In contrast, some 

studies have focused on more complex multi-class tumor classification tasks, addressing multiple 

tumor types in brain cancer diagnoses. For example, [31–33] proposed CNN models for the 

classification of pituitary adenomas, meningiomas and gliomas, achieving accuracies between 90.89% 

and 98% by comparing the performances across cropped, uncropped and segmented image datasets. A 

hybrid DenseNet-LSTM model, developed in [34], achieved an accuracy of 92.13% for a four-class 

classification task on a public dataset. 

Regarding lung cancer classification, several studies have employed CNN and SVM models to 

analyze CT images. Studies [35,36] used the IQ-OTHNCCD dataset, thereby applying SVM classifiers 

and GoogleNet-based CNN architectures. The authors of [35] applied Gaussian filtering, slicing and 

segmentation, and achieved an accuracy of 89.88%, while [36] implemented Gabor filters and region 

of interest (ROI) extraction to achieve an accuracy of 94.38%. Other ML approaches to lung cancer 

classification have utilized KNN [37], Naive Bayes [37], SVM [38] and Random Forests (RFs) [39]. 

In [40], CNN architectures, including VGG16, MobileNet, AlexNet, DenseNet, VGG19 and ResNet, 

were employed for the classification of normal, benign and malignant tumors, with accuracy rates 

ranging from 48% to 56%. Polat & Mehr [41] developed a hybrid 3D CNN-SVM model, and achieved 
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an accuracy of 91.81%. Additionally, traditional CNN methods applied to private CT image datasets [42,43] 

have incorporated image enhancement techniques such as median filtering, contrast stretching, and 

Otsu segmentation to improve the classification performance. 

Beyond oncology, CNNs have also been applied in cardiovascular disease (CVD) detection, 

particularly in diagnosing HF using cardiac MRI [44]. More specifically, Wolterink et al. [45] trained 

a CNN for cardiac MRI feature extraction and combined the extracted image features with patient 

characteristics in an RF classifier for HF diagnosis, and reached an accuracy of 91%. Wang et al. [46] 

applied a CNN-LSTM model on cardiac MRIs from 9719 patients to diagnose 11 types of CVD with 

an area under the curve (AUC) of 0.95. Moreover, Sharma et al. [47] proposed a CNN to detect heart 

disease in a cardiac MRI dataset from 30 patients, and reached an accuracy of 95%, a sensitivity 

of 94.1% and a specificity of 94%. 

However, medical applications involve high-risk tasks, and recent methodologies have been 

developed to effectively address the uncertainties associated with their outcomes. This falls under the 

umbrella of uncertainty estimation in ML, which has become an indispensable tool in enhancing the 

reliability of automated decision-making. In the field of uncertainty estimation, several models have 

been widely applied. BNNs incorporate uncertainty by assigning distributions to network weights, 

which enables more reliable confidence estimates [48]. Monte Carlo (MC) dropout is another common 

approach, where dropout is applied during inference to capture the model uncertainty [49]. Ensemble 

methods involve training multiple independent models and using the variance in their predictions to 

quantify the uncertainty, thus providing robust performance across tasks [15].  

In medical applications, uncertainty-aware models play an essential role in improving the 

diagnostic accuracy and patient safety. For instance, in brain tumor segmentation, uncertainty 

estimation helps identify uncertain regions in MRI scans, which guides radiologists in focusing on 

ambiguous areas [50]. In lung nodule detection, uncertainty estimates reduce false positives in CT scan 

analyses, ensuring more reliable diagnosis outcomes [39]. Another application is in diabetic 

retinopathy detection, where uncertainty-aware models assist clinicians in identifying cases requiring 

further review, thus enhancing decision support in retinal imaging [51]. By identifying areas of 

uncertainty, these models contribute to more reliable and informed decision-making, ultimately 

supporting improved patient outcomes and safety. 

It is important to mention that in medical imaging, test-time augmentation has mostly been 

applied to segmentation tasks in medical imaging [15], with an emphasis on improving the 

performance of existing segmentation algorithms. In two occasions, Wang et al. (2018, 2019) [52,53] 

combined deep CNN schemes, such as U-Net, V-Net, W-Net and cascaded networks, with the aim of 

increasing the segmentation precision of brain tumors using the BraTS open access dataset. Moshkov et al. 

(2020) [54] have employed augmentation both on training and test set, thereby focusing on cell 

segmentation of microscopy images. DL architectures such as U-net and Mask R-CNN were used. 

Additionally, Gailochet et al. (2024) [55] utilized a semi-supervised approach combined with test-set 

augmentation for active learning, to perform segmentation on cardiac images. 

Based on the above, this paper aims to emphasize the positive impact of test-time augmentation 

on classification tasks. During the experimental phase, it becomes clear that this UQ approach not only 

generates uncertainty representations that can assist experts in making more informed diagnoses, but 

also significantly enhances the predictive performance of CNN models. In contrast to the 

aforementioned analysis on medical imaging, the proposed method focuses on developing a 

computationally efficient CNN architecture that is robust to overfitting and well-suited for small 
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datasets, which are common in the medical field. Additionally, its simple structure makes it ideal for 

re-training in the event of out-of-distribution data. 

3. Methodology 

In this section, we outline the comprehensive framework designed to train the proposed 

architecture and enhance its generalization performance in the context of efficient tumor detection and 

HF classification using medical images. First, we present a detailed explanation of the core principles 

of CNNs and the performance metrics used to evaluate the model during the inference phase. Next, we 

introduce the proposed low-complexity CNN architecture, followed by a discussion of the data 

augmentation strategies employed to improve the model robustness. Finally, we provide a detailed 

description of the datasets utilized, including their sources and the respective class distributions. 

3.1. Convolutional neural networks 

CNNs represent a subclass of NN architectures characterized primarily by the use of 

convolutional kernels [56]. These networks are predominantly applied to visual tasks, including video 

classification, image segmentation and medical image analyses. A typical CNN architecture is 

comprised of several key components: convolutional layers, which play a critical role in feature 

extraction; pooling layers, which reduce the dimensionality of the processed tensors; batch 

normalization layers, which enhance the computational stability during training; and fully connected 

layers, which serve as the mechanism for feature selection [57]. These layers are organized in a specific 

sequence, beginning with the feature extraction modules and followed by fully connected layers to 

produce the final classification output. 

Convolutional layers consist of multiple kernels which are the layers’ trainable parameters, 

modified after each iteration. Let 𝜲𝑘
 ∈ ℝ𝑀𝑘×𝑁𝑘×𝐷𝑘

 be the input of the 𝑘–th convolutional layer and 𝑭 

∈ ℝ𝑚×𝑛×𝐷𝑘×𝑆  be a 4-dimensional tensor representing the 𝑆  kernels of 𝑘 –th layer, of a spatial span 

𝑚 × 𝑛 .  The output of the 𝑘 –th convolutional layer will be a tensor of order 3 denoted by 𝒀𝑘  ∈ 

ℝ𝑀𝑘−𝑚+1×𝑁𝑘−𝑛+1×𝑆. The elements of this tensor result from the following equation: 

      𝑦𝑖𝑘,𝑗𝑘,𝑠 = ∑ ∑ ∑ 𝐹𝑖,𝑗,𝑙,𝑠 × 𝑥
𝑖𝑘+𝑖,𝑗𝑘+𝑗,𝑙
𝑘  

𝐷𝑘

𝑙=0

𝑛

𝑗=0

𝑚

𝑖=0

.                                        (1) 

Equation (1) is repeated for all 0 ≤ 𝑠 ≤ 𝑆 and for any spatial location satisfying 0 ≤ 𝑖𝑘 ≤  𝑀𝑘 −

𝑚 + 1 and 0 ≤ 𝑗𝑘 ≤  𝑁𝑘 − 𝑛 +1 [58].   

Let 𝜲𝑘 ∈ ℝ𝑀𝑘×𝑁𝑘×𝐷𝑘
be the input of the 𝑘 – th layer that is now a pooling layer with a spatial span 

of 𝑛 × 𝑚. We assume that 𝑛 divides 𝑀, 𝑚 divides 𝑁, and the stride equals the aforementioned spatial 

span. The output is a tensor 𝒀𝑘 ∈ ℝ𝑀𝑘+1×𝑁𝑘+1×𝐷𝑘+1
, where  



534 

Mathematical Biosciences and Engineering  Volume 22, Issue 3, 528–553. 

𝑀𝑘+1 =  
𝑀𝑘

𝑛
,     𝑁𝑘+1 =  

𝑁𝑘

𝑚
,    𝐷𝑘+1 = 𝐷𝑘 ,                                 (2) 

while the polling layer operates independently upon 𝜲𝑘 channel by channel. In our network, we utilize 

two max pooling layers, resulting in outputs produced based on the following:  

𝑦𝑖𝑘,𝑗𝑘,𝑑 = max
0≤𝑖≤𝑛,0≤𝑗≤𝑚

𝑥
𝑖𝑘×𝑛+𝑖,𝑗𝑘×𝑚+𝑗,𝑑
𝑘 ,                                         (3)  

where 0 ≤ 𝑖𝑘 ≤ 𝑀𝑘, 0 ≤ 𝑗𝑘 ≤ 𝑁𝑘  and 0 ≤ 𝑑 ≤ 𝐷𝑘 . Polling operation reduces the tensor’s 

dimension, although retaining the important detected patterns [59].  

On the other hand, the fully connected layers belong to the second part of a CNN, which aims to 

efficiently select the most valuable features extracted by the convolutional layers. The input of the first 

fully connected layer is a high dimensional vector which contains all extracted features produced by a 

flattening operation. Finally, important transition mediums, which introduce non-linearity and 

connects the aforementioned layers, are the operations of ReLU and batch normalization. The ReLU 

function is defined as follows: 

 𝑦𝑖,𝑗,𝑑 = 𝑚𝑎𝑥(0, 𝑥𝑖,𝑗,𝑑
𝑘 ),                                                               (4) 

for 0 ≤ 𝑖 ≤ 𝑀𝑘, 0 ≤ 𝑗 ≤ 𝑁𝑘  and 0 ≤ 𝑑 ≤ 𝐷𝑘, aiming to only transfer the beneficial elements for the 

classification.  

Since we focus on tumor-based regions, we are processing medical images. A medical image 𝑿 

can be represented as a three-channel tensor (in the RGB system), formally defined as 𝑿 ∈  ℝ𝐻×𝑊×3, 

where H and W are the height and the width of the image, respectively. The input tensor 𝑿(𝑖) 

corresponding to the 𝑖 −th medical image is passed through the set of successive layers and a label �̂�𝑖 

is produced. Then, an error is calculated using a predetermined loss function. In most cases, Cross-

Entropy loss is utilized, which is denoted as 𝐿𝐶𝐸. In our occasion, where we train our network in a 

binary classification scenario, we employ the Binary Cross-Entropy loss function (𝐿𝐵𝐶𝐸), which is 

defined (for a single medical image) as follows:  

 𝐿𝐵𝐶𝐸(𝑦𝑖, �̂�𝑖) =  −𝑦𝑖 ∗ 𝑙𝑜𝑔(�̂�𝑖) −  (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − �̂�𝑖),                      (5) 

where 𝑦𝑖 = {0, 1} corresponds to the image’s ground truth. Then, the produced error is utilized in the 

learning procedure that represents the modification of the trainable parameters of the network based 

on an optimization algorithm. The majority of the analyses in the literature use Adam or AdamW [60] 

algorithms as the optimizers.  

3.2. Uncertainty quantification with UCNN 

In this work, we propose a low-complexity CNN architecture which consists of seven key layers. 

The first four layers, including two convolutional and two max-pooling layers, are dedicated to the 

feature extraction. The remaining three fully connected layers leverage the extracted features to 

deliver strong classification results (Figure 1). The input to the CNN are two-dimensional 

grayscale images of size 100 × 100 pixels, a choice made after extensive experimentation. This 

smaller input size reduces the computational costs while maintaining the model effectiveness. 
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The architecture begins with a convolutional layer using 32 kernels, each with a 9 × 9 receptive 

field, followed by a 4 × 4 max-pooling layer. This process is repeated with a 5 × 5 convolutional layer 

and another 4 × 4 max-pooling layer. Both convolutional layers utilize the same padding and ReLU 

activation along with batch normalization, which is applied to enhance feature extraction.  

The second section of the model is comprised of three fully connected layers, with dropout applied 

between the first two fully connected layers at a rate of 0.2. While batch normalization reduces the 

need for dropout, the inclusion of a dropout layer introduces stochasticity during training, which 

enhances the generalization by reducing the risk of overfitting, especially given the small size of 

medical imaging datasets used in this study. Moreover, this stochasticity contributes to epistemic UQ 

when combined with test-time augmentation. 

Specifically, dropout-induced randomness during inference allows the model to better capture 

epistemic uncertainty by varying the active neurons during prediction, thereby reflecting the variability 

in the model outputs. This complements the aleatoric UQ achieved through test-time augmentation, 

which handles data variability (e.g., differences in posture or rotation of input images). Together, these 

mechanisms ensure a robust classification performance by addressing both types of uncertainties that 

commonly arise in medical imaging tasks. 

 

Figure 1. Diagrammatic representation of the low-complexity UCNN architecture 

considering test-set augmentation. 

After completing the training process, during which the final weight values are determined, we 

employ a test-set augmentation strategy to quantify the aleatoric uncertainty of the system. Our 

approach involves generating a cardinality of 𝑅  surrogate samples {𝑿𝑖
(1)

, … , 𝑿𝑖
(𝑅)

}  for each test set 

image (𝑿𝑖) which, in turn, produce a set of model’s estimates of the same cardinality  {�̂�𝑖
(1)

, … , �̂�𝑖
(𝑅)

} 
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using data augmentation techniques. Then, the augmented samples are then evaluated to generate a 

predictive distribution that captures the uncertainty. The idea behind this method is that the augmented 

samples provide varied perspectives, helping to better quantify the uncertainty.  

Typically, the same augmentation techniques used for training regularization are applied during 

test-time augmentation. These techniques have been shown to improve the calibration for both in-

distribution and out-of-distribution data detection [61,62]. As mentioned above, each surrogate passes 

through the trained CNN, providing an estimate  

�̂�𝑖
(𝑟)

= 𝑁𝑁𝜽(𝑿𝑖
(𝑟)

),    𝑟 = 1, … , 𝑅,   𝑖 = 1, … , 𝑁𝐷 ,                         (6) 

where �̂�𝑖
(𝑟)

∈ [0, 1] based on the sigmoid activation. Scalar 𝑁𝐷 denotes the cardinality of the test 

set images. Based on the set of surrogates, an empirical distribution is derived for each medical 

image as follows: 

�̂�𝑖(𝑥) =
1

𝑅
∑ 𝛿

�̂�𝑖
(𝑟)(𝑥)

𝑅

𝑟=1

,                                                                    (7) 

where 𝛿𝑦(𝑥)  represents the Dirac delta function. From this, the median estimates and confidence 

intervals can be produced.  

We prefer the median over the mean statistic for these estimates, since the empirical distributions 

tend to be non-Gaussian. Ideally, by indefinitely increasing the cardinality of produced surrogate 

images, the empirical distribution tends to estimate the theoretical one (𝑔𝑖(𝑥)) of the model’s test set 

estimates, namely: 

�̂�𝑖(𝑥) =
1

𝑅
∑ 𝛿

�̂�𝑖
(𝑟)(𝑥)

𝑅

𝑟=1

 →  𝑔𝑖(𝑥),     𝑅 → ∞,                                            (8) 

considering that the employed augmentations efficiently represent the phenomenon’s uncertainty. 

However, the determination of the optimal 𝑅 remains an issue of interest for the present analysis, as 

we aim to enhance both the computational time and the model’s classification performance. This task 

is extensively investigated in the Results section.  

Except from the determination of the empirical distribution corresponding to each original test 

set image, it is feasible to identify each test set image’s class according to the acquired UCNN scheme. 

Specifically, by taking the median of the 𝑅  samples produced after the passing through the CNN 

scheme, the image’s class (�̂�𝑖) can be determined through the following formula: 

  �̂�𝑖 = 𝐻 (𝑚𝑒𝑑𝑖𝑎𝑛 ({�̂�𝑖
(𝑟)

}
𝑟=1,…,𝑅

) −  𝑐𝑡ℎ).                                          (9) 

where 𝐻(∙)  denotes the Heaviside step function and 𝑐𝑡ℎ  the predetermined threshold value which 

separates the two classes (in case of a binary classification task).   

Various image-based operations were incorporated into our proposed augmentation pipelines. 

These include Gaussian blur, minor adjustments to the contrast, hue, brightness, and zoom -referred to 

as color jittering- as well as rotation and translation. Gaussian blur serves as a noise-reduction tool by 
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removing high-frequency details from the image regions, effectively cleaning the image. Random 

resizing ensures the model focuses on infectious areas regardless of the image’s dimensions. 

Additionally, rotation and translation encourage the model to identify the tumorous regions in different 

parts of the image, while color jittering helps the model learn features based on the shape of 

infectious and healthy areas rather than relying on color, particularly given the variability in pixel 

values across grayscale images. 

3.3. Image preprocessing 

The augmentation process is also used as a preprocessing step. A series of transformations, similar 

to those described in Subsection 3.2, is applied. The goal of this step is to create balanced training sets 

and enhance the classification performance [63,64]. Following augmentation, the MRI and CT scans 

which show brain and lung tumors are automatically cropped to remove the outer black regions, which 

do not contain valuable information related to the phenomenon being studied. This helps isolate the 

relevant organ tissue, while it provides inputs of reduced dimensions, which decrease the required 

computational time. Figure 2 illustrates some examples of the cropping process. Finally, all images are 

resized to 100 × 100 pixels to ensure uniformity. The cardiac MRI images were already cropped. As a 

result, no further preprocessing was required. 

 

a) Brain MRI displaying the existence of tumor.  

 

b) Normal lung CT image. 

Figure 2. Instances of original and cropped brain MRI and lung CT images.  

3.4. Evaluation metrics 

During the inference phase, we evaluate the performance of our trained model using widely 

accepted metrics for classification problems, including accuracy, recall, specificity and the F1 score. 

These are defined as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 ,                                             (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁
 ,                                                               (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁 

𝑇𝑁 +  𝐹𝑃
 ,                                                            (12) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 .                                                     (13) 

Accuracy refers to the proportion of cases correctly classified by the model and is the simplest 

and most intuitive measure, though it may be misleading in cases of imbalanced data, where one class 

dominates. On the other hand, precision measures how many of the model’s positive predictions (e.g., 

tumorous regions) are actually correct, thus reflecting the reliability of these predictions. Recall 

assesses the model’s ability to identify actual positive cases, making it critical when missing positive 

cases (such as tumors) would have severe consequences. Specificity evaluates how well the model 

identifies negative cases, such as healthy (non-tumorous) regions. Lastly, the F1 score balances 

precision and recall by calculating their harmonic mean, with high values indicating that the model 

effectively identifies both tumorous and healthy regions without favoring one over the other. 

3.5. Datasets 

The brain cancer dataset contains 3000 images, which are used to both train and test the CNN 

model. It is available as an open-access resource on Kaggle [65]. For the lung cancer dataset, the 

images were collected over three months in 2019 at the Iraq-Oncology Teaching Hospital/National 

Center for Cancer Diseases (IQ-OTH/NCCD) [66]. It is comprised of 1190 CT scan slices from 110 

patients, categorized into 50 malignant, 15 benign and 55 normal cases. Of these, 1097 images are 

labeled, including 416 normal, 120 benign and 561 malignant cases. Since our task focuses on binary 

classification for tumor detection, all benign and malignant images were combined and labeled as tumorous. 

Finally, the cardiac MRI dataset used in our experiments is the Automated Cardiac Diagnosis 

Challenge (ACDC) dataset [67]. The data acquisition was held at the University Hospital of Dijon in 

France over a 6-year period. The dataset comprises 150 patient exams, with 30 normal controls , 

and 120 HF patients categorized into four groups: 30 with hypertrophic cardiomyopathy (HCM), 30 

with dilated cardiomyopathy (DCM), 30 with previous myocardial infarction, and 30 with abnormal 

right ventricle function. To simplify the classification task into a binary format, we combined the four 

HF classes into a single HF category. 

4. Results 

The proposed low complexity scheme is employed to investigate the overall classification 

efficiency on all three datasets containing lung and brain tumors. For each dataset, we utilized a stratified 

cross-validation splitting strategy of ratio 3:1:1. This resulted in test sets that contained 600, 220 and 925 

images for the brain, lung and HF dataset, respectively. Several learning rates were utilized during the 
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training phase, namely 𝜂 = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001},  while the best 

classification results were generated for 𝜂 = 0.001. The classification threshold was set to 𝑐𝑡ℎ =
1

2
. We 

trained our model for 50 epochs based on the Adam optimizer, which seems to have a more unstable 

but more effective training process compared to other optimizers such as the stochastic gradient 

descent (SGD). The augmentation step has been applied to both the training set and the test set. The 

former signifies a standard preprocessing step, which aims to improve the model’s generalization to 

new data instances, while the latter enables the production of uncertainty estimations, which represents 

a new method to improve the classification efficacy of medical images. 

In Table 1, we display some comparisons between the introduced architecture and respective 

variations, with respect to the classification accuracy, the number of parameters and the training time 

for one epoch. We examine how the addition or removal of one convolutional and two fully connected 

layers influences the above measures. We observe that the number of fully connected layers is 

responsible for the main difference regarding the number of parameters. In parallel, an increasing 

number of convolutional layers does not notably alter after the number of parameters, but is responsible 

for higher computational times. According to Table 1, the proposed model seems to provide the best 

balance between computational efficiency and performance. The models with three convolutional, and 

three and five fully connected layers, respectively, seem to provide slightly higher performance on 

some occasions. However, they require an increase of more than 100% in running time for each epoch. 

Apparently, this percentage is significant when we refer to multiple epochs or larger datasets. These 

observations led to the selection of the model with two convolutional and three fully connected layers.  

Table 1. Comparisons concerning number of parameters, running time and accuracy of 

structure variations of the introduced CNN architecture. 

Structure 
Params 

(Million)  

Time 

(sec) 

Brain MRI 

Accuracy (%) 

Lung CT 

Accuracy (%) 

Cardiac MRI 

Accuracy (%) 

1CN + 1FC 0.01 9.28 88.86 ± 4.88 96.45 ± 1.75 83.75 ± 4.03 

1CN + 3FC 8.72 9.95 73.29 ± 6.81 98.92 ± 1.03 85.78 ± 0.99 

1CN + 5FC 8.92 10.04 90.42 ± 4.04 97.75 ± 1.72 86.92 ± 1.25 

2CN + 1FC 0.04 9.94 90.83 ± 1.67 92.68 ± 3.34 82.60 ± 5.86 

2CN + 5FC 9.59 11.38 90.82 ± 0.95 95.39 ± 3.64 84.01 ± 2.08 

3CN + 1FC 0.13 11.52 92.00 ± 0.82 99.38 ± 0.48 87.07 ± 1.70 

3CN + 3FC 9.04 21.41 93.40 ± 1.56 99.17 ± 0.65 87.21 ± 2.23 

3CN + 5FC 9.69 22.25 93.85 ± 1.13 99.50 ± 0.41 85.84 ± 2.71 

2CN + 3FC 8.87 10.78 93.13 ± 0.30 99.07 ± 0.50 87.29 ± 1.56 

In Tables 2–4 we present the tumor and HF detection performance of the employed CNN 

architecture. We note that the standard deviations displayed derive from the application of the cross-

validation method. In these Tables, the third row refers to the original test set where still no 

augmentation strategy is applied. We observe a higher classification performance for the lung dataset 

for the training, validation and testing phase. Specifically, we receive an accuracy of 99.07 ± 0.50, a 

specificity of 99.07 ± 1.46, a sensitivity of 99.07 ± 1.01 and an F1-score of 99.07 ± 0.49, while we 

achieve an accuracy of 93.13 ± 0.30, a specificity of 95.77 ± 1.66, a sensitivity of 90.64 ± 1.56 and an 

F1-score of 93.03 ± 0.54 for the brain tumor test set. Finally, we receive the lowest performance with 

an accuracy 87.29 ± 1.56, a specificity 71.62 ± 11.07, a sensitivity of 89.88 ± 1.13 and an F1-score of 

92.51 ± 1.02 for the cardiac MRI images. 
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Table 2. Classification performance based on brain MRI images. 

 Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Training  99.52 ± 0.25 99.28 ± 0.40 99.50 ± 0.25 99.39 ± 0.33 

Validation 93.84 ± 0.91 95.08 ± 2.06 92.71 ± 1.76 93.83 ± 2.77 

Test 93.13 ± 0.30 95.77 ± 1.66 90.64 ± 1.56 93.03 ± 0.54 

Table 3. Classification performance based on lung CT scans.  

 Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Training 99.59 ± 0.12 99.31 ± 0.21 99.62 ± 0.19 99.46 ± 0.19o 

Validation 98.74 ± 0.98 99.35 ± 0.52  98.28 ± 1.85 98.64 ± 1.04  

Test 99.07 ± 0.50 99.07 ± 1.46  99.07 ± 1.01 99.07 ± 0.49 

Table 4. Classification performance based on cardiac MRI images.  

 Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Training 99.96 ± 0.02 99.78 ± 0.20 99.97 ± 0.02 99.96 ± 0.18 

Validation 87.33 ± 1.59 84.62 ± 4.03 89.11 ± 1.98 87.63 ± 3.17 

Test  87.29 ± 1.56 71.62 ± 11.07 89.88 ± 1.13 92.51 ± 1.02 

Next, we apply the previously mentioned test-set augmentation methodology to generate 5, 10, 

20, 50, and 100 surrogate images for each test set instance in the brain, lung and cardiac datasets. 

Experimenting these varying sample sizes will help identify the optimal number of samples concerning 

the classification performance and computational efficiency. For all datasets, the classification 

performance improves as the sample sizes increase. Specifically, for the brain tumor and cardiac MRI 

datasets, our model achieves the highest detection efficiency using 𝑅 = 50 samples. In contrast, for 

the lung tumor dataset – where the CNN model performed well even with the initial test set – the 

performance peaks at 𝑅 = 20 and then plateaus. This indicates that while 𝑅 = 50 surrogates present 

a suitable choice for all datasets with respect to the performance, continuously increasing the number 

of samples does not necessarily lead to an improved accuracy. 

Based on Tables 5–7, for 𝑅 = 50 , the brain tumor dataset leads to an accuracy of 98.13%, a 

specificity of 97.67%, a sensitivity of 98.60%, and an F1-score of 98.16%. For the lung tumor dataset, 

the accuracy is 99.87%, the specificity at 100%, the sensitivity at 99.73%, and the F1-score of 99.87%. 

Finally, for the cardiac MRI dataset, the UCNN with 50 surrogates yields an average accuracy of 

91.83%, a specificity of 92.65%, a sensitivity of 91.31%, and an F1-score of 95.26%. 

Figures 3–5 display examples of confusion matrices from one of the five iterations of the brain, 

lung and cardiac MRI test sets. Another significant observation is that the use of test-set augmentation 

results in smaller differences between the evaluation metrics for specificity and recall. Moreover, the 

test-set augmentation procedure prevents the model from being affected by the imbalance between the 

normal and HF classes. 

In Table 8, we assess the suitability of central statistical measures–mean and median–based on 

the performance of UCNN. After applying the median to the test set of brain scans, we achieved an 

accuracy of 98.13 ± 0.74, compared to the mean value, which yielded an accuracy of 96.67 ± 1.21. 

For the lung CT scan dataset, we observe accuracies of 99.87 ± 0.18 and 99.77 ± 0.27, respectively, 

while the UCNN yield accuracies of 89.24 ± 1.78 and 91.83 ± 0.96 for the cardiac MRI images, 

respectively. Therefore, this experiment reinforces the choice of using the median, demonstrating its 

appropriateness both theoretically and empirically. 
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Table 5. Assessing the performance of test-set augmentation using brain MRI scans. 

 Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Test set  93.13 ± 0.30 95.77 ± 1.66 92.64 ± 1.56 93.03 ± 0.54 

5 samples 97.03 ± 0.73 96.78 ± 0.90 97.29 ± 1.29 97.07 ± 0.71 

10 samples 97.50 ± 0.90 96.61 ± 1.93 98.40 ± 1.00 97.55 ± 0.83 

20 samples 97.70 ± 0.86 97.06 ± 1.52 98.61 ± 0.92 97.88 ± 0.69 

50 samples 98.13 ± 0.74 97.67 ± 1.23 98.60 ± 0.76 98.16 ± 0.71 

100 samples 96.73 ± 0.69 94.27 ± 1.02 99.46 ± 0.76 96.64 ± 0.84 

Table 6. Assessing the performance of test-set augmentation using lung CT scans. 

 Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Test set  99.07 ± 0.50 99.07 ± 1.46  99.07 ± 1.01 99.07 ± 0.49 

5 samples 99.46 ± 0.19 99.46 ± 0.56 99.20 ± 1.10 99.33 ± 0.34 

10 samples 99.47 ± 0.38 99.47 ± 0.87 99.47 ± 0.73 99.45 ± 0.39 

20 samples 99.87 ± 0.18 100.00 ± 0.00 99.73 ± 0.37 99.87 ± 0.18 

50 samples 99.87 ± 0.18 100.00 ± 0.00 99.73 ± 0.37 99.87 ± 0.18 

100 samples 99.87 ± 0.18 100.00 ± 0.00 99.73 ± 0.37 99.87 ± 0.18 

Table 7. Investigating the performance of test-set augmentation based on cardiac MRI images. 

 Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Test set  87.29 ± 1.56 71.62 ± 11.07 89.88 ± 1.13 92.51 ± 1.02 

5 samples 90.31 ± 1.00 88.23 ± 3.41 90.74 ± 1.20 94.43 ± 0.69 

10 samples 90.82 ± 0.75 89.18 ± 6.58 91.26 ± 1.30 94.71 ± 0.47 

20 samples 91.38 ± 1.12 90.01 ± 0.50 92.35 ± 2.05 94.99 ± 0.61 

50 samples 91.83 ± 0.96 92.65 ± 1.89 91.31 ± 1.10 95.26 ± 0.52 

100 samples 91.67 ± 0.93 93.02 ± 2.99 91.23 ± 1.15 95.17 ± 0.50 

Table 8. Assessing the performance of test-set augmentation using lung CT scans. 

  Accuracy (%) Specificity (%) Recall (%) F1 score (%) 

Lung CT scans  
Mean 99.77 ± 0.27 100.00 ± 0.00 99.64 ± 0.42 99.82 ± 0.21 

Median 99.87 ± 0.18 100.00 ± 0.00 99.73 ± 0.37 99.87 ± 0.18 

Brain MRI Images 
Mean 96.67 ± 1.21 96.01 ± 4.21 94.57 ± 2.57 96.41 ± 1.62 

Median 98.13 ± 0.74 98.67 ± 1.23 98.60 ± 0.76 98.16 ± 0.71 

Cardiac MRI Images 
Mean 89.24 ± 1.78 84.35 ± 5.35 90.29 ± 1.80 93.27 ± 0.96 

Median 91.83 ± 0.96 92.65 ± 1.89 91.31 ± 1.10 95.26 ± 0.52 



542 

Mathematical Biosciences and Engineering  Volume 22, Issue 3, 528–553. 

 

 

Figure 3. Confusion matrix instances corresponding to the tumor detection performance 

of the UCNN based on MRI brain images for the original test set and set containing 5, 10, 

20 and 50 augmented samples. 

 

 

Figure 4. Confusion matrix instances corresponding to the tumor detection performance 

of the UCNN based on CT lung scans for the original test set and set containing 5, 10, 20 

and 50 augmented samples. 
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Figure 5. Confusion matrix instances corresponding to the HF detection performance of 

the UCNN based on cardiac MRI scans for the original test set and set containing 5, 10, 20 

and 50 augmented samples. 

Figures 6–8 illustrate the empirical distributions of predictions for three test set instances from 

the brain, lung and cardiac MRI datasets, respectively. In both Figures, image (A) represents a normal 

case, image (B) depicts an abnormal-like case, and image (C) shows an abnormal scan. The inclusion 

of these instances demonstrates that the UCNN model is well-calibrated and that the integrated UQ 

procedure yields reliable estimates. 

   

 
 

 

Figure 6. UQ of three brain MRI scans showing the original test image along with the 

empirical distribution. (A) shows a normal MRI, (B) a tumor-like normal MRI, and (C) a 

tumorous MRI image. 
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Figure 7. UQ of three lung CT scans showing the original test image along with the 

empirical distribution. (A) displays a normal CT scan, (B) a tumor-like normal CT scan, 

and (C) a lung tumor case. 

   

   

Figure 8. UQ of three cardiac MRIs showing the original test image along with the 

empirical distribution. (A) displays a normal case, (B) presents a HF-like normal case, and 

(C) shows an HF case characterized by left ventricular wall thickening. 

In Figures 6 and 7, we notice that the DL model accurately classifies most surrogate images into 

class 0 and 1 for the non-tumorous (A) and tumorous scan (C), respectively. Additionally, the model 

demonstrates a strong confidence in these predictions, with only a few cases notably deviating from 0 

or 1. Of particular importance is scan (B), which reveals tumor-like instances. As previously noted, 

tumors typically present as white, round regions within the organ. In Figure 6, a small white spot in 

the upper left part suggests the presence of a benign brain tumor, leading to surrogate predictions that 

deviate from 0. Consequently, the introduced UCNN generates an empirical distribution with an 

increased uncertainty, thus highlighting this suspicious area. A similar pattern is observed in image (B) 

of Figure 7, which experts annotated as non-tumorous. The circular region at the center of the scan 
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could be mistakenly interpreted as tumorous. However, our model not only correctly identifies this as 

non-tumorous, but also produces estimates of heightened uncertainty, thus reinforcing the significance 

of this characteristic. 

 

Figure 9. Empirical distributions corresponding to the median estimates produced by the 

UCNN for the test set’s 600 brain MRIs (left panel), 220 lung CT scans (middle panel), 

and 925 cardiac MRIs (right panel) using 𝑅 = 50 augmented samples. 

Figure 8 illustrates the empirical distributions obtained from the median predictions of the UCNN. 

Image (A) represents a non-HF case, with median predictions clustered around 0, showing the model’s 

high confidence in this classification. Image (B) presents an HF-like instance, with a slight deviation 

from 0 and an increased prediction uncertainty, indicating that this instance shares characteristics with 

HF cases, prompting the model to exhibit caution in its classification. Image (C), an HF-positive case, 

shows predictions tightly clustered around 1, thus reflecting a high confidence in this positive 

classification.  

Finally, Figure 9 shows the empirical distributions derived from the median predictions of the 

CNN model for the medical instances in the test set, utilizing 𝑅 =  50 surrogate images generated 

through augmentation. The histograms indicate that the DL architecture is well-calibrated, 

demonstrating a strong confidence in its class predictions. Importantly, since only a few images have 

median values that diverge from 0 or 1, the selection of a cut-off point (𝑐𝑡ℎ) for the class distinction 

does not affect the outcomes. 

Overall, these findings demonstrate the efficacy of the proposed methodology in achieving a high 

classification performance while maintaining the computational efficiency. The integration of test-set 

augmentation, along with the optimization of model configurations, enables robust predictions across 

diverse medical imaging datasets, showcasing the approach's adaptability and scalability to different 

clinical scenarios. This not only highlights the benefits of the proposed method over conventional 

approaches, but also reinforces its suitability for small datasets typically encountered in medical research. 

5. Discussion and conclusions 

In this paper, we present a low-complexity UCNN tailored for effective medical image 

classification, specifically targeting tumor and HF detection. The quantification of the system’s 

aleatoric uncertainty is achieved through a test-set augmentation process applied to medical imaging. 

This paper marks the first attempt to demonstrate that test-set augmentation can enhance the DL 

classification performance in the field of medical imaging. The effectiveness of the proposed 

methodology is assessed using datasets of brain MRI, lung CT and cardiac MRI scans. It should be 
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noted that augmentations have been applied to both the training and test sets. The (standard) training 

set augmentation focuses on enhancing the model’s ability to generalize to new data, while the 

(introduced) test-set augmentation step facilitates the generation of uncertainty estimations. 

A significant finding of this uncertainty-based DL approach is that generating augmented samples 

substantially enhances the classification accuracy during testing. By producing surrogate data from 

each original instance, the model gains additional information that is incorporated to improve the 

prediction accuracy. This process boosts the model’s confidence in its output, thereby reducing the 

impact of noisy inputs. Additionally, the simplistic structure of the proposed network makes it 

particularly suitable for analyzing small datasets often encountered in medical research, in contrast 

to many studies that depend on more complex and computationally expensive architectures. This 

design minimizes the risk of overfitting, but also enhances the method’s adaptability and re-

trainability to out-of-distribution data.  

A detailed analysis shows that using 𝑅 = 50 augmented (surrogate) images is the optimal sample 

size to enhance the classification performance of the DL model, for the majority of experiments. A 

number of 𝑅 = 20 surrogates is also satisfactory to achieve the maximum efficiency concerning the 

lung CT scans dataset. This finding indicates that generating an unlimited number of surrogates isn’t 

necessarily beneficial. Determining the ideal sample size also helps lessen the computational demands 

of our method. For instance, for the brain tumor dataset, using 50 surrogate images improves the 

average accuracy by 5%, the specificity by 1.9%, the sensitivity by 7.96%, and the F1-score by 5.13% 

compared to the original test set. A similar trend is observed in the lung tumor and HF datasets, 

supporting the effectiveness of our approach. It should be noted that the test-set augmentation 

procedure also enhances the model’s robustness against class imbalance, too, even when a small 

number of surrogates is generated (Tables 5–7). However, it is important to note that while the use 

of 50 surrogates appears to be suitable for the datasets under consideration, a smaller number of 

samples could still achieve a satisfactory predictive accuracy, potentially further reducing the 

computational resources required. 

Additionally, the proposed UCNN effectively captures the inherent uncertainty present in the 

datasets analyzed, as illustrated in Figures 6–8. Based on the analysis of these images, medical 

professionals can focus more on scans that exhibit higher levels of uncertainty. This uncertainty 

can subsequently be reduced through more targeted screening, aiding experts in making better-

informed decisions. 

Furthermore, as shown in Figure 9, the effectiveness of our approach is bolstered by examining 

the empirical distribution of the model’s predictions across the entire test set. This analysis verifies 

that the selected cut-off point does not impact the classification performance. This feature adds value 

to the proposed model, as establishing a classification threshold is often a difficult challenge in 

such tasks [68]. Additionally, Table 8 demonstrates the validity of using median statistics. With the 

model producing 50 surrogate images, the UCNN’s classification performance improves, which can 

be attributed to the median's robustness: it remains unaffected by outliers and is statistically more 

appropriate given the presence of non-Gaussian empirical distributions. 

Test-set augmentation is not only a straightforward approach that enhances both the uncertainty 

estimation and the model performance, but also offers significant advantages in terms of the 

computational efficiency. It demands far less memory than ensemble methods during both training and 

inference. Additionally, when combined with transfer learning, test-set augmentation avoids the need 
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for extra steps, unlike Bayesian methods. Overall, both ensemble and Bayesian approaches typically 

incur much higher computational costs during training. 

Aleatoric and epistemic uncertainty are two distinct types of uncertainty encountered in DL and 

statistical modeling [69,70]. Aleatoric uncertainty arises from inherent randomness or noise in the data. 

It reflects the variability present in the observations themselves and cannot be reduced by gathering 

more data, as it is tied to the stochastic nature of the environment or the measurement process. On the 

other hand, epistemic uncertainty is related to the model’s lack of knowledge or limitations in learning. 

This uncertainty stems from insufficient or incomplete data and can be reduced by either improving 

the model or acquiring more representative data [71].  

A practical way to reduce aleatoric uncertainty is by obtaining higher-quality data or more precise 

measurements [72]. For instance, enhancing sensor resolution in imaging tasks or using more accurate 

instruments can help minimize noise at the source. However, because improving the sampling process 

can be expensive and not always feasible, an alternative and cost-effective approach is to apply data 

augmentation techniques. These help the model become robust to variations in the data, thus reducing 

the impact of noise or outliers. Therefore, this method offers a low-cost solution for uncertainty 

reduction, particularly valuable in medical imaging.  

In contrast, epistemic uncertainty can be reduced by collecting more diverse and representative 

data. Expanding the training dataset, especially by including underrepresented or previously unseen 

cases, helps the model generalize better in new situations. Another strategy is to employ more advanced 

or better-calibrated models, such as BNNs or deep ensembles, which can capture the uncertainty by 

modeling distributions over possible parameters [15, 73,74]. These methods hold promise for future 

research in this area. 

Although the proposed method focuses on enhancing UQ and improving the performance of a 

relatively simple and widely recognized CNN model, we acknowledge that comparisons with state-of-

the-art architectures, such as VGGs, U-Nets and GoogLeNet, could meaningfully contribute to the 

broader evaluation of our approach. Future research could explore integrating the proposed uncertainty 

estimation framework with these more complex architectures to evaluate its performance across a 

wider spectrum of model designs. Such comparisons would not only help establish the generalizability 

of the methodology, but also offer a deeper understanding of its strengths and limitations in diverse 

clinical imaging scenarios. 

Additionally, while learnable test time augmentation techniques help in selecting appropriate 

augmentations, a key limitation is understanding how different types of augmentations impact 

uncertainty. For instance, a straightforward augmentation such as reflection may not account for much 

uncertainty, whereas more specialized techniques such as stretching and shearing might better capture 

it. Moreover, evaluating the robustness of X-ray classification is challenging and yields significantly 

different results depending on the dataset, architecture, and robustness metric used [75].  

In future work, exploring advanced UQ methods, such as Bayesian DL, could further refine the 

model reliability for critical medical imaging tasks. These methods not only provide a measure of the 

uncertainty, but also enhance the interpretability of the model predictions, which is vital in clinical 

settings. Also, investigating optimized augmentation strategies tailored to specific image types may 

enhance the uncertainty estimation accuracy. By customizing augmentations based on the unique 

characteristics of different medical images, we can improve the robustness of the model against 

variations and artifacts commonly encountered in clinical practice.  
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Moreover, it would be valuable to conduct a more in-depth analysis of the individual samples, 

particularly challenging ones, to confirm the real-world effectiveness of the test-set augmentation 

strategy. Finally, incorporating a feedback loop where the model performance is continuously assessed 

against real-world data could lead to ongoing improvements in both the accuracy and the reliability. 

Collaborative efforts with medical professionals to validate these advancements will ensure that the 

tools developed are aligned with clinical needs, ultimately contributing to better patient outcomes and 

more effective decision-making in healthcare.  
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