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Abstract: Tuberculosis is the leading cause of death worldwide from a single infectious agent; it
has also been declared a threat to humanity by the World Health Organization. New insights indicate
that the innate immune response plays a crucial role in determining the outcome of the infection.
In this study, we assessed the role of macrophages in the innate immune response through a simple
mathematical model. Our results confirm that macrophages provide the primary protective response
against Mycobacterium tuberculosis. However, they also highlight the importance of other innate cells
in the outcome of infection. Specifically, our findings suggest that, in addition to macrophage activity,
the involvement of other innate immune cells is essential for eliminating or controlling bacterial
progression, ultimately leading to an adaptive immune response.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis (Mtb). It
is both preventable and generally curable. However, in 2022, TB was the second leading cause of
death worldwide due to a single infectious agent, following coronavirus disease (COVID-19). Current
statistics are encouraging, showing a decline in the incidence, prevalence, and mortality rates over
the years. Between 2015 and 2022, the incidence rate decreased by 8.9%, and TB-related deaths fell
by 19% during the same period [1]. Despite these improvements, the situation remains concerning,
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with approximately a quarter of the world’s population estimated to be infected with Mtb, and over 10
million people falling ill with TB each year [1].

After an individual is infected with Mtb, the risk of developing TB disease is highest in the first
2 years (approximately 5%), after which it decreases. Without treatment, the mortality rate from TB
is high (approximately 50%). With the treatments currently recommended by WHO (a 4- to 6-month
course of anti-TB drugs), approximately 85% of people with TB can be cured [1]. The above allows us
to assume that one in two sick people not treated with any medication overcomes the disease thanks to
their immune system (a complex network of cells, tissues, organs, and substances they produce, which
help the body fight infections and other diseases).

Defense mechanisms against substances that are considered harmful or foreign are divided into
innate immune response and acquired immune response. The role of adaptive or acquired immunity
in controlling Mtb infection is well-studied, and the protective role of T and B lymphocytes in anti-
tuberculosis immunity is widely recognized [2]. However, following exposure to Mtb, it typically
takes 4 to 6 weeks for a human host, and 2 to 3 weeks for mice, to develop antigen-specific T-cell
responses in the lymph nodes [3]. Therefore, the non-specific innate immune response plays a pivotal
role in protecting the host before the onset of adaptive immunity and even leads to early clearance of
bacteria [3].

Innate immunity constitutes the first defense against harmful substances or antigens that try to enter
the body, which also includes barriers such as the skin, mucous membranes, tears, and stomach acid
[2, 4]. In TB, the innate immune response is crucial in determining the course of infection. The
processes of transmission, infection, and development of TB are well-defined [3].

Transmission of Mtb begins when an infected individual expels microdroplets containing the
infectious bacillus into the environment, which are then inhaled by an uninfected individual.
Infectious bacilli can persist for up to 3 hours in closed, non-ventilated environments, and those that
overcome the intrinsic barriers of the innate immune response (skin, mucous membranes, tears) enter
the respiratory tract, which serves as a means of transport, generally to the pulmonary alveoli [3, 5]. It
is important to note that there are many cells of the innate immune system that participate in the
response against TB; however, the precise mechanisms of TB immunopathology have not yet been
fully understood [3].

Once Mtb overcomes the first barriers, it encounters the alveolar epithelial cells (AEC), which are
the first to interact with any pathogen that attempts to enter the respiratory tract. AECs are also known
to be vital for host defenses against Mtb, and although knowledge about their immunopathological
functions in TB has increased considerably, they are still not fully elucidated [3, 6].

In the alveoli, bacteria are detected, recognized, phagocytosed, and processed by antigen-presenting
cells (APCs). The first line of defense against Mtb are alveolar macrophages (AM). Through the
expression of several cell surface receptors, the macrophage recognizes, binds, and internalizes foreign
particles, including Mtb. These cells phagocytose the Mtb by placing it inside a vacuole called a
phagosome, which fuses with a bag of enzymes called a lysosome, giving rise to the phagolysosome
[4].

Through a complex process, the enzymes of the phagolysosome control or eliminate the bacteria
and also generate a signaling cascade that involves the production of cytokines and chemokines. This
stimulate the activation of the antimicrobial activities of the phagocytes and recruitment of other cells
of the immune system to the site of infection. However, bacilli that are not destroyed manipulate
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phagosome maturation to prevent phagolysosome formation and evade their removal. Furthermore, the
phagosome binds to other vesicles with nutrients necessary for its replication inside the AM, converting
the infected macrophage into a niche for bacterial replication [7].

In an attempt to deprive Mtb of its chosen cellular niche, macrophages infected with attenuated
strains of Mtb can undergo apoptosis in a manner involving tumor necrosis factor-alpha, T NF − α,
(proinflammatory cytokine secreted in the immune system by monocytes and macrophages, T and B
lymphocytes, NK cells, and polymorphonuclear leukocytes). This cell death process also results in
reduced survival of mycobacteria and leads to the priming of Mtb-specific CD8 T-cells [8, 9].

Macrophage apoptosis may contribute to the innate immune response against this intracellular
infection by containing and limiting the growth of bacilli, as has been observed for other infectious
agents, and may therefore be part of a successful host defense mechanism [10]. On the other hand,
TNF induces mitochondrial reactive oxygen species (ROS) to cause necrosis of Mtb-infected
macrophages. Necrosis of infected macrophages constitutes a critical pathogenic event in TB by
releasing mycobacteria into the extracellular environment, permissive for Mtb population growth [11].

Neutrophils play a specific role of great clinical importance in TB, although controversial studies
have established a close correlation between the development of TB and tissue infiltration by
neutrophils. However, the functions of circulating neutrophils in the development of tuberculosis is
largely unknown [11]. Through animal models and in vitro experiments with human cells, it has been
suggested that endothelial cells (EC) also participate in the immunopathology of TB. In vitro studies
have shown that human ECs succumb to Mtb infection, and can help in the dissemination of bacteria
through the bloodstream and lymph [3]. Also, ECs produce ROS, nitrogen intermediates (RNI), and
antimicrobial peptides such as defensins to control bacterial growth [3]. Similarly, it has been verified
that other cells that also participate in the innate immune response are eosinophils, dendritic cells,
inflammatory monocytes, natural killer cells, and innate lymphoid cells, among others [3, 4].

As observed, Mtb interacts with various innate immune cells, however the immunopathology arising
from these interactions is not fully determined. In this regard, further research is needed to understand
the immunopathology of TB. It is well documented that macrophages exert an important role in innate
immune response against Mtb but they are also a niche for Mtb replication and propagation [6,7,12,13].
However, new studies have revealed that other cells such as dendritic cells, neutrophils and monocytes
also play a key role in the immunopathology of TB [14, 15].

Mathematical models had been used to gain insights in within-host dynamics of TB, mainly,
related to adaptive immunity [16–19]. Currently, it is known that the innate immune response is
critical to the outcome of Mtb infection, since it can control bacterial progression or substantially
influence the subsequent adaptive response of the host. In the literature, researchers have analyzed
several aspects of the innate immune response against Mycobacterium tuberculosis throughout of
mathematical modeling. In [20], the authors formulated and analyzed a model to describe the
dynamics of innate immunology of macrophages against Mycobacterium tuberculosis. In [21], the
authors formulated a system of ordinary differential equations that describes the interaction dynamics
between Mtb, iron, lipids, and nitric oxide in the early phase of macrophage infection. They
incorporated the bactericidal property of nitric oxide and the cellular regulation of iron and lipids to
analyze the role they play in the outcome of infection. In [22], the authors developed a spatiotemporal
model of the initial and innate response to tuberculosis. The model consists of coupled
reaction-diffusion-advection equations governing the dynamics of macrophages (resting and
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infected), bacteria (extracellular and intracellular), and a chemokine released by the bacteria, each of
which affects final granuloma size. The model describes the migration of uninfected macrophages to
the site of infection (pulmonary alveoli) and their subsequent phagocytosis of bacteria. It aims to
capture clearance by innate immunity or disease progression through granuloma growth. In [23], the
early immune response to Mtb infection in the lungs was modeled by means of coupled
reaction-diffusion-transport equations with chemotaxis. The results and conclusions are similar to
those presented in [22]. Other computational approaches have also addressed the role of early innate
immunity in TB [21, 24–26].

In this work, we are interested in evaluating and comparing the response of macrophages with
respect to the response of other cells of the innate immune system against TB. To this end, we formulate
and analyze, at theoretical and numerical levels, a non-linear system of ordinary differential equations
that describes the interaction between macrophages, the other cells of the innate immune system, and
Mtb. We believe this is the first model that incorporates the dynamics of all innate immune cells against
Mtb.

2. Model formulation

In order to characterize some aspects of TB immunology at the cellular level, in the context of the
innate immune response, and focus on the role played by macrophage responses in the outcome of
infection, in this section, we formulate a model that describes the dynamics of interaction between
innate immune cells and Mycobacterium tuberculosis at the site of infection.

Since there are different innate immune cells that participate in the response against Mtb [3], we
will group all the innate cells that act against TB into a single population that we will denote by C. We
also consider the population of macrophages, M, which is divided into uninfected macrophages, MU

(macrophages that have not had contact with Mtb or that phagocytize Mtb and eliminate it efficiently),
and infected macrophages, MI (macrophages that phagocytose the bacteria but do not have the capacity
to eliminate it, and the bacteria also reproduce inside it). Similarly, we consider the population of
bacteria, B, which will be divided into two subpopulations: the population of internal bacteria, BI

(bacteria that have been phagocytosed by innate cells), and the population of external bacteria, BE

(bacteria that have not been phagocytosed or that have gone from internal to external due to the necrotic
death of their host cells).

The cell population of the innate immune system at time t is represented by C(t), which is
composed of the subgroups of alveolar epithelial cells, endothelial cells, macrophages, neutrophils,
eosinophils, monocytes, dendritic cells, natural killer cells, invariant natural killer T lymphocytes and
innate lymphoid cells. All of these cells play a role in the immunopathology of TB that favors the host
and/or the bacteria. Unfortunately, for most of them, the functions they perform and the mechanisms
they carry out are still a matter of research; available results come from individual studies, and the
hypotheses established based on them must be empirically validated [3, 4, 15].

We assume that the site of infection are the pulmonary alveoli and that infectious bacilli have been
transported there. At this site, resident cells recruited from the bone marrow via the thymus or lymph
nodes, among others, have initiated an innate immune response. As mentioned in the previous section,
the set of cells that participate in this response is quite broad. However, at this stage of the infection,
none of them show a specific response to the antigen [3, 4].
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We suppose that innate cells are recruited at a constant rate, ΛC, and die at per capita natural death
rate, µC. Since cells produced by the thymus and lymph differentiate into different types of innate
immune cells, and we want to compare the macrophages response with respect to the response of the
rest of the innate cells, we assume that a portion of innate cells differentiate into uninfected
macrophages at a rate α.

Since a portion of the bacteria phagocytosed by macrophages is eliminated by them, and the other
turns them into their reproduction niche, we assume that uninfected macrophages phagocytose Mtb at
a rate ε, of which a fraction ν becomes infected. Other innate cells participate directly or indirectly in
the death of infected macrophages [3,4]; for this reason, we assume that the innate cells eliminates the
population of infected macrophages at a rate λ. Necrosis is classified by NCCD-201 as accidental cell
death, and Mtb-infected macrophage necrosis occurs when the Mtb kills infected
macrophages [27, 28]. This process is a key part of the Mtb infection cycle, allowing the bacteria to
spread and evade the host’s immune response. In TB, the internal bacteria, in addition to reproducing
within the macrophage, induce its death by necrosis, releasing necrotic tissue, and a certain amount of
bacteria into the environment [3, 28]. As a consequence, we assume that the natural death of infected
macrophages is by necrosis, which occurs at a per capita rate µMI(BI), which is a function that
depends on the internal bacteria. Consequently, the number of infected macrophages that die by
necrosis is µMI(BI)MI , and in turn, these necrotic macrophages release on average r bacilli into the
extracellular environment. This implies that the amount of external bacteria released into the
environment would be proportional to the number of macrophages that die by necrosis, rµMI(BI). To
date, the most appropriate functional response for µMI(BI) has not been empirically determined.
However, there is experimental evidence that the amount of foreign bacteria produced by macrophage
necrosis is proportional to the number of infected macrophages [29]. For this reason, in this model,
we will assume that infected macrophages die by necrosis at a constant rate µMI . In addition, bacteria
phagocytosed by macrophages are eliminated at a rate, κ.

Since there are other innate cells such as dendritic cells, neutrophils, or monocytes that phagocytose
and eliminate Mtb [3, 4], we assume that extracellular bacteria are eliminated by these innate cells at
a rate η. We also assume that internal bacteria replicate inside an infected macrophage at a rate β,
following a saturation kinetics with carrying capacity of the infected macrophages denoted by KI .
Finally, µMU , µBE, and µBI denote the per capita natural death rates (reciprocal of the half-life) of
uninfected macrophages, and intracellular and extracellular bacteria, respectively.

From the above assumptions, we obtain the following system of ordinary differential equations

dC
dt
= ΛC − αC − µCC

dMU

dt
= αC − ενBE MU − µMU MU

dMI

dt
= ενBE MU − λMIC − µMI MI

dBE

dt
= rµMI MI − εκBE MU − ηBEC − µBE BE

dBI

dt
= β

(
1 −

BI

KI

)
MI − µBI BI . (2.1)
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The set of biological interest is given by

Ω =




C

MU

MI

BE

BI


∈ R5

+ : 0 ≤ C ≤
ΛC

α + µC
, 0 ≤ MU + MI ≤

αΛC

µM(α + µC)
, 0 ≤ BE + BI ≤

ᾱ

µB


, (2.2)

where µM = min{µMU , µMI}, µB = min{µBE, µBI}, and ᾱ =
α(rµMI + β)ΛC

µM(α + µC)
. The following lemma

ensures that system (2.1) makes biological sense; that is, all solutions starting at Ω remain there for all
t ≥ 0.

Lemma 2.1. The set Ω defined in (2.2) is positively invariant for solutions of the system (2.1).

Proof. Let us start by verifying the existence of the solution to the initial value problem defined by
the system (2.1) and x0 = (C(0),MU(0),MI(0), BE(0), BI(0)) ∈ Ω. Since the vector field defined
by the right-hand side of (2.1) is C1(R5

+), then the fundamental theorem of existence and uniqueness
guarantees the existence of a solution x(t) ∈ R5

+ in the interval [0, σ] [30]. Furthermore, if the compact
set Ω̄ ∈ R5

+ satisfies {y ∈ R5 : y = f (t) for some t ∈ [0, σ)}, then by the extension theorem σ = ∞
(Corollary 2, page 91, [30]). Now, suppose that x0 ∈ Ω, then we have

0 ≤ C(0) ≤
ΛC

α + µC
, 0 ≤ MU(0) + MI(0) ≤

αΛC

µM(α + µC)
, 0 ≤ BE(0) + BI(0) ≤

ᾱ

µB
.

On the other hand, the solution of the first equation of the system (2.1) is given by

C(t) =
ΛC

α + µC
+

(
C(0) −

ΛC

α + µC

)
e−(α+µC)t,

since 0 ≤ C(0) ≤ ΛC/(α + µC), then 0 ≤ C(t) ≤ ΛC/(α + µC) for all t ≥ 0. Adding the second and third
equations of the system (2.1), we have

dMU

dt
+

dMI

dt
= αC − µMU MU − λMIC − µMI MI ,

since µM ≤ µMU and µM ≤ µMI , then from the previous equation we obtain the following inequality

dMU

dt
+

dMI

dt
≤ α

ΛC

α + µC
− µM(MU + MI) − λMIC ≤

αΛC

α + µC
− µM(MU + MI),

or equivalently
d(MU + MI)

dt
+ µM(MU + MI) ≤

αΛC

α + µC
.

The solution of the above inequality satisfies

MU(t) + MI(t) ≤
αΛC

µU(α + µC)
+

(
MU(0) + MI(0) −

αΛC

µM(α + µC)

)
e−µM t,
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since 0 ≤ MU(0) + MI(0) ≤
αΛC

µM(α + µC)
, then 0 ≤ MU(t) + MI(t) ≤

αΛC

µM(α + µC)
for all t ≥ 0. Adding

the fourth and fifth equations of (2.1) we have

dBE

dt
+

dBI

dt
= rµMI MI + β

(
1 −

BI

KI

)
MI − εκBE MU − ηBEC − µBE BE − µBI BI ,

since µB ≤ µBE, µB ≤ µBI , MI < αΛC/µM(α + µC), then we obtain the following inequality

d(BE + BI)
dt

+ µB(BE + BI) < ᾱ,

where ᾱ =
α(rµMI + β)ΛC

µM(α + µC)
. The solution of the above inequality satisfies

BE(t) + BI(t) <
ᾱ

µB
+

(
BE(0) + BI(0) −

ᾱ

µB

)
e−µBt.

Therefore, if B(0) ≤ ᾱ/µB, then B(t) ≤ ᾱ/µB for all t ≥ 0. □

3. Qualitative analysis of the model

3.1. Equilibrium solutions

Taking the left-hand side of (2.1) equal to the zero vector gives the following system of algebraic
equations

ΛC − αC − µCC = 0
αC − ενBE MU − µMU MU = 0
ενBE MU − λMIC − µMI MI = 0

rµMI MI − εκBE MU − ηBEC − µBE BE = 0

β

(
1 −

BI

KI

)
MI − µBI BI = 0. (3.1)

From the first equation of (3.1), we obtain C = C∗, where

C∗ =
ΛC

α + µC
. (3.2)

Substituting (3.2) in the second equation of (3.1), we obtain

MU =
αC∗

ενBE + µMU
. (3.3)

From the third equation of (3.1), we obtain

MI =
ενBE MU

λC∗ + µMI
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=
ενBE

λC∗ + µMI

αC∗

ενBE + µMU
. (3.4)

Substituting (3.2), (3.3), and (3.4) in the fourth equation of (3.1), we obtain

rµMI
ενBE

λC∗ + µMI

αC∗

ενBE + µMU
− εκBE

αC∗

ενBE + µMU
− ηBEC∗ − µBE BE = 0.

The solutions of the above equation are given by BE = 0 and BE = B∗E, where

B∗E =
[

καC∗

ν(ηC∗ + µBE)
+
µMU

εν

]
(R0 − 1), (3.5)

and

R0 =
rµMIεναC∗

(λC∗ + µMI)
[
εκαC∗ + µMU(ηC∗ + µBE)

] . (3.6)

If BE = 0, we obtain the free-infection equilibrium

E0 =

(
C∗,
αC∗

µMU
, 0, 0, 0

)
. (3.7)

Now, substituting (3.5) in the Eqs (3.3) and (3.4) we obtain

M∗U =
αC∗

ενB∗E + µMU

M∗I =
ενB∗E

λC∗ + µMI

αC∗

ενB∗E + µMU
. (3.8)

Substituting (3.8) in the fifth equation of (3.1), we obtain BI = B∗I , where

B∗I =
βM∗I

β

KI
M∗I + µBI

. (3.9)

As a consequence, if R0 > 1, there exists a non-trivial equilibrium

E1 = (C∗,M∗U ,M
∗
I , B

∗
E, B

∗
I ). (3.10)

The following theorem summarizes the results of the existence of equilibria.

Teorem 3.1. If R0 ≤ 1, then E0 defined in (3.7) is the only equilibrium in Ω. If R0 > 1, in addition to
E0, there exists the infected equilibrium E1 defined in (3.10).

3.2. Stability of equilibrium solutions

In this section, we will analyze the stability of equilibrium solutions. The linearization of the system
(2.1) around an equilibrium solution x̄ is given by x = J(x̄)x, where the Jacobian matrix J evaluated at
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x is given by

J(x) =



−(α + µC) 0 0 0 0
α − (ενBE + µMU) 0 −ενMU 0
−λMI ενBE − (λC + µMI) ενMU 0
−ηBE −εκBE rµMI − (εκMU + ηC + µBE) 0

0 0 β

(
1 −

BI

KI

)
0 −

(
βMI

KI
+ µBI

)


.

(3.11)
From (3.11), we verify that the Jacobian matrix evaluated in trivial equilibrium E0 is given by

J(E0) =



−(α + µC) 0 0 0 0

α −µMU 0 −
εναC∗

µMU
0

0 0 − (λC∗ + µMI)
εναC∗

µMU
0

0 0 rµMI −

(
εκαC∗

µMU
+ ηC∗ + µBE

)
0

0 0 β 0 −µBI

.


(3.12)

The eigenvalues of J(E0) defined in (3.12) are given by −(α + µC), −µMU , −µBI , and the roots of the
following quadratic equation

ς2 +

(
λC∗ + µMI +

εκαC∗

µMU
+ ηC∗ + µBE

)
ς +

1
µMU

(λC∗ + µMI)(εκαC∗ + µMU(ηC∗ + µBE))(1 − R0) = 0.

The above implies that E0 is locally asymptotically stable in Ω when R0 < 1. Similarly, it is verified
that the eigenvalues of J(E1) are −(α+µC), −(βM∗I /KI +µBI) and the roots of the following polynomial

ς3 + a2ς
2 + a1ς + a0, (3.13)

where

a2 = εκM∗U + ηC
∗ + µBE + λC∗ + µMI + ενB∗E + µMU

a1 = (εκM∗U + ηC
∗ + µBE + λC∗ + µMI)(ενB∗E + µMU) − ενM∗UεκB

∗
E

a0 = ενM∗U
[
rµMIενBE − εκB∗E(λC∗ + µMI)

]
= ενM∗U(λC∗ + µMI)(ηC∗ + µBR)

B∗E
MU
.

Since the coefficients of the cubic polynomial (3.13) do not change sign, then from the rule of the signs
of Descartes, it is verified that all its roots have a negative real part. Therefore, the equilibrium E1 is
locally asymptotically stable in Ω. The following theorem summarizes the results of the existence of
equilibria.

Teorem 3.2. If R0 < 1, then E0 defined in (3.7) is locally asymptotically stable in Ω. If R0 > 1, E0 is
unstable, and E1 defined in (3.10) is locally asymptotically stable in Ω.
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4. Sensitivity analysis of parameters and numerical simulations

In the previous section, it was verified that the result of the infection depends on the basic radius of
offspring R0 defined in (3.6). We observe that R0 depends on almost all the parameters of the model.
In this sense, an interesting question is which parameters of the model (2.1) influence the most values
of R0. To answer this question, it is necessary to perform a sensitivity analysis that determines the
uncertainty of the model outputs based on the uncertainty of its inputs.

There are various theoretical and numerical methods to perform this type of analysis. In our case,
we have an initial value problem defined by a system of nonlinear ordinary differential equations whose
inputs are the model parameters and the initial conditions; and also, the behavior of the model outputs
is conditioned by the value of R0. As such, good method to perform the analysis consists of using the
normalized sensitivity index to determine the sensitivity of R0 with respect to each of the parameters
that define it.

Let p be a parameter, and the normalized sensitivity index ΥR0
p is given by the following partial

derivative

ΥR0
p =

p
R0

∂R0

∂p
. (4.1)

From (4.1), we verify that

Υ
R0
ΛC
=

µMUµBE

µMUµBE + (εκα + µMUη) C∗
−

λC∗

λC∗ + µMI

ΥR0
α = 1 +

α

α + µC

[
λC∗

λC∗ + µMI
−
εκ(α + µC)C∗ + µMUµBE

µMUµBE + (εκα + µMUη) C∗

]
ΥR0
µC
= −

µC

α + µC

[
µMUµBE

µMUµBE + (εκα + µMUη) C∗
+

λC∗

λC∗ + µMI

]
ΥR0
ε = 1 −

εκαC∗

µMUµBE + (εκα + µMUη) C∗

ΥR0
ν = 1

ΥR0
µMU

= −
µMUηC∗ + µMUµBE

µMUµBE + (εκα + µMUη) C∗

Υ
R0
λ = −

λC∗

λC∗ + µMI

ΥR0
µMI
= 1 −

µMI

λC∗ + µMI

ΥR0
r = 1

ΥR0
κ = −

εκαC∗

µMUµBE + (εκα + µMUη) C∗

ΥR0
η = −

µMUηC∗

µMUµBE + (εκα + µMUη) C∗

ΥR0
µBE
= −

µMUµBE

µMUµBE + (εκα + µMUη) C∗
. (4.2)

From (4.2) we verify that sensitivity indices are within the ranges presented in Table 1.
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Table 1. Range of normalized sensitivity indices.

Índice Υ
R0
ΛC

Υ
R0
α Υ

R0
µC Υ

R0
ε Υ

R0
ν Υ

R0
µMU Υ

R0
λ Υ

R0
µMI Υ

R0
r Υ

R0
κ Υ

R0
η Υ

R0
µBE

Rango (−1, 1) (−∞, 2) (−2, 0) (0, 1) 1 (−1, 0) (−1.0) (0, 1) 1 (−1, 0) (−1, 0) (−1, 0)

From Table 1 we observe that ΥR0
ΛC
∈ (−1, 1), ΥR0

α ∈ (−∞, 2), ΥR0
µC ∈ (−2, 0), ΥR0

ν = Υ
R0
r = 1,

{Υ
R0
µMU ,Υ

R0
λ ,Υ

R0
κ ,Υ

R0
η ,Υ

R0
µBE } ∈ (−1, 0) and {ΥR0

ε ,Υ
R0
µMI } ∈ (0, 1). The above indicates that the parameters

µC, µMU , λ, κ, η, and µBE have a positive impact on infection control, in the sense that if the value of
any of these parameters increases, then the value of R0 decreases. On the other hand, an increase in
any of the parameters ν, r, µMI o ε leads to an increase in the value of R0.

Due to the form of the expressions that defineΥR0
ΛC

andΥR0
α , it was not possible to determine a smaller

range; however, we can conclude that the parametersΛC, α, and µC can have positive or negative effects
on infection control. Note that, if we do not consider the three previous parameters, the parameters that
most influence the outcome of the infection are r and ν.

Table 2. Parameter ranges.

Parameter Description Values References

ΛC Recruitment rate of innate cells 50–120 cell/h [31]
α Differentiation rate of macrophages 0.02–0.06 h−1 [32]
ε Phagocytosis rate of macrophages 0.1–0.8 [31]
ν Macrophage infection rate 0.2–0.8 [31]
εν Effective macrophage infection rate 0.02–0.64 (h· cell)−1 [31]
r Nnumber of bact. released by necrotic MI 1–50 cell [31]
κ Bacterial elimination rate by macrophages 0.001–0.01 [31]
εκ Effective bacterial killing rate by macrophages 0.0001–0.008 (h· cell)−1 [31]
η Bacterial elimination rate by innate cells 0.003–0.03 (h· cell)−1 [31]
β BI replication rate within MI 0.0032–0.032 h−1 [31]
λ MI elimination rate by innate cells 0.001–0.01 (h· cell)−1 [31]
µC Natural death rate of C 0.0067–0.0083 h−1 [31]
µMU Natural death rate of MU 0.0032–0.0051 h−1 [32]
µMI MI death rate due to necrosis 0.0101–0.0139 h−1 [31]
µBE Natural death rate of BE 0.002–0.02 h−1 [13]
µBI Natural death rate of BI 0.002–0.03 h−1 [13]
KI Carrying capacity of macrophages 10–100 cell [31]

Let us observe that the rate of differentiation of innate cells into macrophages, α, is the parameter
that most influences the outcome of the infection (an increase of 5% in this parameter would generate
an increase in R0 between 5.6% and 7.85%), followed by the parameters ν, r, ΛC, and µMI . It is also
observed that when the phagocytic rate of macrophages has a high impact on the variation of R0, the
rate of bacterial elimination by macrophages has a low impact, and vice versa. The incidence of the
parameters µC and µBE on the variation of R0 is almost zero. Finally, the minimum value of µMU has a
greater impact on the result of the infection than its maximum value.

Mathematical Biosciences and Engineering Volume 22, Issue 3, 511–527.



522

Table 3. Sensitivity indices evaluated at extreme values of the parameters in Table 2.

Index Υ
R0
ΛC

Υ
R0
α Υ

R0
µC Υ

R0
ε Υ

R0
ν Υ

R0
µMU Υ

R0
λ Υ

R0
µMI Υ

R0
r Υ

R0
κ Υ

R0
η Υ

R0
µBE

Minimum −0.99 1.57 −0.24 0.83 1 −0.83 −0.99 0.99 1 −0.17 −0.83 −2.95 × 10−4

Maximum −0.99 1.12 −0.12 0.24 1 −0.24 −0.99 0.99 1 −0.76 −0.24 −9.17 × 10−5

Table 4. Index values.

Índice Υ
R0
ΛC

Υ
R0
α Υ

R0
µC Υ

R0
ε Υ

R0
ν Υ

R0
µMU Υ

R0
λ Υ

R0
µMI Υ

R0
r Υ

R0
κ Υ

R0
η Υ

R0
µBE

Figure 1 −0.89 1.74 −0.11 0.95 1 −0, 95 −0.90 0.90 1 −0.05 −0.94 −7 × 10−3

Figure 2 −0.99 0.89 −0.12 0.01 1 −0, 01 −0.99 0.99 1 −0.99 −0.01 −1.2 × 10−4

Figures 1 and 2 were made with data from Table 2 and show graphs of the temporal behavior of
the cell population. In Figure 1, it can be seen that in the first 10 hours, a large number of innate
cells differentiate into macrophages, almost quintupling their initial population, all with the purpose of
counteracting the spread of the infection. However, their response was insufficient because both the
population of bacteria and infected macrophages increased considerably.

In contrast, in Figure 2, it can be seen that the initial population of macrophages declines very
rapidly, and, although at the beginning the populations of external bacteria and infected macrophages
grow rapidly, after 2 hours these decrease to less than 10 bacteria and 10 infected macrophages. Table
4 shows the values of sensitivity indices for the simulations presented in Figures 1 and 2.

It is important to highlight that although in Figure 1 it can be seen that at the beginning the
population of uninfected macrophages grows, and in Figure 2 this population decreases from the
beginning, the sensitivity analysis reveals that the innate immune response of uninfected macrophages
was better in the second simulation. Indeed, the magnitude of ΥR0

κ was larger in the second simulation,
indicating that more bacteria were eliminated in the second simulation than in the first one.

In a similar way, indicating that more uninfected macrophages were killed in the first simulation
than in the second one (Figure 2), and decreased steadily in the first simulation (Figure 1). Since the
magnitude of ΥR0

η was larger in the first simulation and the magnitude of ΥR0
α was smaller in the second

simulation, parameter analysis suggests that its incidence was significantly higher in the first one.
The infection and replication rates have a high impact on the outcome of the infection, but they

have the same incidence in both cases. Although the recruitment of bone marrow cells is low in the
first simulation and high in the second one, the level of incidence on the outcome of the infection is
similar in both cases. The incidence level of both the death rate of innate cells that do not differentiate
into infected macrophages as well as the death rate of external cells did not have a significant impact
on bacterial progression.

5. Discussion

Microbiological processes at any level, and in particular at the cellular level, are extremely complex
and require contributions from different areas of knowledge to advance in their understanding. Our
model is a very simple approximation to the interaction dynamics of innate cells (divided between
macrophages and the rest of the innate cells without specifying) and Mycobacterium tuberculosis, at
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Figure 1. Initial conditions (500, 50, 0, 50, 0). Values of the parameters: ΛC = 5, α =
0.05, ε = 0.01, ν = 0.6, r = 50, κ = 0.001, η = 0.003, β = 0.032, λ = 0.001, µC =

0.0067, µMU = 0.0032, µMI = 0.0101, µBE = 0.002, µBI = 0.03, KI = 50.
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Figure 2. Initial conditions (500, 50, 0, 50, 0). Values of the parameters: ΛC = 120, α =
0.06, ε = 0.8, ν = 0.8, r = 50, κ = 0.01, η = 0.001, β = 0.032, λ = 0.01, µC =

0.0083, µMU = 0.0051, µMI = 0.0556, µBE = 0.02, µBI = 0.03, KI = 50.
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the beginning of the Mtb infection.
Qualitative analysis reveals a forward bifurcation in which the infection-free equilibrium E0 loses

its stability when R0 = 1 and emerges a stable coexistence equilibrium E1. Note that the progression
of the infection will depend on a condition very similar to that used in epidemiology for the spread of
an infectious disease in a population of host individuals. The key quantity is the basic offspring
proportion R0 defined in (3.6), which is interpreted as the number of secondary infections arising from
a macrophage during its lifetime when all other innate cells are not infected. The fact that R0 depends
on all the parameters of the model except for three parameters associated with internal bacteria
dynamics suggests that both macrophages and the rest of innate cells must perform their effector
functions appropriately to counteract Mtb pathogenesis. It was verified that the parameters associated
with macrophages immunopathology (ε, ν, r, κ, µMU , µMI and α) significantly impact the interaction
dynamics. The results above corroborates that macrophages play a fundamental role in the control or
dissemination of the bacillus, during the first stage of infection. In addition, the analysis provides new
insights that suggest focusing our attention on the rest of the innate cells that participate in the
activation of the innate immune response against TB, since the parameters associated with these cells
ΛC, α, µC, λ, and η are as relevant as those of the macrophages in the variation of R0.

The parameter α represents the differentiation rate of cells produced by the bone marrow into mature
macrophages capable of performing their effector functions against any pathogen, in particular against
Mtb. In reality, this parameter is an oversimplification homeostasis, a process with many unknown
aspects at the biological level, but that begins with the production of stem cells in the bone marrow
and involves the transition to other cells (such as the differentiation of promonocytic cells into mature
monocytes); this process in turn includes self-regulation mechanisms, among other factors. Note that
this parameter is associated with responses from macrophages and other innate cells. With the largest
range among all the sensitivity indices (−∞, 2), the results suggest that it can contribute to either
reducing or increasing bacterial progression. Indeed, if ΥR0

α ∈ (−∞, 0) contributes to reducing the
value of R0, which will decrease the number of secondary infections. On the other hand, if ΥR0

α ∈

(0, 2) increases secondary infections. Under the set of parameters used to perform the simulations in
Figures 1 and 2, positive sensitivity indices were obtained for α. As a consequence, for both cases, the
differentiation rate contributed to the progression of the infection. By carrying out a similar procedure,
it is verified that the recruitment rate of innate cells ΛC can contribute to the decrease or increase of
infection. In fact, in the numerical simulations of Figures 1 and 2, it positively affects the control of
infection.

At the experimental level, there is a large body of literature supporting the theoretical results
obtained here, which highlight that Mtb infection can be eliminated by the innate immune system
before an adaptive immune response is initiated; this innate protection requires a variety of robust
cell-autonomous responses from many different types of host immune cells [6].

For centuries, TB research has focused on the role of adaptive immunity in TB, leaving aside
innate immunity. However, advances in recent decades have shown that the innate immune response
determines the outcome of the infection. In this sense, scientific and academic production on the
innate immunology of TB has increased, and generated new perspectives. However, there are still
many gaps. In this article, we have formulated and analyzed a model whose results corroborate the
importance of the innate response of macrophages in TB, and also suggest that other innate cells are
also very important during primary infection.
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Universidad de Nariño. M. Victoria Otero-Espinar is partially supported by the Ministerio de Ciencia
e Innovación, Agencia Estatal de Investigación (Spain), Grant PID2020-115155GB-I00 and the
Consellerı́a de Educación, Universidade e Formación Profesional (Xunta de Galicia), Grant ED431C
2023/31 with FEDER funds.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. Global tuberculosis report 2023, World Health Organization, 2023. Available from:
https://www.who.int/publications/i/item/9789240083851

2. D. D. Chaplin, Overview of the immune response, J. Allergy Clin. Immunol., 125 (2010), S3–S23.
https://doi.org/10.1016/j.jaci.2009.12.980

3. P. Sankar, B. B. Mishra, Early innate cell interactions with Mycobacterium tuberculosis
in protection and pathology of tuberculosis, Front. Immunol., 14 (2023), 1–21.
https://doi.org/10.3389/fimmu.2023.1260859
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