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Abstract: In this paper, we propose a novel mathematical model for indirectly transmitted typhoid
fever disease that incorporates the use of modern and traditional medicines as modes of treatment.
Theoretically, we provide two Lyapunov functions to prove the global asymptotic stability of the disease-
free equilibrium (DFE) and the endemic equilibrium (EE) when the basic reproduction number (R0) is
less than one and greater than one, respectively. The model is calibrated using the number of cumulative
cases reported in the Penka-Michel health district in Cameroon. The parameter estimates thus obtained
give a value of R0 = 1.2058 > 1,which indicates that the disease is endemic in the region. The forecast
of the outbreak up to November 2026 suggests that the number of cases will be 21,270, which calls for
urgent attention on this endemic disease. A sensitivity analysis with respect to the basic reproduction
number is conducted, and the main parameters that impact the widespread of the disease are determined.
The analysis highlights that the environmental transmission rate β and the decay rate µb of the bacteria
in the environment are the most influential parameters for R0. This underscores the urgent need for
potable water and adequate sanitation within this area to reduce the spread of the disease. Numerically,
we illustrate the usefulness of recourse to any mode of treatment to lessen the number of infected cases
and the necessity of switching from modern treatment to the traditional treatment, a useful adjuvant
therapy. Conversely, we show that the relapse phenomenon increases the burden of the disease. Hence
adopting a synergistic therapy approach will significantly mitigate typhoid disease cases and overcome
the cycle of poverty within the afflicted communities.
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1. Introduction

Typhoid fever (TF) is one of the most common infectious diseases in South Asia and Sub-Saharan
Africa, with over 9 million cases per year [1,2]. It is caused by the bacterium Salmonella typhi, which is
usually spread through contaminated food or water. Persons with typhoid fever carry the bacteria in their
bloodstream and intestinal tract. The development of the disease follows three phases: the incubation
phase, the invasion phase (acute), and the chronic phase. The incubation period varies between 7 and 21
days [3]. The acute phase is characterized by the gradual onset of fever, headaches, dizziness, insomnia,
epistaxis, and sometimes constipation [4]. In the chronic phase, the infected may have encephalitis
or inflammation of the brain, dehydration, weakness, abdominal hemorrhage due to severe intestinal
perforations, and other serious complications that may lead to death [2].

In Sub-Saharan Africa, it is estimated that more than 80% of the population use medicinal plants
as their main source of treatment [5, 6]. Antibiotics have been the primary therapy for typhoid fever
and also the cornerstone of modern medicine. However, the increased resistance of some bacteria to
antibiotics may be one of the reasons why patients seek traditional treatment. One principal reason
typhoid fever patients may prefer traditional medicine over modern medicine is the nonexistence of
modern healthcare facilities, especially in rural areas. In areas where these facilities exist, the antibiotics
are expensive, as the patients are mainly low-income earners. In contrast, traditional medicine is
relatively cheap and readily available. The effectiveness of traditional medicine is recognized in several
countries and has made important contributions to modern medicine [5, 7]. A report in [8] says, WHO
has supported clinical trials, leading 14 countries to issue marketing authorization for 89 traditional
medicine products that met international and national requirements for registration. It is important to
note that since the 1980s, traditional medicine has been benefitting from such authorizations [9, 10].

Sometimes, some of the patients taking antibiotics experience a relapse of typhoid fever after an
initial recovery. Relapse is the return of a disease or the signs and symptoms of a disease after a period
of improvement or treatment. This phenomenon may be due to incomplete treatment or from antibiotics
resistance due to the abuse of prescribed antibiotics. The re-emergence of a disease may either be due
to relapse or reinfection. Reinfection occurs when a patient after; treatment becomes infected again,
meanwhile, relapse is the recurrence of the same infection. Relapse dynamics models account for the
possibility that individuals who have been treated for typhoid fever may have a reactivation of the same
Salmonella typhi bacteria.

Models incorporating treatment relapse are particularly important concerning TF. Many mathematical
models have been developed to study the spread of typhoid fever [11–19]. The authors of [13], proposed a
human-to-human (direct) and environment-to-human (indirect) transmission model, in which susceptible
individuals get infected with Salmonella typhi at a rate proportional to the susceptible population and the
environmental bacteria concentration at a constant rate. They proved that sanitation, vaccination, and
treatment of symptomatic and asymptomatic infected individuals are efficient measures, to reduce the
severity of the disease. Considering the latter control measures, [12] presented a model to investigate the
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outcome of the disease in Mbandjock, a town in Cameroon. Through calibration, they obtained a control
reproduction number of 2.4750, meaning that TF was endemic in that region. Similar to [13], the authors
of [18] proposed a model with both direct and indirect transmissions, but also considered in addition the
influence of vaccination. Through a sensitivity analysis, they found that the proportion of susceptible
unvaccinated immigrants had a high impact on the infected populations. Thus, people entering the town
were to be checked, to ensure they were vaccinated against TF. In [11], a non-autonomous model was
proposed accounting for temporal variations and it was shown that the human-to-human infection rate
had a significant impact on the reproduction number, while the environment-to-human infection rate
and the bacteria shedding rate had an effect on long-cycle infections.

Mushayabasa [14], proposed an S E I Ic Q R compartmental model, with the susceptible individuals
(S ), exposed individuals (E), symptomatic infected individuals (I), chronic enteric carriers (Ic), quaran-
tined symptomatic persons and chronic enteric carriers (Q), and recovered individuals (R). He assumed
that the population reduced due to natural death (µ) and the acquired infection rate (λ) expressed as
a function of I and Ic. The disease-free equilibrium was shown to be globally asymptotically stable
whenever the reproductive number was less than unity. The transmission of the disease was through
human contact only and he concluded that in the event of an outbreak of typhoid in the community
the disease can be effectively controlled if optimal intervention strategies are implemented. In [19], a
mathematical model that explored the dynamics of typhoid fever transmission with particular focus
on the impact of treatment relapse is presented. The study formulated a deterministic mathematical
model to analyze both direct and indirect transmission modes of typhoid infection. The findings reveal
that limited efficacy of antibiotics and relapse response significantly influence the spread of typhoid
infection.

Despite the avalanche of studies on the dynamics of TF, there is little literature on the role of
traditional medicine in the treatment of TF. There are some studies on typhoid fever-treating herbs [7],
which demonstrated that extracts from these plants have an inhibiting impact on Salmonella typhi.
Herbal medicine is a feature and at times synonymous with African traditional medicine. The role of
traditional medicine in the treatment of COVID-19 has been discussed in [16]. The results prescribed
the combination of modern medicine with traditional medicine instead of one medicine as a stand-alone
treatment. The mathematical model in the study did not consider possible relapse. However, the
COVID-19 virus and Salmonella typhi are diseases with different modes of transmission and hence their
models are dissimilar.

To the best of our knowledge, no typhoid fever model that incorporates modern treatment and
traditional treatment has been proposed in literature so far. This paper contributes to the existing literature
by proposing a novel mathematical deterministic model that incorporates these modes of treatment
and treatment relapse due to resistance to antibiotics. The structure of the model model described and
formulated in Section 2, to an extent, is a modified version of Mushayabasa’s in [14]. Essentially, we
have replaced the quarantine compartment (Q) with two compartments for treatment modes (modern
and traditional). In addition, we assume that the bacterial infection is indirect (environment-to-human).
Together with real data, we study and make predictions about the future dynamics of the disease in the
locality of Penka-Michel in Cameroon. We theoretically analyze our model and use the fminsearchbnd
and ode45 functions in MATLAB for calibration and numerical simulations, respectively.

The rest of the paper is organised as follows. In Section 2, the main assumptions of the model are
presented with a detailed description of the model. Section 3 presents the quantitative and qualitative
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analysis of the model. In Section 4, we calibrate and validate the model. Section 5 deals with the
sensitivity analysis and numerical simulations. The conclusion of the paper is provided in Section 6.

2. Model formulation

2.1. Main assumptions and variables

In this study, the following assumptions are made for our model. These assumptions are crucial in
determining the effectiveness and tractability of the model.

Assumption 1. Infected individuals can choose either modern or traditional treatment. However,
individuals under modern treatment can switch to traditional therapy. This assumption is motivated by
the resistance of Salmonella to some modern treatment protocols [20].

Assumption 2. Although human-to-human transmission of typhoid is possible, it is less probable [21].
Therefore, only indirect means of transmission are considered, i.e., transmission through contaminated
food, poor sanitation and unsafe drinking water.

Assumption 3. Individuals in the chronic phase of the disease can get serious complications like
internal bleeding and encephalitis (brain inflammation) [22]. We assume that this category of patients
will choose modern treatment only.

Assumption 4. It is known that after recovering from typhoid fever, individuals do develop some level of
immunity. Recovery cases develop antibodies and remain immune against the disease for at least three
years [23]. Thus, for simplicity, we assume that the recovered individuals enjoy permanent immunity.

Assumption 5. We consider a possible relapse of typhoid fever for individuals receiving modern
treatment only. In our case, a relapse occurs when patients taking antibiotics fall back to the acute
infection stage, after a period of improvement.

Assumption 6. The shedding rate of individuals under treatment is negligible. That is, we have
well-informed patients who are taking all the precautionary measures to avoid spreading the disease.

Assumption 7. Under treatment, the mortality rate due to typhoid is less than 1% [24]. We consider
this value negligible and ignore the mortality rate for patients receiving any of the treatments.

Assumption 8. The individuals in each group have an equal natural death rate.

The epidemiological model we develop in this study has eight compartments for the transmission
dynamics of the disease. We denote by N(t) the human population at time t, which has been divided
into mutually exclusive compartments as follows:

• S := S (t): Susceptible individuals.
• E := E(t): Exposed individuals. This refers to the individuals infected with Salmonella but in a

latent period.
• Ia := Ia(t): Infected individuals in the acute phase of the disease.
• Ic := Ic(t): Infected individuals in the chronic phase of the infection. The symptoms of these

individuals develop very slowly, so the disease persists for a long time in their bodies.
• Mm := Mm(t): Individuals under modern treatment.
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• Mt := Mt(t): Individuals under traditional treatment.
• R := R(t): Recovered individuals.
• B := B(t): The concentration of Salmonella bacteria in the environment.

N(t) = S (t) + E(t) + Ia(t) + Ic(t) + Mm(t) + Mt(t) + R(t), is the total human population at time t.

2.2. The model equations

In this section, we derive the necessary equations for the construction of our mathematical model
while also defining the inherent variables.

The susceptible individuals are recruited at a constant number π, through birth or immigration. The
susceptible population diminishes either due to natural death at the rate µ, or due to Salmonella bacteria
infection. We assume that the infection pressure λ, the rate at which susceptible individuals acquire
the infection after their exposure to the disease, is given by the Holling Type II functional response
(see [21]). That is

λ =
βB

(B + kb)
,

where β is the ingestion rate (that is, the product of the contact rate between individuals and the environ-
ment, and the percentage of Salmonella successfully ingested). The quantity kb is the concentration of
bacteria in what is being consumed which gives 50% chance of getting infected. The fraction B/(B+ kb),
measures the probability of individuals getting infected through contaminated food or water. It is clear
that λ is an increasing function of the concentration of Salmonella (B) and when B is large enough
(B≫ kb), λ saturates at the constant value β. If B≪ kb, λ will grow linearly with B. Thus, the dynamic
equation of the susceptible compartment is depicted by:

dS
dt
= π − (λ + µ)S (2.1)

Individuals in the exposed compartment exit this class either through death due to natural causes at
the rate µ, or enter the acute infection compartment at the rate α. This leads to the dynamic equation of
compartment E as:

dE
dt
= λS − (µ + α)E. (2.2)

The acute infected compartment (Ia) is increased by movements of individuals from the exposed
group at the rate α, or from the modern treatment class as a result of treatment failure (antibiotics
resistance), at the rate θm. Individuals leaving compartment (Ia) enters either compartment (Mm) at the
rate γam, the chronic infection stage (Ic) at the rate κ, the traditional medicine treatment class (Mt) at the
rate γat, or these infected individuals die due to the disease at the rate δa or die due to natural causes at
the rate µ. The dynamic equation of Ia is given by:

dIa

dt
= αE + θmMm − (µ + γam + γat + κ + δa)Ia. (2.3)

The infected individuals in the chronic stage compartment are replenished by the κIa individuals who
left compartment Ia. The number of individuals in Ic is reduced by choosing the modern treatment, at
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the rate ωcm, by natural mortality or by disease-induced mortality, at the rate δc. In compartment Ic, the
dynamic equation is:

dIc

dt
= κIa − (µ + δc + ωcm)Ic. (2.4)

Table 1. Model parameters and their epidemiological interpretations.

Parameter Epidemiological interpretation Unit
π Constant recruitment of susceptible individuals ind.week−1

β Ingestion rate of Salmonella week−1

µ Natural death rate of individuals week−1

1/α Incubation period of infected individuals week−1

γam Treatment rate for individuals in Ia who choose modern medicine week−1

ωcm Treatment rate for individuals in Ic who choose modern medicine week−1

γat Treatment rate for individuals in Ia who choose traditional medicine week−1

κ Exit rate from the acute to chronic infection stage week−1

δa Disease-induced mortality rate in compartment Ia week−1

δc Disease-induced mortality rate in compartment Ic week−1

θm Relapse rate of infected individuals treated by modern medicine
to acute infection stage week−1

σm Recovery rate of the infected individuals in compartment Mm week−1

σt Recovery rate of the infected individuals in compartment Mt week−1

ψmt Switching rate of individuals from modern to traditional medicine week−1

ηa Shedding rate of Salmonella in the environment
by individuals in Ia sal.ind.−1.week−1

ηc Shedding rate of Salmonella in the environment
by individuals in Ic sal.ind.−1.week−1

kb Concentration of Salmonella bacteria in food or water which gives
a 50% of chance of getting infection cell/ml

r Environmental growth rate of Salmonella week−1

µb Decay rate of Salmonella in the environment week−1

The acute infected individuals move into the traditional treatment compartment at the rate γat , while
those receiving modern treatment switch to this compartment at the rate ψmt . The population of Mt

decreases either by recovery at a rate σt, or by natural mortality at a rate µ. The dynamic equation of Mt

is thus given as:
dMt

dt
= γatIa + ψmtMm − (µ + σt)Mt. (2.5)

Compartment Mm is supplied by compartment Ia and Ic at the rates γam and ωcm, respectively. This
population Mm decreases in four different ways: Switching to traditional treatment at a rate ψmt, having
a relapse at the rate θm, recovering at a rate σm, and death due to natural mortality at the rate µ. This
leads to the following dynamic equation of Mm:

dMm

dt
= γamIa + ωcmIc − (µ + θm + σm + ψmt)Mm.
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Patients in compartments Mm and Mt die due natural causes at the rate µ and recover at the rates σm

and σt, respectively. This population decreases by natural mortality. The dynamic equation of R is:

dR
dt
= σtMt + σmMm − µR,

We assume that Salmonella bacteria have a natural growth rate r in the environment. Infected
individuals in the compartments Ia and Ic shed bacteria in the environment at the rates ηa and ηc,
respectively. The bacterial decay rate in the environment is µb. Thus, the dynamic equation of the
concentration of bacteria is given as:

dB
dt
= rB + ηaIa + ηcIc − µbB.

Table 1 presents the descriptions of all the parameters of interest in our model. The Flow diagram
of the model is given in Figure 1. Putting all the equations together give System (2.6) of non-linear
differential equations, which is the main model of this paper.

dS
dt

= π − (λ + µ)S ,

dE
dt

= λS − (µ + α)E,

dIa

dt
= αE + θmMm − (µ + γam + γat + κ + δa)Ia,

dIc

dt
= κIa − (µ + δc + ωcm)Ic,

dMm

dt
= γamIa + ωcmIc − (µ + θm + σm + ψmt)Mm,

dMt

dt
= γatIa + ψmtMm − (µ + σt)Mt,

dR
dt

= σtMt + σmMm − µR,

dB
dt

= rB + ηaIa + ηcIc − µbB,

(2.6)

subject to the initial conditions

S (0) = S 0, E(0) = E0, Ia(0) = Ia0 , Ic = Ic0 , Mt(0) = Mt0 , Mt(0) = Mt0 , R(0) = R0, B(0) = B0.

For mathematical convenience, we set

k1 = µ + α, k2 = µ + γam + γat + κ + δa, k3 = µ + δc + ωcm, k4 = µ + θm + σm + ψmt,

k5 = µ + σt, k6 = µb − r, k7 = µ + γat + δa, k8 = µ + δc, k9 = µ + σm + ψmt.

k10 = (k3k4k2 − k3γamθm − ωcmκ θm)
= k8θmκ + k8θmk7 + k8k9γam + k8k9κ + k8k9k7 + ωcmθmk7 + ωcmk9γam + ωcmk9κ + ωcmk9k7.

Throughout this paper, we assume µb > r in order for k6 to be positive. The biological significance
of this assumption is that without shedding of Salmonella typhi in the environment, the concentration of
the bacteria will decrease exponentially [25].
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Figure 1. Flow diagram of model.

3. Theoretical analysis of the model

3.1. Well-posedness of the model

Model (2.6) is about a human population and a bacterial population. It is important to check if this
model has a solution and if the variables remain positive for a positive initial condition. This is ensured
by the following result.

Theorem 3.1. Model (2.6) is a dynamic system on the biologically feasible compact domain:

Ω =

{
(S , E, Ia, Ic,Mm,Mt,R, B) ∈ R8

+, N(t) ≤
π

µ
, B(t) ≤

π(ηa + ηc)
k6µ

}
. (3.1)

Proof. According to Cauchy-Lipschitz theorem, Model (2.6) has a unique local solution as its right-hand
side is locally Lipschitz.

To show that S (t) ≥ 0 for all t ≥ 0, we rewrite the first equation of (2.6) as follows:

dS
dt

[
S (t) exp

(∫ t

0
λ(s)ds + µt

)]
= π exp

(∫ t

0
λ(s)ds + µt

)
.

Integrating the above equation from 0 to t gives

S (t) exp
(∫ t

0
λ(s)ds + µt

)
− S (0) =

∫ t

0

{
π exp

(∫ p

0
λ(s)ds + µp

)}
dp.
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This leads to

S (t) =
[
S (0) +

∫ t

0

{
π exp

(∫ p

0
λ(s)ds + µp

)}
dp

]
exp

(
−µt −

∫ t

0
λ(s)ds

)
≥ 0.

Thus, if S (0) > 0, then S (t) > 0, for all t ≥ 0.
To show that E(t), Ia(t), Ic(t), Mm(t), Mt(t), B(t) and R(t) are positive when E(0) ≥ 0, Ia(0) ≥

0, Ic(0) ≥ 0, Mm(0) ≥ 0, Mt(0) ≥ 0, R(0) ≥ 0, B(0) ≥ 0, we consider the following sub-system

dE
dt

= λS − k1E,

dIa

dt
= αE + θmMm − k2Ia,

dIc

dt
= κIa − k3Ic,

dMm

dt
= γamIa + ωcmIc − k4Mm,

dMt

dt
= γatIa + ψmtMm − k5Mt,

dR
dt

= σtMt + σmMm − µR,

dB
dt

= ηaIa + ηcIc − k6B.

(3.2)

This can be rewritten as
dX
dt
= AX(t), (3.3)

where

X =



E
Ia

Ic

Mm

Mt

R
B


and A =



−k1 0 0 0 0 0
βS

B + kb
0 −k2 0 θm 0 0 0
0 κ −k3 0 0 0 0
0 γam ωcm −k4 0 0 0
0 γat 0 ψmt −k5 0 0
0 0 0 σm σt −µ 0
0 ηa ηc 0 0 0 −k6


Clearly, A is a Metzler matrix. Hence System (3.2) is positively invariant in R7

+.

Furthermore, by adding the first seven equations of System (2.6), we have:

dN(t)
dt
= π − µN − δaIa − δcIc ≤ π − µN. (3.4)

The application of Gronwall’s inequality gives

N(t) ≤
π

µ
+

(
N(0) −

π

µ

)
exp(−µt), ∀t ≥ 0.

Thus,
if N(0) ≤

π

µ
, then for all t ≥ 0, N(t) ≤

π

µ
.
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Finally, under the hypothesis that N(0) ≤ π/µ and knowing that Ia ≤ N, Ic ≤ N, Mm ≤ N, and
Mt ≤ N, the application of Gronwall’s inequality once more leads to

B(t) ≤
π(ηa + ηc)

k6µ
∀t ≥ 0, whenever B(0) ≤

π(ηa + ηc)
k6µ

∀t ≥ 0.

Using the fact that the solutions of (2.6) are bounded on R+8 , we then conclude that with a non-negative
initial condition, the solution of System (2.6) remains non-negative and exists globally over time.

3.2. Disease-free equilibrium and its stability

The unique DFE of System (2.6) is given by:

P0 =
(
S 0, 0, 0, 0, 0, 0, 0, 0

)
, with S 0 =

π

µ
. (3.5)

We use the next-generation matrix approach [26, 27], to compute R0. According to [27], the vector of
the new infections F and that of the remaining transfer termsV are respectively given by:

F =



λS
0
0
0
0
0


and V =



k1E
−αE − θmMm + k2Ia

−κIa + k3Ic

−γamIa − ωcmIc + k4Mm

−γatIa − ψmtMm + k5Mt

−ηaIa − ηcIc + k6B


The next-generation matrix FV−1, where F and V are the Jacobian matrices of F andV at the DFE,

respectively, is given by:

FV−1 =



β πα k4 (ηak3 + ηcκ)
µ kbk10k1k6

A12 A13 A14 0 A16

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

where the expressions for A12, A13, A14 and A16 are given in Appendix A.
Hence

R0 := ρ(FV−1) =
β πα k4 (ηak3 + ηcκ)

µ kbk10k1k6
. (3.6)

The relevance of the reproduction number R0 is established in the following result [27].

Lemma 3.1. The DFE P0 of System (2.6) is locally asymptotically stable (LAS) if R0 < 1 and it is
unstable if R0 > 1.

According to Lemma 3.1, the disease dies out when if R0 < 1 provided that the initial population
sizes are in the basin of attraction of the DFE. For the global control of the disease, the global asymptotic
stability needs to be proven.
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Theorem 3.2. Assume R0 < 1, then the DFE point P0 of Model (2.6) is globally asymptotically stable
(GAS) in Ω.

Proof. Let us consider the candidate Lyapunov function

V =
α k4(ηak3 + ηcκ)

k10k1k6
E +

k4(ηak3 + ηcκ)
k10k6

Ia +
k12

k10k6
Ic +

θm(ηak3 + ηcκ)
k10k6

Mm +
1
k6

B , (3.7)

where

k12 = ηcγam(µ + σm + ψmt) + ηcθm(µ + γat + κ + δa) + ωcmθmηa.

Differentiating V on both sides gives

dV
dt
=
α k4(ηak3 + ηcκ)

k10k1k6

dE
dt
+

k4(ηak3 + ηcκ)
k10k6

dIa

dt

+
k12

k10k6

dIc

dt
+
θm(ηak3 + ηcκ)

k10k6

dMm

dt
+

1
k6

dB
dt

(3.8)

That is,

dV
dt
=

α k4(ηak3 + ηcκ)
k10k1k6

(λS − k1E) +
k4(ηak3 + ηcκ)

k10k6
(αE + θmMm − k2Ia) (3.9)

+
k12

k10k6
(κIa − k3Ic) +

θm k4(ηak3 + ηcκ)
k10k1k6

(γamIa + ωcmIc − k4Mm) +
1
k6

(ηaIa + ηc − k6B)

=
k4(ηak3 + ηcκ)

k10k6

(
−α(µ + α)

k1
+ α

)
E +

(ηak3 + ηcκ)
k10k6

(k4θm − k4θm) Mm

+
1

k6k10
{−k2k4(ηak3 + ηcκ) + k12κ + (ηak3 + ηcκ)θmγam + k10ηa} Ia

+
1

k6k10
{−k12k3 + (ηak3 + ηcκ)ωcmθm + k10ηc} Ic +

αk4(ηak3 + ηcκ)
k10k1k6

λS − B

=
αk4(ηak3 + ηcκ)

k10k1k6
λS − B. (3.10)

The resulting equation is due to the fact that

1
k6k10

{−k2k4(ηak3 + ηcκ) + k12κ + (ηak3 + ηcκ)θmγam + k10ηa} = 0,

and
1

k6k10
{−k12k3 + (ηak3 + ηcκ)ωcmθm + k10ηc} = 0.

Following (3.6), Equation (3.9) becomes

dV
dt
=

(
R0kb

µ

βπ

)
λS − B =

(
R0kb

µ

βπ

)
βB

B + kb
S − B (3.11)
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Since S ≤ N ≤
π

µ
= S 0, and

1
B + kb

≤
1
kb

, we have:

dV
dt
≤ −B(1 − R0)

Thus, whenever R0 < 1, we have dV/dt ≤ 0, and V is a strict Lyapunov function in Ω. Hence, the
disease-free equilibrium P0 is globally asymptotically stable.

Figure 2 illustrates the GAS of the DFE for Model (2.6) when R0 < 1.
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Figure 2. GAS of the DFE. This figure is plotted with θm = 0.00067 and β = 0.0025. The
other parameters are as shown in Table 2. The value of R0 = 0.6318.

3.3. Interior equilibrium of the model and its stability

Theorem 3.3. Model (2.6) has a unique positive equilibrium if and only if R0 > 1.

Proof. Let us denote by ε∗ = (S ∗, E∗, I∗a, I
∗
c ,M

∗
m,M

∗
t ,R

∗, B∗) a nontrivial equilibrium for Model (2.6).
Setting the right-hand side of Model (2.6) to zero gives:

S ∗ =
π

λ∗ + µ
, E∗ =

λ∗ π

k1 (λ∗ + µ)
, I∗a =

k3k4αλ
∗ π

k10k1 (λ∗ + µ)
, I∗c =

k4κ α λ
∗ π

k10k1 (λ∗ + µ)
,

M∗m =
αλ∗ π (γamk3 + ωcmκ)

k10k1 (λ∗ + µ)
, M∗t =

(γatk3k4 + ψmtγamk3 + ψmtωcmκ)αλ∗ π
k5k10k1 (λ∗ + µ)

,

R∗ =
αλ∗ π (γatk3k4σt + ψmtσtγamk3 + ψmtσtωcmκ + k5σmγamk3 + k5σmωcmκ)

µ k5k10k1 (λ∗ + µ)
,

B∗ =
(ηak3 + ηcκ) k4αλ

∗ π

k6k10k1 (λ∗ + µ)
,

(3.12)
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with
λ∗ =

βB∗

B∗ + kb
(3.13)

Substituting the expressions in (3.12) in Eq (3.13) gives

λ∗
[
(k4απ ηak3 + k4απ ηcκ + kbk6k10k1)λ∗ − kbk6k10k1µ (R0 − 1)

]
= 0. (3.14)

That is
λ∗ =

kbk6k10k1µ (R0 − 1)
k4απ ηak3 + k4απ ηcκ + kbk6k10k1

. (3.15)

Hence, when R0 ≤ 1, the unique equilibrium is the DFE, while when R0 > 1, the DFE P0 coexists with
the unique endemic equilibrium ε∗.

We study the local stability of ε∗ in Theorem 3.4.

Theorem 3.4. System (2.6) has a trans-critical bifurcation at R0 = 1, which is the bifurcation parameter.
Moreover, the unique endemic equilibrium ε∗ is LAS when R0 > 1.

Proof. Let us consider the case where R0 = 1, and choose β = β∗ as a bifurcation parameter.

R0 = 1⇔ β∗ =
k1kbk6k10

απk4 (κηc + k3ηa)
.

The Jacobian matrix of System (2.6) at the DFE is given as,

Jβ∗ =



−µ 0 0 0 0 0 0 −g1

0 −k1 0 0 0 0 0 g1

0 α −k2 0 θm 0 0 0
0 0 k −k3 0 0 0 0
0 0 γam ωcm −k4 0 0 0
0 0 γat 0 ψmt −k5 0 0
0 0 0 0 σm σt −µ 0
0 0 ηa ηc 0 0 0 −k6


System (2.6), with β = β∗ has a nonhyperbolic equilibrium point. The other eigenvalues

have negative real parts. Therefore, the center manifold theory [28] can be applied to analyze
the dynamics of System (2.6) near the bifurcation parameter β∗. The components of a right
eigenvector w = (w1,w2,w3,w4,w5,w6,w7,w8)T of Jβ∗ and a non-negative left-eigenvector v =
(v1, v2, v3, v4, v5, v6, v7, v8)T of Jβ∗ associated with the zero eigenvalue are, respectively, given as

w1 = −
g1

µ
w8 < 0, w2 =

g1g5

k1
> 0, w3 =

k3

k
w4 > 0, w4 > 0

w5 = g2w4 > 0, w6 = g3w4 > 0, w7 = g4w4 > 0, w8 = g5w4 > 0,

with g2 =
γamk3

κk4
+
ωcm

k4
g3 =

γatk3

k5κ
+
ψmtγamk3

k5k4κ
+
ψmtωcm

k5k4

g1 =
πβ∗

µkb
g4 =

(σmg2 + σtg3)
µ

, g5 =
ηak3

κk6
+
ηc

k6
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and 
v1 = v6 = v7 = 0, v2 =

α

k1
v3 > 0, v3 > 0,

v4 =

(
ωcmθm

k3k4
+
ηcg1α

k1k3k6

)
v3 > 0, v5 =

θmv3

k4
> 0, v8 =

g1α

k1k6
v3 > 0.

The coefficients a and b as defined in [28] are:

b = v2

8∑
i=1

wi
∂2 f2

∂xi ∂ β∗
(p0) =

v2ω8π

µkb
=

v2

(
ηak3

κk6
+
ηc

k6

)
ω4π

µkb
> 0,

and

a =

8∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(P0)

= −2v2
ω2

8β
∗π

k2
bµ

2
(1 + 2µ) = −2v2

(
ηak3

κk6
+
ηc

k6

)2

β∗π

k2
bµ

2
(1 + 2µ)ω4 < 0 (3.16)

Since a < 0 and b > 0, the model has a trans-critical bifurcation at R0 = 1 and the endemic
equilibrium is LAS for R0 > 1, but close to 1 [28].

Figure 3 illustrates the forward bifurcation for Model (2.6).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

    R
0
 

In
fe
ct
io
n
fo
rc
e
λ
∗

 

 

Stable EE

Stable DFE

 Unstable DFE

Figure 3. The forward bifurcation curve for the model system in (2.6) in the (R0, λ
∗) plane.

Theorem 3.4 proves the persistence of the disease when R0 > 1, for values close to 1. To determine
the asymptotic behavior of the model for higher values of R0, the global asymptotic stability of ε∗ has to
be proven. This is stated in Theorem 3.5.

Theorem 3.5. The endemic equilibrium ε∗ for Model 2.6 is GAS provided that R0 > 1.
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Proof. See Appendix B.

Figure 4 illustrates the persistence of typhoid and the global asymptotic stability of ε∗ when R0 > 1
for trajectory plot when using the values of Table 2 and R0 > 1. From this figure, we can observe that the
infected individuals and bacteria are always present in the population. This means that the trajectories
converge to the endemic equilibrium point. Thus, whenever R0 > 1, the disease persists in the host
population as established in Theorem 3.3.
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Figure 4. GAS of the EE. This figure is plotted with θm = 0.097. The other parameter values
are as in Table 2. The value of R0 = 1.8.

4. Model calibration and sensitivity analysis

4.1. Model calibration
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(a) Model fit on the cumulative number of cases per week
between 30 December 2019 and 1 January 2023
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(b) Model validation and prediction on the dynamics of
typhoid disease for the period up to November 2026

Figure 5. Model fit and calibration on the dynamics of typhoid fever disease in Penka-Michel.

Mathematical Biosciences and Engineering Volume 22, Issue 2, 477–510.



492

In this section, we fitted our model to the weekly cumulative reported cases of TF in the Penka-Michel
health district in Cameroon from 30 December 2019 to 1 January 2023 (157 weeks). The number of
infected cases during the first week was 48. We used the following initial conditions for the human
population: S (0) = 120,000, E(0) = 0, Ia(0) = 10, and Ic(0) = 20, Mm(0) = 10, Mt(0) = 8, R(0) = 0.
The value B(0) = 7371 was obtained by calibration as a parameter.

According to [29], the life expectancy in Cameroon is 54.4 years. Therefore, the estimated value for
µ is 0.000353 per week. For simplicity, an estimate for π is π = S 0 × µ = 42.36. The data were fitted
using the nonlinear least squares algorithm implemented by the fminsearcbnd function in MATLAB.
Plots of the model’s fit and calibration are shown in Figure 5.

Table 2. Parameter value estimates.

Parameter Range Values Source
κ [0.1 , 1] 0.7 [14]
δc [0.1 , 0.7] 0.462 [14]
δa [0.01 , 0.04] 0.028 [14]
r [0.07 , 0.126] 0.098 [30]
kb [49,900 , 55,000] 50.000 [21]
µb [0.1 , 0.7] 0.2415 [30]
σm [0.01 , 0.03] 0.0174 [31]
α [0 , 1] 0.7 [14]
ηa [10 , 25] 20 Assumed
ηc [10 , 25] 20 Assumed
µ [0.0001 , 0.0005] 0.000353 Calculated
π [20 , 50] 42.36 Calculated
β [0.001 , 0.005] 0.004 Fitted
θm [0.001 , 0.008] 0.0067 Fitted
γat [0 , 3] 0.630 Fitted
γam [0.1 , 4] 1.456 Fitted
ωcm [0 , 3] 0.167 Fitted
ψmt [0.01 , 0.05] 0.037 Fitted
σt [0 , 1] 0.098 Fitted
B(0) – 7371.15787 Fitted
R0 – 1.2058 Estimated

Figure 5a presents model fit to the cumulative cases of diagnosed typhoid fever, while Figure 5b
shows the model’s validation and prediction on future cases based on our model. The fitted parameters
as well as those obtained from literature are presented in Table 2. The results in Figure 5a, show that
our model is a very good fit for the typhoid disease dynamics in Penka-Michel. To validate our model,
in Figure 5a, we plot the curve from 2 January 2023 to 5 November 2023 (from Week 158 to Week 201).
The model gives an estimate of 12,950 cases of typhoid at the end of Week 201. We observe that this
number is quite close to the 12,873 reported cases at that same period. Hence, the model can be used for
predictions on the disease trend in the district. Extrapolation of the trend curve up to 6 November 2026
(Week 358), predicts a total number of 21,270 cases of typhoid before the end of 2026. This knowledge,
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together with a basic reproduction number R0 = 1.2058 > 1, calls for the urgent need to put control
measures in place to overcome the present trend of the disease. However, a knowledge on the most
influential parameters in the model is crucial for an effective control strategy.

4.2. Sensitivity analysis

Sensitivity analysis has almost becoming an integral part of mathematical modeling. In infectious
disease modeling, it is the technique commonly used to determine which parameters have a significant
effect on the spread of an infectious disease. We have shown that R0 verifies the sharp threshold property,
and hence, the control of the disease lies in the control of R0. We performed global sensitivity analysis
on R0 to identify its most influential parameters. The sensitivity analysis actually assesses the weight
and type of change on the basic reproduction number when the model parameters vary across the entire
range of values as shown in Table 2. We used the Latin hypercube sampling (LHS) technique to run
2500 simulations and we compute thr partial rank correlation coefficients (PRCC) between R0 and each
parameter of Model (2.6). Usually, parameters with high PRCC absolute values (> 0.5 or < -0.5) and
with small p-values (< 0.05) are considered most influential on R0 [32].
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Figure 6. Partial correlation coefficients showing the effects of parameter variation on R0

using the parameter values in Table 2.

The PRCC computed values are displayed in Figure 6. This figure shows that µb, γam and β are
the most influential parameters in either decreasing or increasing the value of R0. The analysis shows
that shedding rate of Salmonella typhi in the environment increases the burden of the disease. The
modern medicine parameter is seen to be crucial in decreasing the value of R0. Other parameters that
significantly reduce R0 whenever they increase are µ and δc. Finally, though γat and ψmt are not among
the most influential parameters, the results point out that taking either of the treatments or switching
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from modern treatment to traditional therapy will decrease the disease burden. This highlights the
important role traditional medicine should play in the control of typhoid fever.

Using PRCC and scatterplots together provides a robust way to understand and visualize the relation-
ships (monotonicity) between the model’s parameters and outputs. A monotonic relationship means that
the output consistently increases or decreases as the parameter changes. PRCC measures the strength
and direction of the monotonic relationship between a model parameter and the model output while
controlling for other parameters. Figure 7 depicts scatterplots for each parameter against the model
output R0. The plots show the monotonicity between each parameter of our model and R0.
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Figure 7. Scatterplots of PRCC values for each model parameter versus R0.
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5. Numerical simulations

In this section, we provide some simulations to illustrate how a change in the parameters influences
the model’s dynamics. Most of the parameters used are presented in Table 2. In Figure 8, we explore the
impact of relapse over time by considering varying values of θm: θm = 0.2; θm = 0.4, and θm = 0.6. It is
seen that as the value of θm increases, typhoid cases also increase. This is an indication that resistance to
modern treatment leads to a relapse into the disease stage.
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(a) Evolution over time of acute infected patients for
varying relapse rates
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(b) Evolution over time of chronic infected patients
for varying relapse rates
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(c) Evolution over time of patients undergoing mod-
ern medicine for varying relapse rates
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(d) Evolution over time of patients undergoing tradi-
tional medicine for varying relapse rates
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varying relapse rates
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Figure 8. Influence of relapse on the model variables.
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for varying switching rates
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Figure 9. Importance of switching from modern to traditional treatment.
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One way of avoiding the relapse of TF is to switch from modern treatment to traditional therapy.
Figure 9, gives a picture of the dynamics as infected individuals receiving modern treatment switch to
traditional treatment at the rates ψmt = 0.2; ψmt = 0.4, and ψmt = 0.6. The output shows that over time,
there is a decrease in the number of cases as the rate of movement from the modern treatment class
to the traditional medicine compartment increases. This is a pointer to the positive impact traditional
medicine has on lessening the burden of the typhoid fever disease.
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the varying treatment rates (γam)
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medicine for the varying treatment rates (γam)
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(f) Evolution over time of cumulative infected cases
for the varying treatment rates (γam)
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(h) Evolution over time of chronic infected patients
for the varying treatment rates (γat)
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(i) Evolution over time patients receiving modern
medicine for the varying treatment rates (γat)
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(j) Evolution over time patients receiving traditional
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(k) Evolution over time of bacterial concentration for
the varying treatment rates (γat)
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Figure 10. Importance of taking treatment against typhoid fever.
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Though it is recommended to switch from modern treatment to traditional treatment, it is imperative
to at least receive some treatment, be it modern or traditional. Figure 10 presents different scenarios that
emphasize the importance of taking treatment against typhoid fever. The different subfigures (10a–10f)
affirm that receiving any of the two modes of treatment will cause a decrease in the number of cases.

In Figure 11, we investigate the impact of Salmonella bacteria shedding in the environment. It is seen
that when the concentration of the bacteria increases in the environment, the number of cases increases
as well. This calls for the necessity of adopting measures to prevent the spread of the disease, such as
good sanitation habits, eating safe food and drinking potable water.

The key parameters in our model by virtue of their influence and importance are: γam, γat, µb and
ωcm. Studying the effect of these parameters on the basic reproduction number (R0) is crucial in order to
understand the disease dynamics. In our context, this will help in either choosing a particular mode
of treatment or adopting a synergistic therapy approach in the treatment of typhoid fever. Figure 12
presents the effect of each of these parameters on R0, when all other parameter values are as shown in
Table 2 . The parameters γam and γat measure the rate at which individuals in the acute stage of disease
choose the modern medicine and traditional medicine, respectively. Meanwhile ωcm measures the rate
at which patients in the chronic stage of typhoid choose modern treatment, and µb is the decay rate of
the bacteria in the environment. Figure 12a shows that γam = 2.07 (30% relative error) is the minimum
value for R0 < 1. With this value, R0 = 0.9967 < 1, which means the disease will be under control.
Figure 12b gives a minimum value of γat = 2.49 (36.38% relative error). The corresponding value of
the basic reproduction number is R0 = 0.9904 < 1. Figure 12c focuses on the effect of concentration of
bacterium Salmonella typhi in the environment. The value of µb should be µb = 0.44 (45.5% relative
error), and this gives R0 = 0.9914 < 1. Interestingly, unlike the other three, the output in Figure 12d,
indicates that there is no value of ωcm for which R0 < 1. This tells us that with the choice of modern
medicine alone, the disease will prevail. It is therefore obvious that symptoms of the disease will not
disappear for chronically sick patients receiving modern treatment only. There is a need to explore other
means through which the disease can be controlled.
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Figure 11. Influence of Salmonella typhi shedding.
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Contour plots make it easy for us to simultaneously compare how different conditions on the
influential and important parameters affect R0. We use contour plots to display the change of R0 in the
2-dimensional space parameter (ωcm, γat), (ωcm, µb), (γam, and γat), respectively. These plots help to in
determining joint parameters values that produce a value of R0 < 1. The contour plots are given in Figure
13. Figure 13a depicts the correlation between the rate at which patients in the chronic stage of typhoid
choose modern treatment and the rate at which infected persons in the acute phase choose traditional
medicine and their effect on the reproduction number. It is seen that R0 < 1, if (ωcm ≥ 1.0, γat ≥ 1.1).
This is an indication that neither modern medicine alone nor traditional medicine alone can eradicate
the disease. Figure 13b shows the correlation between the rate at which patients in the chronic stage of
typhoid choose modern treatment and the decay rate of the bacteria in the environment and their effect
on R0. The output demonstrates that to maintain R0 < 1, it is important to maintain the shedding rate
of Salmonella typhi bacteria within the interval [0.17, 0.32] and ensure that the rate at which patients
choose modern treatment should be above 1.3767. Similarly, Figure 13c reveals that, it is important
that the rate at which infected individuals choose modern medicine is above 2.8371, while the rate at
which infected persons opt for traditional medicine must be at least 2.1786, in order for R0 to be less
than unity. In summary, the plots emphasize the necessity to associate traditional medicine with modern
medicine in the treatment of typhoid fever.
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Figure 12. Plots of R0 versus some influential and important parameters when all other
parameter values are as given in Table 2.

Mathematical Biosciences and Engineering Volume 22, Issue 2, 477–510.



499

(a) Contour plot showing how R0 depends on γat and ωcm

(b) Contour plot showing how R0 depends on µb and ωcm

(c) Contour plot showing how R0 depends on γat and γam

Figure 13. Effects of two selected influential and important parameters on R0 with all other
parameter values given as in Table 2.
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6. Conclusions

Typhoid fever has remained a major public health concern in Cameroon, especially in communities
where there are inadequate preventive measures against the spread of the disease such as, good sanitation
habits, eating safe food, and drinking potable water. Resistance of the disease to antibiotics is worrisome.
Mathematical models that will improve our understanding suggest that new combination therapies and
good practices that culminate in tackling and reducing the disease burden are important. In this paper,
we have proposed a typhoid fever mathematical model that takes into account the evolution of the
disease from the incubation phase to the invasion (acute) and chronic phases. The key novelty of the
proposed model is the inclusion of modern and traditional treatment components. This is done to assess
the impacts of both modes of treatment on the Salmonella typhi bacteria. Theoretical analysis of the
model was performed. We have proved that the basic reproduction number R0 is a sharp threshold that
ensures the global asymptotic stability of the DFE when its value is less than one and endemicity of the
disease otherwise. Thus, for efficient control of the disease, one has to reduce R0 to below one.

We calibrated the model using weekly reported cumulative cases of typhoid fever in the Penka-
Michel health district in Cameroon from 30 November 2019 to 1 January 2023. The model provides
a good fit for data, and this means the predictions will be more reliable and accurate over time. The
model was validated using weekly cumulative cases from 2 January 2023 to 5 November 2023. It
is common knowledge that a well-calibrated model will have an R0 value that closely matches the
observed transmission dynamics of a disease. We obtained R0 = 1.2058, which is an indication that
the disease would persist if the necessary control measures are not put in place. In addition, the model
predicts that by the end of 2026, more than 21,270 reported cases will be registered. Numerical results
suggest that a reduction in the number of cases will be achieved if patients are advised to at least receive
some treatment (modern or traditional) and eventually to switch from modern to traditional treatment if
symptoms persist. Conversely, we have found that relapses due to antibiotics resistance will increase the
level of the disease.

The results from the proposed model imply that integrating traditional medicine into conventional
medicine will be effective in the treatment of typhoid fever and prevent antibiotics resistance. Traditional
medicine is a useful adjuvant therapy for patients who choose modern medicine. Moreover, it is common
practice in Cameroon that many typhoid patients, after receiving antibiotics, continue their treatment at
home with traditional medicine. Hence, adopting a synergistic therapy approach in the treatment of
typhoid fever will significantly mitigate typhoid disease cases.

In future research, the proposed model can be extended to include the optimal control of vaccination
with relapse and reinfection.
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Appendix

Appendix A Next–generation matrix coefficients

The coefficients of the next-generation matrix are given as follows:
A11 =

β πα k4 (ηak3 + ηcκ)
µ kbk10k1k6

, A12 =
β π k4 (ηak3 + ηcκ)

µ kbk10k1k6
,

A13 =
β π (k2k4ηc − γatθmγam + θmωcmηa)

µ kbk10k1k6
, A14 =

β π θm k4 (ηak3 + ηcκ)
µ kbk10k6

, A16 =
βπ

µkbk6

Appendix B Proof of Theorem 3.5

Let us consider the Volterra candidate Lyapunov function,

Z =

(
S − S ∗ − S ∗ ln

S
S ∗

)
+

(
E − E∗ − E∗ ln

E
E∗

)
+ a1

(
Ia − I∗a − I∗a ln

Ia

I∗a

)
+ a2

(
Ic − I∗c − I∗c ln

Ic

I∗c

)
+ a3

(
Mm − M∗m − M∗m ln

Mm

M∗m

)
+ a4

(
Mt − M∗t − M∗t ln

Mt

M∗t

)
+ a5

(
B − B∗ − B∗ ln

B
B∗

)
(B.1)

where ai, i = 1, · · · , 5 are positive numbers to be determined. We use the following function H(c) =
1 − c + ln(c), which is negative when c > 0, and is equal to zero for c = 1. The time derivative of Z
along the trajectories of System (2.6) yields

dZ
dt
=

(
1 −

S ∗

S

)
dS
dt
+

(
1 −

E∗

E

)
dE
dt
+ a1

(
1 −

I∗a
Ia

)
dIa

dt
+ a2

(
1 −

I∗c
Ic

)
dIc

dt

+ a3

(
1 −

M∗m
Mm

)
dMm

dt
+ a4

(
1 −

M∗t
Mt

)
dMt

dt
+ a5

(
1 −

B∗

B

)
dB
dt

(B.2)
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The following relations can be shown from (2.6):
π = λ∗S ∗ + µS ∗; k1 =

λ∗S ∗

E∗
; k2 =

α

I∗a
E∗ +

θm

I∗a
M∗m; k3 =

κI∗a
I∗c

;

k4 =
γam

M∗m
I∗a +

ωcm

M∗m
I∗c ; k5 =

γat

M∗t
I∗a +

ψmt

M∗t
M∗m; k6 =

ηa

B∗
I∗a +

ηc

B∗
I∗c .

(B.3)

Let us denote λS = f (B, S ), i.e., λ∗S ∗ = f (B∗, S ∗). To prove the global asymptotic stability of the
endemic equilibrium, we use the following inequality.

Let F = 2 −
E
E∗
−

S
S ∗
−

E∗

E
f (B, S )

f (B∗, S ∗)
+

S ∗

S
f (B, S )

f (B∗, S ∗)
. Then

F = H
( S
S ∗

)
− ln

( S
S ∗

)
+ H

(
E∗

E
f (B, S )

f (B∗, S ∗)

)
− ln

(
E∗

E
f (B, S )

f (B∗, S ∗)

)
−

E
E∗
+

B
B∗
+ H

(
B
B∗

S
S ∗

f (B∗, S ∗)
f (B, S )

)
− ln

B
B∗

S
S ∗

f (B∗, S ∗)
f (B, S )

+

(
1 −

BS
B∗S ∗

f (B∗, S ∗)
f (B, S )

) (
S ∗ f (B, S )
S f (B∗S ∗)

− 1
)

≤
B
B∗
−

E
E∗
− ln

(
E∗

E
f (B, S )

f (B∗, S ∗)

)
− ln

(
B
B∗

S
S ∗

f (B∗, S ∗)
f (B, S )

)
(B.4)

As

(
1 −

BS
B∗S ∗

f (B∗, S ∗)
f (B, S )

) (
S ∗ f (B, S )
S f (B∗S ∗)

− 1
)
=

1 −
B + kb

B∗ + kb

B(B∗ + kb)
B∗ (B + kb)

− 1
=

B∗ − B
B∗ + kb

kb (B − B∗)
B∗ (B + kb)

=
−kb (B − B∗)2

B∗ (B∗ + kb) (B + kb)
≤ 0. (B.5)

one has,

2 −
E
E∗
−

S
S ∗
−

E∗

E
f (B, S )

f (B∗, S ∗)
+

S ∗

S
f (B, S )

f (B∗, S ∗)
⩽

B
B∗
−

E
E∗
− ln

(
E∗

E
f (B, S )

f (B∗, S ∗)

)
− ln

(
B
B∗

S
S ∗

f (B∗, S ∗)
f (B, S )

)
≤

B
B∗
−

E
E∗
− ln

E∗

E
− ln

f (B, S )
f (B∗, S ∗)

− ln
B
B∗

− ln
S
S ∗
+ ln

f (B, S )
f (B∗S ∗)

≤
B
B∗
− ln

B
B∗
−

E
E∗
+ ln

E
E∗

(B.6)

1 +
Mm

M∗m
−

Ia

I∗a
−

MmI∗a
I∗a Mm

=
Mm

M∗m
− 1 −

Mm

M∗m
+ 2 +

Mm

M∗m
−

Ia

I∗a
−

M∗mMm

MmM∗m
−

I∗a Mm

IaM∗m

=

(
Mm

M∗m
− 1

) (
1 −

MmM∗m
M∗mMm

)
+

Mm

M∗m
−

Ia

I∗a
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+ H
(

M∗mMm

MmM∗m

)
− ln

M∗mMm

MmM∗m
+ H

(
I∗a Mm

IaM∗m

)
− ln

I∗a Mm

IaM∗m

≤
Mm

M∗m
− 1 + 1 −

Ia

I∗a
− ln

(
I∗a
Ia

Mm

M∗m

)
=

Mm

M∗m
− ln

Mm

M∗m
−

Ia

I∗a
+ ln

Ia

I∗a
(B.7)

1 +
E
E∗
−

Ia

I∗a
−

EI∗a
I∗aE

=
E
E∗
− 1 −

E
E∗
+ 2 +

E
E∗
−

Ia

I∗a
−

E∗E
EE∗

−
I∗aE
IaE∗

=

( E
E∗
− 1

) (
1 −

EE∗

E∗E

)
+

E
E∗
−

Ia

I∗a
+ H

(
E∗E
EE∗

)
− ln

E∗E
EE∗

+ H
(

I∗aE
IaE∗

)
− ln

I∗aE
IaE∗

≤
E
E∗
− 1 + 1 −

Ia

I∗a
− ln

(
I∗a
Ia

E
E∗

)
=

E
E∗
− ln

E
E∗
−

Ia

I∗a
+ ln

Ia

I∗a
(B.8)

1 +
Ia

I∗a
−

Ic

I∗c
−

IaI∗c
I∗aIc

=
Ia

I∗a
− 1 −

Ia

I∗a
+ 2 +

Ia

I∗a
−

Ic

I∗c
−

I∗aIa

IaI∗a
−

I∗c Ia

IcI∗a

=

(
Ia

I∗a
− 1

) (
1 −

IaI∗a
I∗aIa

)
+

Ia

I∗a
−

Ic

I∗c
+ H

(
I∗aIa

IaI∗a

)
− ln

I∗aIa

IaI∗a
+ H

(
I∗c Ia

IcI∗a

)
− ln

I∗c Ia

IcI∗a

≤
Ia

I∗a
− 1 + 1 −

Ic

I∗c
− ln

(
I∗c
Ic

Ia

I∗a

)
=

Ia

I∗a
− ln

Ia

I∗a
−

Ic

I∗c
+ ln

Ic

I∗c
(B.9)

1 +
Ia

I∗a
−

Mm

M∗m
−

IaM∗m
I∗a Mm

=
Ia

I∗a
− 1 −

Ia

I∗a
+ 2 +

Ia

I∗a
−

Mm

M∗m
−

I∗aIa

IaI∗a
−

M∗mIa

MmI∗a

=

(
Ia

I∗a
− 1

) (
1 −

IaI∗a
I∗aIa

)
+

Ia

I∗a
−

Mm

M∗m
+ H

(
I∗aIa

IaI∗a

)
− ln

I∗aIa

IaI∗a
+ H

(
M∗mIa

MmI∗a

)
− ln

M∗mIa

MmI∗a

≤
Ia

I∗a
− 1 + 1 −

Mm

M∗m
− ln

(
M∗m
Mm

Ia

I∗a

)
=

Ia

I∗a
− ln

Ia

I∗a
−

Mm

M∗m
+ ln

Mm

M∗m
(B.10)

1 +
Ic

I∗c
−

Mm

M∗m
−

IcM∗m
I∗c Mm

=
Ic

I∗c
− 1 −

Ic

I∗c
+ 2 +

Ic

I∗c
−

Mm

M∗m
−

I∗c Ic

IcI∗c
−

M∗mIc

MmI∗c

=

(
Ic

I∗c
− 1

) (
1 −

IcI∗c
I∗c Ic

)
+

Ic

I∗c
−

Mm

M∗m
+ H

(
I∗c Ic

IcI∗c

)
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− ln
I∗c Ic

IcI∗c
+ H

(
M∗mIc

MmI∗c

)
− ln

M∗mIc

MmI∗c

≤
Ic

I∗c
− 1 + 1 −

Mm

M∗m
− ln

(
M∗m
Mm

Ic

I∗c

)
=

Ic

I∗c
− ln

Ic

I∗c
−

Mm

M∗m
+ ln

Mm

M∗m
(B.11)

1 +
Mm

M∗m
−

Mt

M∗t
−

MmM∗t
M∗t Mm

=
Mm

M∗m
− 1 −

Mm

M∗m
+ 2 +

Mm

M∗m
−

Mt

M∗t
−

M∗mMm

MmM∗m
−

M∗t Mm

MtM∗m

=

(
Mm

M∗m
− 1

) (
1 −

MmM∗m
M∗mMm

)
+

Mm

M∗m
−

Mt

M∗t
+ H

(
M∗mMm

MmM∗m

)
− ln

M∗mMm

MmM∗m
+ H

(
M∗t Mm

MtM∗m

)
− ln

M∗t Mm

MtM∗m

≤
Mm

M∗m
− 1 + 1 −

Mt

M∗t
− ln

(
M∗t
Mt

Mm

M∗m

)
=

Mm

M∗m
− ln

Mm

M∗m
−

Mt

M∗t
+ ln

Mt

M∗t
(B.12)

1 +
Ia

I∗a
−

B
B∗
−

IaB∗

I∗a B
=

Ia

I∗a
− 1 −

Ia

I∗a
+ 2 +

Ia

I∗a
−

B
B∗
−

I∗aIa

IaI∗a
−

B∗Ia

BI∗a

=

(
Ia

I∗a
− 1

) (
1 −

IaI∗a
I∗aIa

)
+

Ia

I∗a
−

B
B∗
+ H

(
I∗aIa

IaI∗a

)
− ln

I∗aIa

IaI∗a
+ H

(
B∗Ia

BI∗a

)
− ln

B∗Ia

BI∗a

≤
Ia

I∗a
− 1 + 1 −

B
B∗
− ln

(
B∗

B
Ia

I∗a

)
=

Ia

I∗a
− ln

Ia

I∗a
−

B
B∗
+ ln

B
B∗

1 +
Ic

I∗c
−

B
B∗
−

IcB∗

I∗c B
=

Ic

I∗c
− 1 −

Ic

I∗c
+ 2 +

Ic

I∗c
−

B
B∗
−

I∗c Ic

IcI∗c
−

B∗Ic

BI∗c

=

(
Ic

I∗c
− 1

) (
1 −

IcI∗c
I∗c Ic

)
+

Ic

I∗c
−

B
B∗
+ H

(
I∗c Ic

IcI∗c

)
− ln

I∗c Ic

IcI∗c
+ H

(
B∗Ic

BI∗c

)
− ln

B∗Ic

BI∗c

≤
Ic

I∗c
− 1 + 1 −

B
B∗
− ln

(
B∗

B
Ic

I∗c

)
=

Ic

I∗c
− ln

Ic

I∗c
−

B
B∗
+ ln

B
B∗

(B.13)

Substituting Eq (B.3) into Eq (B.2) leads to (B.14).

dZ
dt
=

(
1 −

S ∗

S

)
( f (B∗, S ∗) + µS ∗ − f (B, S ) − µS ) +

(
1 −

E∗

E

) (
f (B, S ) −

E
E∗

f (B∗, S ∗)
)

+a1

(
1 −

I∗a
Ia

) (
αE + θmMm − (

α

I∗a
E∗ +

θm

I∗a
M∗m)Ia

)
+ a2

(
1 −

I∗c
Ic

) (
κIa −

κI∗a
I∗c

Ic

)
+a3

(
1 −

M∗m
Mm

) (
γamIa + ωcmIc −

γamI∗a Mm

M∗n
− ωcmI∗c

Mm

M∗m

)
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+a4

(
1 −

M∗t
Mt

) (
γatIa + ψmtMm − γat

I∗a Mt

M∗t
−
ψmtM∗mMt

M∗t

)
+a5

(
1 −

B∗

B

) (
ηaIa + ηcIc −

ηa

B∗
I∗a B −

ηc

B∗
I∗c B

)
,

= −µ
(s − s∗)2

S
+ f (B∗, S ∗) − f (B, S ) − f (B∗, S ∗)

S ∗

S
+ f (B, S )

S ∗

S
+ f (B∗, S ∗)

− f (B, S )
E∗

E
− f (B∗, S ∗)

E
E∗
+ f (B, S ) + a1

{
αE − αE∗

I∗a
Ia
− αE

I∗a
I∗a
+ αE∗

}
+a1

{
θmMm − θmM∗m

Ia

I∗a
− θmMm

I∗a
Ia
+ θmM∗m

}
+ a2

{
κIa − κIa

I∗c
Ic
− a2κI∗a − κI∗a

Ic

I∗c
+ kI∗a

}
+a3

{
γamI∗a − γamIa

M∗m
Mm
+ γamIa − γamIa

M∗m
Mm

}
+ a3

{
ωcmI∗c − ωcmIc

M∗m
Mm
− ωcmI∗c

Mm

M∗m
+ ωcmIc

}
+a4

{
γatI∗a − γatIa

M∗t
Mt
− γatI∗a

Mt

M∗t
+ γatIa

}
+ a4

{
ψmtMm − ψmtMm

Mt

M∗t
− ψmtMm

M∗t
Mt
+ ψmtM∗m

}
+a5

{
ηaIa − ηaI∗a

B
B∗
− ηaIa

B
B∗
+ ηaI∗a

}
+ a5

{
ηcIc − ηcI∗c

B
B∗
− ηcIc

B∗

B
+ ηcI∗c

}
≤ f (B∗, S ∗)

{
2 −

E
E∗
−

S ∗

S
−

f (B, S )
f (B∗, S ∗)

E∗

E
+

f (B, S )
f (B∗, S ∗)

S ∗

S

}
+ a1αE∗

(
E
E∗
−

Ia

I∗a
−

EI∗a
E∗Ia

+ 1
)

+a1θmM∗m

(
Mm

M∗m
−

Ia

I∗a
−

MmI∗a
I∗a Mm

+ 1
)
+ a2κI∗a

(
Ia

I∗a
−

Ic

I∗c
−

IaI∗c
I∗aIc
+ 1

)
+a3γamI∗a

(
Ia

I∗a
−

Mm

M∗m
−

IaM∗m
I∗a Mm

+ 1
)

+a3ωcmI∗c

(
Ic

I∗c
−

Mm

M∗m
−

IcM∗m
I∗c Mm

+ 1
)
+ a4γatI∗a

(
Ia

I∗a
−

Mt

M∗t
−

IaM∗t
I∗a Mt

+ 1
)

+a4ψmtM∗m

(
Mm

M∗m
−

Mt

M∗t
−

MmM∗t
M∗mMt

+ 1
)

a5ηaI∗a

{
Ia

I∗a
−

B
B∗
−

IaB∗

I∗a B
+ 1

}
+a5ηcI∗c

{
Ic

I∗c
−

B
B∗
−

IcB∗

I∗c B
+ 1

}
(B.14)

According to (B.6), we have

dZ
dt
≤ f (B∗, S ∗)

{
B
B∗
− ln

B
B∗
−

E
E∗
+ ln

E∗

E

}
+a1αE∗

{
E
E∗
− ln

E
E∗
− 1 −

Ia

I∗a
+ ln

Ia

I∗a
+ 1 −

EI∗a
E∗Ia

+ ln
EI∗a
E∗Ia

+ 1
}

+a1θmM∗m

{
Mm

M∗m
− ln

Mm

M∗m
− 1 −

Ia

I∗a
+ ln

Ia

I∗a
+ 1 −

MmI∗a
M∗mIa

+ ln
MmI∗a
M∗mIa

+ 1
}

+a2κI∗a

{
Ia

I∗a
− ln

Ia

I∗a
− 1 −

Ic

I∗c
+ ln

Ic

I∗c
+ 1 −

IaI∗c
I∗aIc
+ ln

IaI∗c
I∗aIc
+ 1

}
+a3γamI∗a

{
Ia

I∗a
− ln

Ia

I∗a
− 1 −

Mm

M∗m
+ ln

Mm

M∗m
+ 1 −

IaM∗m
I∗a Mm

+ ln
IaM∗m
I∗a Mm

+ 1
}
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+a3ωcmI∗c

{
Ic

I∗c
− ln

Ic

I∗c
− 1 −

Mm

M∗m
+ ln

Mm

M∗m
+ 1 −

IcM∗m
I∗c Mm

+ ln
IcM∗m
I∗c Mm

+ 1
}

+a4γatI∗a

{
Ia

I∗a
− ln

Ia

I∗a
− 1 −

Mt

M∗t
+ ln

Mt

M∗t
+ 1 −

IaM∗t
I∗a Mt

+ ln
IaM∗t
I∗a Mt

+ 1
}

+a4ψmtM∗m

{
Mm

M∗m
− ln

Mm

M∗m
− 1 −

Mt

M∗t
+ ln

Mt

M∗t
+ 1 −

MmM∗t
M∗mMt

+ ln
MmM∗t
M∗mMt

+ 1
}

+a5ηaI∗a

{
Ia

I∗a
− ln

Ia

I∗a
− 1 −

B
B∗
+ ln

B
B∗
+ 1 −

IaB∗

I∗a B
+ ln

IaB∗

I∗a B
+ 1

}
+a5ηcI∗c

{
Ic

I∗c
− ln

Ic

I∗c
− 1 −

B
B∗
+ ln

B
B∗
+ 1 −

IcB∗

I∗c B
+ ln

IcB∗

I∗c B
+ 1

}
Now using Eqs (B.7) to (B.13), we have

dZ
dt
≤ f (B∗S ∗)

{ B
B∗
− ln

B
B∗
−

E
E∗
+ ln

E
E∗

}
+ a1αE∗

(
E
E∗
− ln

E
E∗
−

Ia

I∗a
+ ln

Ia

I∗a

)
+a1θmM∗m

(
Mm

M∗m
− ln

Mm

M∗m
−

Ia

I∗a
+ ln

Ia

I∗a

)
+ a2κI∗a

(
Ia

I∗a
− ln

Ia

I∗a
−

Ic

I∗c
+ ln

Ic

I∗c

)
+a3γamI∗a

(
Ia

I∗a
− ln

Ia

I∗a
−

Mm

M∗m
+ ln

Mm

M∗m

)
+ a3ωcmI∗c

(
Ic

I∗c
− ln

Ic

I∗c
−

Mm

M∗m
+ ln

Mm

M∗m

)
+a4γatI∗a

{
Ia

I∗a
− ln

Ia

I∗a
−

Mt

M∗t
+ ln

Mt

M∗t

}
+ a4ψmtM∗m

{
Mm

M∗m
− ln

Mm

M∗m
−

Mt

M∗t
+ ln

Mt

M∗t

}
+a5ηaI∗a

{
Ia

I∗a
− ln

Ia

I∗a
−

B
B∗
+ ln

B
B∗

}
+ a5ηcI∗c

{
Ic

I∗c
− ln

Ic

I∗c
−

B
B∗
+ ln

B
B∗

}
(B.15)

Let l(x, x∗) :=
x
x∗
− ln

x
x∗
≥ 1 > 0 for x > 0, and x∗ > 0. Therefore,

dZ
dt
= f (B∗, S ∗) {l(B, B∗) − l(E, E∗)} + a1αE∗

{
l(E, E∗) − l(Ia, I∗a)

}
+ a1θmM∗m

{
l(Mm,M∗m) − l(Ia, I∗a)

}
+a2κI∗a

{
l(Ia, I∗a) − l(Ic, I∗c )

}
+ a3γamI∗a

{
l(Ia, I∗a) − l(Mm,M∗m)

}
+a3ωcmI∗c

{
l(Ic, I∗c ) − l(Mm,M∗m)

}
+ a4γatI∗a

{
l(Ia, I∗a) − l(Mt,M∗t )

}
+a4ψmtM∗m

{
l(Mm,M∗m) − l(Mt,M∗t )

}
+ a5ηaI∗a

{
l(Ia, I∗a) − l(B, B∗)

}
+ a5ηcI∗c

{
l(Ic, I∗c ) − l(B, B∗)

}
=

{
f (B∗, S ∗) − a5ηaI∗a − a5ηcI∗c

}
l(B, B∗) + {− f (B∗, S ∗) + a1αE∗} l(E, E∗)

+
{
a2κI∗a + a3γamI∗a + a4γatI∗a + a5ηaI∗a − a1αE∗ − a1θmM∗m

}
l(Ia, I∗a) (B.16)

+
{
a3ωcmI∗c + a5ηcI∗c − a2κI∗a

}
l(Ic, I∗c )

+
{
a1θmM∗m − a3

(
γamI∗a + ωcmI∗c

)
+ a4ψmtM∗m

}
l(Mm,M∗m) −

{
a4γatI∗a + a4ψmtM∗m

}
l(Mt,M∗t )

Using the fact that −
{
a4γatI∗a + a4ψmtM∗m

}
l(Mt,M∗t ) = −k5M∗t l(Mt,M∗t ) < 0, we get

dZ
dt
≤

{
f (B∗, S ∗) − a5ηaI∗a − a5ηcI∗c

}
l(B, B∗) + {− f (B∗, S ∗) + a1αE∗} l(E, E∗)

+
{
a2κI∗a + a3γamI∗a + a4γatI∗a + a5ηaI∗a − a1αE∗ − a1θmM∗m

}
l(Ia, I∗a)
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+
{
a3ωcmI∗c + a5ηcI∗c − a2κI∗a

}
l(Ic, I∗c )

+
{
a1θmM∗m − a3

(
γamI∗a + ωcmI∗c

)
+ a4ψmtM∗m

}
l(Mm,M∗m)

=
[
f (B∗, S ∗) − a5ηaI∗a − a5ηcI∗c

]
l(B, B∗) +

[
− f (B∗, S ∗) + a1αE∗

]
l(E, E∗)

+
[
a2κI∗a + a3γamI∗a + a4γatI∗a + a5ηaI∗a − a1αE∗ − a1θmM∗m

]
l(Ia, I∗a) (B.17)

+
[
a3ωcmI∗c + a5ηcI∗c − a2κI∗a

]
l(Ic, I∗c )

+
[
a1θmM∗m − a3

(
γamI∗a + ωcmI∗c

)
+ a4ψmtM∗m

]
l(Mm,M∗m)

We choose ai such that the expressions in the square brackets vanish. That is, ai are solutions of the
system

f (B∗, S ∗) − a5ηaI∗a − a5ηcI∗c = 0 (B.18)
− f (B∗, S ∗) + a1αE∗ = 0 (B.19)

a2κI∗a + a3γamI∗a + a4γatI∗a + a5ηaI∗a − a1αE∗ − a1θmM∗m = 0 (B.20)
a3ωcmI∗c + a5ηcI∗c − a2κI∗a = 0 (B.21)

a1θmM∗m − a3
(
γamI∗a + ωcmI∗c

)
+ a4ψmtM∗m = 0 (B.22)

Then by (B.18) and (B.19), we have:
a5 =

f (B∗, S ∗)
ηaI∗a + ηcI∗c

=
f (B∗, S ∗)

k6B∗
=

k1E∗

k6B∗

a1 =
f (B∗, S ∗)
αE∗

=
k1

α

Equation (B.22) leads to

f (B∗, S ∗)
αE∗

θm + a4ψmtM∗m = a3
(
γamI∗a + ωcmI∗c

)
.

Consequently,

a3 =
f (B∗, S ∗)θmM∗m + a4αE∗ψmtM∗m

αE∗
(
γamI∗a + ωcmI∗c

) =
k1θm + αa4ψmt

αk4
(B.23)

Let us consider (B.20) and (B.21). Here a2 and a5 verify the system

a2κI∗a + a5ηaI∗a = a1
(
αE∗ + θmM∗m

)
− a3γamI∗a − a4γatI∗a (B.24)

−a2κI∗a + a5ηcI∗c = −a3ωcmI∗c , (B.25)

Using Eq (B.25), we have

a2 =
ηcI∗c {( f (B∗, S ∗))}
κI∗a

(
ηaI∗a + ηcI∗c

) + ωcmI∗c
(
f (B∗, S ∗)θmM∗m + a4αE∗ψmtM∗m

)
αE∗κI∗a

(
γamI∗a + ωcmI∗c

) ,

= ηcI∗c
k1E∗

k6B∗
+ ωcmI∗c

k1θm + αψmta4

αk4
(B.26)
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For a4 = 1, we get: 
a1 =

k1

α
; a2 = ηcI∗c

k1E∗

k6B∗
+ ωcmI∗c

k1θm + αψmt

αk4
;

a3 =
k1θm + αψmt

αk4
; a5 =

k1E∗

k6B∗
.

(B.27)

These values of ai, i = 1, · · · , 5 imply that
dZ
dt
≤ 0.

Furthermore, the equality
dZ
dt
= 0 holds only for

S = S ∗, E = E∗, Ia = I∗a, Ic = I∗c ,Mm = M∗m,Mt = M∗t ,R = R∗, B = B∗.

Thus, {ε∗} is the largest positive invariant set which is contained in the set{
(S , E, Ia, Ic,Mm,Mt,R, B) ∈ Ω : S = S ∗, E = E∗, Ia = I∗a, Ic = I∗c ,Mm = M∗m,Mt = M∗t ,R = R∗, B = B∗

}
.

Hence, it follows from LaSalle’s invariance principle [33] that any solution of Eq (2.6) with an initial
condition in Ω converges to the endemic equilibrium point ε∗, as t −→ ∞. Therefore, the positive
equilibrium ε∗ is globally asymptotically stable if R0 > 1.
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